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“How                are                 you?” 

Introduction 

• Speech conveys several types of information 

– Linguistic: message and language information 

– Paralinguistic : emotional and physiological characteristics 

 

Speech 
Recognition 

Language 
Recognition 

Speaker 
Recognition 

Emotion 
Recognition 

Accent 
Recognition 

“How are you?” English Hsing  Ming  Happy Taiwanese 

Linguistic Paralinguistic 
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Speaker Identification  
 

determines who is 
speaking given a set of 

enrolled speakers 

 

Speaker Verification 
 

determines if the 
unknown voice is from 

the claimed speaker 

Speaker Diarization 
 

partition an input audio 
stream into 

homogeneous segments 
according to the speaker 

identity 



APSIPA 
Asia-Pacific Signal and Information Processing Association 

  APSIPA Distinguished Lecture Series @ IIU, Malaysia 4 

Speaker Identification  
 

determines who is 
speaking given a set of 

enrolled speakers 

 

Speaker Verification 
 

determines if the 
unknown voice is from 

the claimed speaker 

Speaker Diarization 
 

partition an input audio 
stream into 

homogeneous segments 
according to the speaker 

identity 

3.5 4 4.5 5 5.5

x 10
4

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Model repository
Speaker 1 

Model

Unknown 
Speaker

Best 
Matching 
Speaker

Speaker 2 
Model

Speaker M 
Model

Model repository
Speaker 1 

Model

Claimed 
Speaker 2

Reject
Speaker 2 

Model

Speaker M 
Model

3.5 4 4.5 5 5.5

x 10
4

-0.1

-0.05

0

0.05

0.1

0.15

0.2

3.5 4 4.5 5 5.5

x 10
4

-0.1

-0.05

0

0.05

0.1

0.15

0.2

3.5 4 4.5 5 5.5

x 10
4

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Speaker 1

Speaker 2

Speaker 1



APSIPA 
Asia-Pacific Signal and Information Processing Association 

  APSIPA Distinguished Lecture Series @ IIU, Malaysia 

Speaker Verification Applications - Biometrics 
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Physical  
facilities 

Access control 

Telephone credit  
card purchases 

Transaction 
authentication 
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Speaker Verification System – Basic Overview 

• In automatic speaker verification,  

– The front-end converts speech signal into a more 
convenient representation (typically a set of feature 
vectors) 

– The back-end compares this representation to a model of a 
speaker to determine how well they match 
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UBM: represent general, speaker independent model to be compared against a 
person-specific model when making an accept or reject decision.  
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Speaker Verification System – Speaker Enrolment 
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Detailed Speaker Verification System 
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Front-end: Feature Extraction 
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Temporal Derivative
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Detailed Speaker Verification System 
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Speaker Modelling 

 Probability density function approximated by  3-
component Gaussian mixture models 

 

 Each Gaussian mixture consist of a mean (µ), 
covariance (Σ) and weight (w) 
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Database for creating UBM (example) 

• Training set 

– 56 male speakers (each speaker 
consists of 2 minutes of active speech) 
for creating the UBM 

• Target set 

– 20 male speakers (each speaker 
consists of 2 minutes of active speech) 
for speaker-specific model 

• Test set 

– 250 male utterances (each speaker has 
many test utterances) with the known 
identity 
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Representing GMMs 
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Feature Extraction 
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Score Normalisation 

Speaker Verification 
System 1

Speaker Verification 
System 2

Speaker Verification 
System N

Speech

Different Systems 
perform speaker 

verification in 
parallel 
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Score Normalisation 
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Score Normalisation 
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Fusion 
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Final score will be a weighted sum of 
score from each system 
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Performance measure 

• Types of error: 

– Misses: valid identity is rejected 
o Probability of miss: ratio of the number of falsely rejected 

speaker tests to the total number of correct speaker trials.  

– False alarms: invalid identity is accepted 
o Probability of false alarm: ratio of the number of falsely accepted 

speaker tests to the total number of impostor trials  

TRUE SPEAKER

IMPOSTER

ACCEPT CLAIM REJECT CLAIM

CORRECT 
DECISION

CORRECT 
DECISION

FALSE 
ACCEPTANCE

MISS
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Performance measure - Detection error trade-off 
(DET) curve  

False Acceptance Rate (in %) 
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corresponds to a different 𝜃 
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Performance measure - Detection error trade-off 
(DET) curve  
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NIST Speaker Recognition Evaluation (SRE)  

• Ongoing text independent speaker recognition 
evaluations conducted by NIST 
(http://www.itl.nist.gov/iad/mig/tests/spk/) 

– driving force in advancing the state-of-the-art 

– Conditions for different amounts of data 
o 10 sec. 

o 3-5 minutes 

o 8 minutes 

o Separate channel and summed channel conditions 

– English-speakers, non-English speakers, multilingual 
speakers 
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http://www.itl.nist.gov/iad/mig/tests/spk/


NIST SRE Trends 

• 1996 – First SRE in current series 

• 2000 – AHUMADA Spanish data, first non-English 
speech 

• 2001 – Cellular data, Automatic Speech Recognition 
(ASR) transcripts provided 

• 2005 – Multiple languages with bilingual speakers, 
room mic recordings, cross-channel trials 

• 2008 – Interview data 

• 2010 – High and low vocal effort, aging, HASR 
(Human-Assisted Speaker Recognition)  Evaluation 

• 2012 – Broad range of test conditions, with added 
noise and reverberation, target speakers defined 
beforehand 
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Trends 

• In 2004’s: Classification 
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Trends 

• In 2005’s: Channel compensation - NAP 
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Trends 

• In 2007’s: Channel compensation - JFA 
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Trends 

• In 2009’s: Channel compensation – i-vector 
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Trends 

• In 2009’s: Channel compensation – PLDA 
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