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Motivation

Graphs provide a flexible model to represent many datasets:

I Examples in Euclidean domains
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(a) Computer graphics1 (b) Wireless sensor networks 2 (c) image - graphs



Motivation

I Examples in non-Euclidean settings
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Combined ARQ-Queue
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(a) Social Networks 3, (b) Finite State Machines(FSM)



Graph Signal Processing

I Given a graph (fixed or learned from data)

I and given signals on the graph (set of scalars associated to vertices)

I define frequency, sampling, transforms, etc

I in order to solve problems such as compression, denoising, interpolation,
etc

I Overview papers:
[Shuman, Narang, Frossard, Ortega, Vandergheysnt, SPM’2013]
[Sandryhaila and Moura 2013]



Examples
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I Sensor network

I Relative positions of sensors
(kNN), temperature

I Does temperature vary
smoothly?

I Social network

I Friendship relationship, age
I Are friends of similar age?

I Images

I Pixel positions and similarity,
pixel values

I Discontinuities and smoothness



Sampling

I Sample signal at discrete points in time/space

I Core tool in Digital Signal Processing (DSP)

I From Analog to Digital
I Digital to Digital

I Many pervasive applications

I Digital audio (CDs, MP3s, etc)
I Digital images/video (JPEG, MPEG, AVC, HEVC)

I Key concept: signals can be recovered from their samples

I Questions:

I What properties enable recovery?
I How to sample?
I How to reconstruct?
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Graph Signal Sampling Examples
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I Sensor network

I Relative positions of sensors
(kNN), temperature

I Measure temperature in a subset
of sensors

I Social network

I Friendship relationship, age
I Estimate interests for a subset of

users

I Images

I Pixel positions and similarity,
pixel values

I New image sampling techniques



Sampling

Traditional DSP

I Samples dropped in a regular fashion, spectral folding (aliasing).

I Cutoff frequency ⇔ sampling rate.

Reconstruction
Bandlimited signal

Answers:

I What properties enable recovery? Signals are smooth, low frequency

I How to sample? Regular sampling

I How to reconstruct? Low pass filtering
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Graph Sampling?

I Measure a few nodes to estimate information throughout the graph

I Reconstruct signal in whole graph

Questions:

I What properties enable recovery? Need to define frequency

I How to sample? No obvious regular sampling

I How to reconstruct? Filtering is needed
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Graphs 101
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I Graph G = (V,E ,w).

I Adjacency A, aij = aji = weight of
link between i and j .

I Degree D = diag{di}
I Laplacian matrix L = D− A.

I Symmetric normalized Laplacian
L = D−1/2LD−1/2

I Graph Signal
f = {f (1), f (2), ..., f (N)}

I Assumptions:

1. Undirected graphs without self loops.
2. Scalar sample values



Spectrum of Graphs

I Laplacian L = D− A = UΛU′

I Eigenvectors of L : U = {uk}k=1:N

I Eigenvalues of L : diag{Λ} = λ1 ≤ λ2 ≤ ... ≤ λN

I Eigen-pair system {(λk , uk)} provides Fourier-like interpretation —
Graph Fourier Transform (GFT)



Graph Frequencies

(a) λ = 0.00 (b) λ = 0.04 (c) λ = 1.20 (d) λ = 1.55

(a) ω = π/4 ×0 (b) ω = π/4 ×1 (c) ω = π/4 ×4 (d) ω = π/4 ×7

Eigenvectors of an arbitrary graph

DCT basis for regular signals



Eigenvectors of graph Laplacian

(a) λ = 0.00 (b) λ = 0.04 (c) λ = 0.20

(d) λ = 0.40 (e) λ = 1.20 (f) λ = 1.49



Graph Transforms and Filters

Input Signal Transform Output Signal 
Processing/

Analysis

I Desirable properties

I Invertible
I Critically sampled
I Orthogonal

I What makes these “graph transforms”?

I Frequency interpretation
I Vertex localization



Frequency interpretation: SGWT

I Spectral Wavelet transforms [Hammond et al. 2011]:

Design spectral kernels: h(λ) : σ(G)→ R.

Th = h(L) = Uh(Λ)Ut

h(Λ) = diag{h(λi )}

I Analogy: FFT implementation of filters



Vertex Localization: SGWT

I Polynomial kernel approximation:

h(λ) ≈
K∑

k=0

akλ
k

Th ≈
K∑

k=0

akLk

K -hop localized: no spectral decomposition required.



Graph Filterbank Designs

I Formulation of critically sampled graph filterbank design problem

I Design filters using spectral techniques [Hammond et al. 2009].

I Orthogonal (not compactly supported) [Narang and O., IEEE TSP June 2012]

I Bi-Orthogonal (compactly supported) [Narang and O., IEEE TSP Oct 2013]

analysis side synthesis side

filter downsample upsample filter

- -



Bipartite Subgraph Decomposition

I These designs work on bipartite graphs

I But not all graphs are bipartite...

I Solution: “Iteratively” decompose non-bipartite graph G into K bipartite
subgraphs
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Bipartite Subgraph Decomposition

I Example of a 2-dimensional (K = 2) decomposition:
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Bipartite Subgraph Decomposition

I Example of a 2-dimensional (K = 2) decomposition:



Bipartite Subgraph Decomposition

I Example of a 2-dimensional (K = 2) decomposition:



Example

Minnesota traffic graph and graph signal



Example
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Output coefficients of the proposed filterbanks with parameter m = 24.
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Bandlimited signals

I In many applications, signals of
interest are smooth.

I Smooth signals → lowpass in
spectral domain.

Bandlimited signals in graphs

I ω-bandlimited signal: GFT has support [0, ω].

I Paley-Wiener space PWω(G): Space of all ω-bandlimited signals.

I PWω(G) is a subspace of RN .
I ω1 ≤ ω2 ⇒ PWω1 (G) ⊆ PWω2 (G).



Bandlimited signals

I In many applications, signals of
interest are smooth.

I Smooth signals → lowpass in
spectral domain.

Bandlimited signals in graphs

I ω-bandlimited signal: GFT has support [0, ω].

I Paley-Wiener space PWω(G): Space of all ω-bandlimited signals.

I PWω(G) is a subspace of RN .
I ω1 ≤ ω2 ⇒ PWω1 (G) ⊆ PWω2 (G).



Sampling graph signals

I Input signal: f ∈ PWω(G).

I Sampling set: S ⊂ V, unknown set: Sc .

I Sampled signal: f(S) ∈ R|S|.

P1: Given S, maximum ω?

P2: Given ω, smallest set S?

P3: Given ω and f(S), how to recover f?
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Maximum
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Necessary and sufficient condition [Anis, Gadde, O., ICASSP ’14]

I If φ ∈ PWω(G), then g = f + φ ∈ PWω(G).

I f 6= g and f(S) = g(S) ⇒ trouble!

Lemma
Let L2(Sc) = {φ : φ(S) = 0}. All signals f ∈ PWω(G) can be perfectly
recovered from S if and only if PWω(G) ∩ L2(Sc) = {0}.
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Sampling theorem [Anis, Gadde, O., ICASSP ’14]

Theorem (Sampling theorem)

All signals f ∈ PWω(G) can be perfectly recovered from their samples f(S) if
and only if

ω < inf
φ∈L2(Sc )

ω(φ)
4
= ωc(S)

We call ωc(S) the true cutoff frequency.

The cutoff frequency depends on the size of S and topologies of G and S.

In order to optimize sampling set, maximize cut-off frequency



How to optimize the sampling set?

Cutoff frequency ≡ bandwidth of smoothest signal φ∗ in L2(Sc).

I Compare φ∗ ∈ L2(Sc) for both graphs.

I More cross-links ⇒ higher variation ⇒ higher bandwidth.
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P2: Smallest sampling set

Formulation
Relax the true cutoff ωc(S) by Ωk(S), an approximation based on the k-th
power of the Laplacian and solve:

Minimize |S| subject to Ωk(S) ≥ ωc

Greedy Approach to get an estimate of Sopt [Anis, Gadde and O., ICASSP
2014]:

I Start with S = {∅}.
I Add nodes to S (from Sc) one-by-one that ensure maximum increase in

Ωk(S) at each step.

I Essentially this involves finding nodes that are “far” from S at each
iteration

I Note: Most alternative proposed methods require knowledge of the GFT



P3: Signal Reconstruction

I C1 = {x : x(S) = f(S)} and C2 = PWω(G).

I We need to find a unique f ∈ C1 ∩ C2 ⇒
sampling theorem guarantees uniqueness.

Projection onto convex sets

fi+1 = PC2 PC1 fi , where f0 = [f(S)>, 0]>.

C1
fdu

C2

f1

C1 ∩ C2f0 f2

f3

I PC1 resets the samples on S to f(S).

I PC2 = Uh(Λ)U> sets f̃(λ) = 0 if λ > ω.

h(λ) =

{
1, if λ < ω
0, if λ ≥ ω

0 0.5 1 1.5 2
−0.5

0

0.5

1

1.5

λ

h
(λ

)

 

 

Polynomial approx.
Exact

I PC2 ≈
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Learning: Motivation and Problem Definition

I Unlabeled data is abundant. Labeled data is expensive and scarce.

I Solution: Active Semi-supervised Learning (SSL).

I Problem setting: Offline, pool-based, batch-mode active SSL via graphs

I How to predict unknown labels from the known labels?

I What is the optimal set of nodes to label given the learning algorithm?



Graph-based semi-supervised learning

Key Idea:

I Construct a distance-based similarity graph.

I Data points → nodes.
I Edge weights → similarity.

I Treat class indicator vectors as graph signals that are

I Consistent with known labels.
I Smooth on the graph.
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Graph-based semi-supervised learning

Key Idea:

I Construct a distance-based similarity graph.

I Data points → nodes.
I Edge weights → similarity.

I Treat class indicator vectors as graph signals that are

I Consistent with known labels.
I Smooth on the graph.

Why does this work?



Connection to Graph Sampling

I Class membership functions can be approximated by bandlimited graph
signals.
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(c) 20 newsgroups

Figure 3: Cumulative distribution of energy in the GFT coefficients of one of the class membership functions pertaining to
the three real-world dataset experiments considered in Section 5. Note that most of the energy is concentrated in the low-pass
region.

term is expected to be negligible as compared to the first
one due to differencing, and we get

xtLx ≈
�

j∈Sc

�
pj

dj

�
x2

j , (24)

where, pj =
�

i∈S wij is defined as the “partial out-degree”
of node j ∈ Sc, i.e., it is the sum of weights of edges crossing
over to the set S. Therefore, given a current selected S, the
greedy algorithm selects the next node, to be added to S,
that maximizes the increase in

Ω1(S) ≈ inf
||x||=1

�

j∈Sc

�
pj

dj

�
x2

j . (25)

Due to the constraint ||x|| = 1, the expression being mini-
mized is essentially an infimum over a convex combination
of the fractional out-degrees and its value is largely deter-
mined by nodes j ∈ Sc for which pj/dj is small. In other
words, we must worry about those nodes that have a low
ratio of partial degree to the actual degree. Thus, in the
simplest case, our selection algorithm tries to remove those
nodes from the unlabeled set that are weakly connected to
nodes in the labeled set. This makes intuitive sense as, in
the end, most prediction algorithms involve propagation of
labels from the labeled to the unlabeled nodes. If an unla-
beled node is strongly connected to various numerous points,
its label can be assigned with greater confidence.

Note that using a higher power k in the cost function,
i.e., finding Ωk(S) for k > 1 involves xLkx which, loosely
speaking, takes into account higher order interactions be-
tween the nodes while choosing the nodes to label. In a
sense, we expect it to capture the connectivities in a more
global sense, beyond local interactions, taking into account
the underlying manifold structure of the data.

3.3 Complexity
We now comment on the time and space complexity of

our algorithm. The most complex step in the greedy proce-
dure for maximizing Ωk(S) is computing the smallest eigen-
pair of (Lk)Sc . This can be accomplished using an iterative
Rayleigh-quotient minimization based algorithm. Specifi-
cally, the locally-optimal pre-conditioned conjugate gradi-
ent (LOPCG) method [14] is suitable for this approach.
Note that (Lk)Sc can be written as ISc,V .L.L . . . L.IV,Sc ,
hence the eigenvalue computation can be broken into atomic

matrix-vector products: L.x. Typically, the graphs encoun-
tered in learning applications are sparse, leading to efficient
implementations of L.x. If |L| denotes the number of non-
zero elements in L, then the complexity of the matrix-vector
product is O(|L|). The complexity of each eigen-pair com-
putation for (Lk)Sc is then O(k|L|r), where r is a constant
equal to the average number of iterations required for the
LOPCG algorithm (r depends on the spectral properties of
L and is independent of its size |V|). The complexity of the
label selection algorithm then becomes O(k|L|mr), where
m is the number of labels requested.

In the iterative reconstruction algorithm, since we use
polynomial graph filters (Section 2.5), once again the atomic
step is the matrix-vector product L.x. The complexity of
this algorithm can be given as O(|L|pq), where p is the order
of the polynomial used to design the filter and q is the av-
erage number of iterations required for convergence. Again,
both these parameters are independent of |V|. Thus, the
overall complexity of our algorithm is O(|L|(kmr + pq)). In
addition, our algorithm has major advantages in terms of
space complexity: Since, the atomic operation at each step
is the matrix-vector product L.x, we only need to store L
and a constant number of vectors. Moreover, the structure
of the Laplacian matrix allows one to perform the afore-
mentioned operations in a distributed fashion. This makes
it well-suited for large-scale implementations using software
packages such as GraphLab [16].

3.4 Prediction Error and Number of Labels
As discussed in Section 2.5, given the samples fS of the

true graph signal on a subset of nodes S ⊂ V, its estimate
on Sc is obtained by solving the following problem:

f̂(Sc) = USc,Kα∗ where, α∗ = arg min
α

�US,Kα− f(S)�
(26)

Here, K is the index set of eigenvectors with eigenvalues less
than the cut-off ωc(S). If the true signal f ∈ PWωc(S)(G),
then the prediction is perfect. However, this is not the case
in most problems. The prediction error �f − f̂� roughly
equals the portion of energy of the true signal in [ωc(S), λN ]
frequency band. By choosing the sampling set S that max-
imizes ωc(S), we try to capture most of the signal energy
and thus, reduce the prediction error.

An important question in the context of active learning is
determining the minimum number of labels required so that



Summary of the Algorithm [Anis, Gadde, O., KDD 2014]

Construct graph

Choose nodes to label by 
maximizing cut-off frequency

Predict labels by 
signal reconstruction

Query labels of 
chosen nodes

Input data



Results: Toy Example

Task
Pick 8 data points for labeling.

  

Active Semi-supervised Learning Using Sampling Theory for Graph Signals
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Choose points to label Predict labels for the restData points in feature space  Construct similarity graph

1/B

B/2

Sampling rate of B allows perfect 
reconstruction of signals with 
bandwidth B/2

For graph signals, different sampling patterns 
uniquely represent signals of different bandwidths.

For given budget, choose  a sampling pattern that 
can represent signals of maximum bandwidth.

Problem

Methodology
Extending Nyquist Shannon sampling theory to signals on graphs

ProposedLLGC boundLLRΨ-max

I 4 data points picked from each circle.

I Maximally separated points within one circle.

I Maximal spacing between selected data points in different circles.
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Results: Real Datasets
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I USPS: handwritten digits

I xi = 16× 16 image

I number of classes = 10

I K -NN graph with K = 10

I wij = exp
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I ISOLET: spoken letters

I xi ∈ R617 speech features.

I number of classes = 26

I K -NN graph with K = 10
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I Newsgroups: documents

I xi ∈ R3000 tf-idf of words

I number of classes = 10

I K -NN graph with K = 10

I wij =
x>i xj
‖xi‖‖xj‖



Why bandlimited signals?

I Data model:

I Set of points X = {X1, . . . ,Xn},Xi ∈ Rd drawn i.i.d. from p(x).
I Smooth hypersurface ∂S dividing Rd into two parts: A and B.
I Indicator vector for points in A: 1A ∈ {0, 1}n such that 1A(i) = 1 if

Xi ∈ A and 0 otherwise.

A B

I Asymptotic Result [Anis et al., ICASSP 2015]:

I Bandwidth ω(1S) function of max(p(x)) along δS



Implications: interpretation of bandwidth

I If boundary passes through regions of low density:

I Bandwidth of indicator is low
I Sampling theory ⇒ fewer known labels required for perfect

reconstruction.



Outline

Introduction

Basic Concepts

Sampling

Application: Learning

Application: Image/Video Processing

Conclusions



Applying Graph-Based Methods to Image/Video Coding

I Main idea

I Images can be viewed as regular (4 connected, 8 connected) pixel
graphs

I Making graphs irregular (different weights) allows us to capture
different levels of correlation between pixels

I Two main ideas:

I Use side information to signal discontinuities
I Find “average” graphs as alternatives to KLT



Depth Image Coding [Narang, Chao and O., APSIPA 2013]

I Block Diagram

Edge  
Detection 

Graph 
Selection 

Edge 
Encoding 

(JBIG) 

Graph-based 
Wavelet Transform  

Wavelet Coefficients  
Encoding 
(SPIHT) 

GraphBior 
Filterbanks 

Output  
Bit stream  Input Image 

I Link-weights can be adjusted to reflect geometrical structure of the image.



Depth Image Coding [Narang, Chao and O., APSIPA 2013]

CDF	
  9/7	
   Graph	
  9/7	
  



Depth Image Coding [Narang, Chao and O., APSIPA 2013]

I Edge detection: Prewitt

I Laplacian Normalization: Random
Walk Laplacian

I Filterbanks: GraphBior 4/3 and
CDF 9/7

I Unreliable Link Weight: 0.01

I Transform level: 5

I Encoder: SPIHT



Residual Characteristics of Inter-predicted residuals

Main observation:

I Residual samples around block boundaries have higher energy

I Occlusions, partial mismatches between reference and predicted blocks

Variance Graph

I Developed tools to learn sparse graphs from data

I Can outperform KLT (robustness)



Lifting Approximation for Intra-predicted videos
(Chao et al, submitted to ICASSP 2016)

I Application on residual video frames extracted from HEVC standard

I Block size: 8× 8

I Hybrid mode between Lifting and DCT: based on RD cost
SSE + λ× Bitrate

I Test Set {Foreman,Mobile, Silent,Deadline}



Lifting Approximation for Intra-predicted videos
(Chao et al, submitted to ICASSP 2016)

I Lifting/DCT hybrid with graph sampling approximates GFT/DCT hybrid
approach

I Sampling (requires eigen-decomposition) can be well approximated with
heuristic approach, e.g. greedy MaxCut.

I Online transform complexity against GFT: O(N logN) v.s. O(N2)

I Bjontegaard Distortion-Rate against DCT
Methods GFT Lifting with GMRF sampling Lifting (Max Cut w/ re-connection)

∆ PSNR (dB) ∆ rate (%) ∆ PSNR (dB) ∆ rate (%) ∆ PSNR (dB) ∆ rate (%)
Foreman 0.34 -7.28 0.29 -6.42 0.26 -5.77
Mobile 0.17 -1.46 0.10 -0.97 0.10 -0.96
Silent 0.22 -4.28 0.20 -3.88 0.18 -3.58

Deadline 0.37 -4.97 0.31 -3.98 0.30 -3.90
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Conclusions

I Extending signal processing methods to arbitrary graphs: Downsampling,
Space-frequency, Multiresolution, Wavelets

I Many open questions: very diverse types of graphs, results may apply to
special classes only

I Outcomes

I Work with massive graph-datasets: potential benefits of localized
“frequency” analysis

I Novel insights about traditional applications (image/video processing)
I Promising results in machine learning, image processing

I To get started:
[Shuman, Narang, Frossard, Ortega, Vandergheysnt, SPM’2013]
[Sandryhaila and Moura 2013]
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