
Cross-lingual Speech Emotion Recognition System
Based on a Three-Layer Model for Human

Perception
Reda Elbarougy 1,2 and Masato Akagi 1

1Japan Advanced Institute of Science and Technology (JAIST), Japan
2Department of Mathematics, Faculty of Science, Damietta University, New Damietta, Egypt

E-mail: elbarougy@jaist.ac.jp, akagi@jaist.ac.jp

Abstract—The purpose of this study is to investigate whether
emotion dimensions valence, activation, and dominance can
be estimated cross-lingually. Most of the previous studies for
automatic speech emotion recognition were based on detecting
the emotional state working on mono-language. However, in
order to develop a generalized emotion recognition system, the
performance of these systems must be analyzed in mono-language
as well as cross-language. The ultimate goal of this study is to
build a bilingual emotion recognition system that has the ability
to estimate emotion dimensions from one language using a system
trained using another language. In this study, we first propose
a novel acoustic feature selection method based on a human
perception model. The proposed model consists of three layers:
emotion dimensions in the top layer, semantic primitives in the
middle layer, and acoustic features in the bottom layer. The
experimental results reveal that the proposed method is effective
for selecting acoustic features representing emotion dimensions,
working with two different databases, one in Japanese and the
other in German. Finally, the common acoustic features between
the two databases are used as the input to the cross-lingual
emotion recognition system. Moreover, the proposed cross-lingual
system based on the three-layer model performs just as well as
the two separate mono-lingual systems for estimating emotion
dimensions values.

I. INTRODUCTION

Most of the previous techniques for automatic speech emo-
tion recognition focus only on the classification of emotional
states as discrete categories such as happiness, sadness, anger,
fear, surprise, and disgust [1], [2]. However, a single label or
any small number of discrete categories may not accurately
reflect the complexity of the emotional states conveyed in
everyday interaction [3]. Hence, a number of researchers
advocate the use of a dimensional description of human
emotion, where emotional states are not classified into one of
the emotion categories but estimated on a continuous-valued
scale in a multi-dimensional space (e.g., [4], [5], [6], [7]).

In this study, a three-dimensional continuous model is
adopted in order to represent the emotional states using
emotion dimensions i.e., valence, activation and dominance.
This approach is chosen because it exhibits great potential to
model the occurrence of emotions in the real world as well
as in a realistic scenario. Emotions are not generated in a
prototypical or pure modality, but rather in complex emotional
states, which are a mixture of emotions with varying degrees

of intensity or expressiveness. Therefore, this approach allows
a more flexible interpretation of emotional states [8].

Speech perception plays an important role in human-human
communications. Additionally, speech recognition systems that
mimic human speech perception mechanisms also come to
play an important role in human-machine communications.
Thus, we need global evidence for speech perception to obtain
knowledge for constructing the models. However, there is
little knowledge that could contribute to realize universal
communication environments.

Using the dimensional approach, emotion categories are
represented by regions in an n-dimensional space, where the
neutral category lies near the origin, and other emotions lie in
a specific region in the n-dimensional space. For example,
in the two-dimensional space valence-activation, happy is
represented by a region which lies in the first quarter, in which
valence is positive, and activation/arousal is high, as shown in
Fig. 1.

Fig. 1. A two-dimensional emotion space with a valence and an arousal axis.
Basic Emotions are marked as areas within the space.

Speech is the most natural and important means of human-
human communication in our daily life, when we use the same
language. Even without the understanding of one language,



we can still judge the expressive content of a voice, such as
emotions. An interesting question to ask is whether emotional
states can be recognized universally or not. Culture and society
have a considerable weight on the expression of emotions.
This, together with the inherent subjectivity among individu-
als, can make us wonder about the existence of universal emo-
tions. If we consider Darwin’s theory of evolution, emotions
find their root in biology and therefore can be to some extent
considered to be universal [9]. Several studies have indeed
shown evidence for certain universal attributes for both speech
[10], [11] and music [12], [13], not only among individuals of
the same culture, but also across cultures. Dang et al. 2009,
for instance, performed an experiment in which humans had to
distinguish between 3 and 6 emotions respectively [14]. Their
conclusion was that listeners are able to perceive emotion from
speech sound without linguistic information with about 60%
accuracy in a three-emotion evaluation and about 50% in a
six-emotion evaluation.

In this study, we assume that the acoustic features realiza-
tion of specific emotions is language independent based on
the following two assumptions: (1) the positions of neutral
voices are different among languages. This may be related
to different cultures; (2) the distance and directions from
neutral voice to other emotional states are common among
languages. Therefore, in order to reduce the speaker and
language dependency on acoustic features realizations, we
adopt a new acoustic feature normalization process to avoid the
speaker and language variation on the used acoustic features.

Several studies have been devoted to the analysis of the
most important acoustic features from the point of view of
a categorical model, working on mono-lingual [15], [16] and
multi-lingual [17] data. However, they have not yet concerned
with the same depth the importance of acoustic features from
the dimensional model point of view [18]. This paper investi-
gates whether there are common acoustic features between
two different languages that allow us to estimate emotion
dimensions from a speech voice. Therefore, it is interesting
to imitate human perception by building an automatic speech-
emotion recognition system that has the ability to detect the
emotional state regardless of the input language.

To accomplish this, we work with two databases of emo-
tional speech, one in the Japanese language and the other
in the German language. The emotional state in this paper
is represented by the dimensional approach. This approach
defines emotions as points in a three-dimensional emotion
space spanned by the three basic dimensions valence (negative-
positive axis), activation (calm-excited axis), and dominance
(weak-strong axis).

Firstly, a variety of acoustic features were extracted for each
language. Then, a novel feature selection method based on a
three-layer model of a human perception model was proposed.
The proposed method was used to find the best acoustic feature
subsets in the mono-lingual mode for each emotion dimension.
Finally, we construct two cross-language emotion recognition
systems which can estimate the emotional state by training the
system using one language, and testing the system using the

other language.

II. EMOTION RECOGNITION STRATEGY

Scherer [19], in his description of human perception adopted
a version of Brunswik’s lens model which was originally
proposed in 1956 [20]. Based on this model, human perception
is a three-layer process.

In 2008, Huang and Akagi adopted a three-layer model for
human perception. They assumed that human perception for
emotional speech are not directly realized from a change of
acoustic features, but rather from a composite of different
types of smaller perceptions that are expressed by semantic
primitives or adjectives describing emotional voice [21].

Here we attempt to use the above human perception model
proposed in [21] to find the most correlated acoustic features
for each emotion dimension through semantic primitives. Our
model consists of three layers: emotion dimensions valence,
activation and dominance which constitute the top layer,
semantic primitives which constitute the middle layer, and
acoustic features which form the bottom layer. A semantic
primitive layer is added between the two traditional layers of
acoustic features and emotion dimensions, as shown in Fig. 2.

Fig. 2. Three layer model

We assume that the acoustic features which are highly
correlated with semantic primitives will have a large impact
for predicting values of emotion dimensions. The findings can
guide the selection of the most related acoustic features with
better discrimination for each emotion dimension.

In our previous paper [22], a three-layer model was pro-
posed for estimating emotion dimensions; valence, activation,
and dominance. The proposed model was evaluated using a
Japanese database. It was found that this model was effective
for selecting acoustic features for each emotion dimension.
The prediction for all emotion dimensions was improved using
a speech emotion recognition system based on the three-layer
model. In this paper, we investigate the effectiveness of the
proposed model for another language database, a German
database [23]. In addition, we construct a cross-language
emotion recognition system in which values of the selected
acoustic features were used as the inputs, and values of
emotion dimensions are the output of this system.



III. DATABASES AND EXPERIMENTAL EVALUATION

In order to construct a cross-lingual emotion recognition
system to estimate emotion dimensions valence, activation,
and dominance, we need at least two databases in different
languages. The elements of the proposed emotion recognition
system were collected in this section. The databases and
acoustic features used in this study are introduced. Moreover,
the semantic primitives and emotion dimensions are evaluated
by conducting two listening tests using human subjects as
described in next subsections.

A. Speech Material and Subjects

Different types of databases are suitable for different pur-
poses. There are objections against the use of acted emotions.
However, acted emotions are quite adequate for testing data.
Therefore, it is suitable for a novel method which first requires
proof of the concept, rather than construction of a real-life
application for the industry [24].

In this paper, in order to validate the proposed system, two
emotional speech databases were used, one in the Japanese
language and the other in the German language. The Japanese
database is the multi-emotion single speaker Fujitsu database
produced and recorded by Fujitsu Laboratory. A professional
actress was asked to produce utterances using 5 emotional
speech categories, i.e., neutral expression, joy, cold anger,
sadness, and hot anger. In the database, there are 20 different
Japanese sentences. Each sentence has one utterance in the
neutral expression and two utterances in each of the other
categories. Thus, for each sentence there are 9 utterances and
for all 20 sentences there are 180 utterances. One cold anger
utterance is missing from this database therefore the total
number of utterances for this database is 179 utterances.

The German database is Berlin database [23]. It comprises
seven emotional states: anger, boredom, disgust, anxiety, hap-
piness, sadness, and neutral speech. Ten professional German
actors (five females and five males) spoke ten sentences with
an emotionally neutral content in the seven different emotions.
These sentences were not equally distributed between the
various emotional states: 69 frightened; 46 disgusted; 71
happy; 81 bored; 79 neutral; 62 sad; 127 angry. This database
was selected for the following reasons: it is an acted speech
database which is the same as Fujitsu database, since it
contains four similar categories:happy, angry, sad, and neutral
used in the Fujitsu database, to investigate the effect of multi-
speaker and multi-gender on speech emotion recognition. For
the purpose of comparing the results of the two databases we
used only the four similar categories. Furthermore, for training
purpose, we used an equal distribution of the four emotional
states, 50 happy, 50 angry, 50 sad, and 50 neutral; in total,
200 utterances were selected from the Berlin database: 100
utterances were uttered by 5 males and the other 100 by 5
females divided equally between the four emotional states.

For evaluating semantic primitives and emotion dimensions,
we used listening tests. The Fujitsu database was evaluated by
11 graduate students, native Japanese speakers (9 male and
2 female), while the Berlin database was evaluated using 9

graduate students, native Japanese speakers (8 male and 1
female). None of the subjects have any hearing problems.

B. Acoustic Features

In this research, for constructing a speech emotion recog-
nition system, acoustic features are a very important factor
which needs to be investigated. Therefore, the most relevant
acoustic features which have been successful in related works
and features used for other similar tasks were selected. Those
acoustic cues which are considered significant for prosody
largely are extracted from fundamental frequency, intensity,
and duration. In addition, voice quality is another major
factor that researchers have paid much attention to. Therefore,
acoustic features which originate from F0, the power envelope,
the power spectrum, and voice quality are extracted with
the high quality speech analysis-synthesis system STRAIGHT
[25]. Moreover, acoustic features which are related to duration
are extracted by segmentation. We eventually extracted a set
of 21 acoustic features which can be grouped in several
subgroups:
F0-related features: f0 mean value of the rising slope
(F0 RS), the highest F0 (F0 HP), the average F0 (F0 AP)
and the rising slope of the first accentual phrase (F0 RS1).
Power envelope-related features: mean value of the power
range in the accentual phrase (PW RAP), the power range
(PW R), the rising slope of the first accentual phrase
(PW RS1), the ratio between the average power in the
high-frequency portion (over 3 kHz) and the average power
(PW RHT);
Power spectrum-related features: the first formant frequency
(SP F1), the second formant frequency (SP F2), the third
formant frequency (SP F3), spectral tilt (SP TL), and spectral
balance (SP SB);
Duration related features: total length (DU TL), consonant
length (DU CL), ratio between consonant length and vowel
length (DU RCV).
These above-mentioned 16 acoustic feature were selected from
the work by Huang and Akagi, where they proved that these
acoustic features have a significant correlation with semantic
primitives [21]. In addition to these 16 acoustic features, 5 new
parameters related to voice quality are added, because voice
quality is one of the most important cues for the perception
of expressive speech.
Voice quality: the mean value of the difference between the
first harmonic and the second harmonic H1-H2 for vowels
/a/,/e/,/i/,/o/, and /u/ per utterance MH A, MH E, MH I,
MH O, and MH U.

All the 21 acoustic features were extracted for both the
Fujitsu and Berlin databases.

In order to avoid speaker and language dependency on the
acoustic features that are used, we adopt the new acoustic
feature normalization, in which all acoustic feature values are
normalized by those of the neutral speech. This was performed
by dividing the values of acoustic features by the mean value
of neutral utterances for all acoustic features.



C. Semantic Primitives Evaluation

In this study, the human perception model as described
by Scherer [19] is adopted. This model assumes that human
perception is a three-layer process. It was assumed that the
acoustic features are perceived by a listener and internally
represented by a smaller perception e.g adjectives describing
emotional voice as reported in [21]. These smaller percepts
or adjectives are finally used for detecting the emotional
state of the speaker. These adjectives can be subjectively
evaluated by human subjects. Therefore, a set of adjectives
describing the emotional speech were selected as candidates
for semantic primitives. These adjectives are: Bright, Dark,
High, Low, Strong, Weak, Calm, Unstable, Well-modulated,
Monotonous, Heavy, Clear, Noisy, Quiet, Sharp, Fast, and
Slow. These adjectives were selected because they reflect a
balanced selection of widely used adjectives that describe
emotional speech, and were used originally in [21].

For the evaluation, we used listening tests. In these tests,
the stimuli were presented randomly to each subject through
binaural headphones at a comfortable sound pressure level in
a soundproof room. Subjects were asked to rate each of the
17 semantic primitives on a 5-point scale (“1-Does not feel at
all”, “2-Seldom feels” , “3-Feels a little” , “4-feels” , “5-Feels
very much”). The 17 semantic primitives were evaluated for
the two databases, then ratings of the individual subject were
averaged for each semantic primitive per utterance. The inter-
rater agreement was measured by means of pairwise Pearson’s
correlations between two subjects’ ratings, separately for each
semantic primitive. It was found that all subjects agreed from
moderate to a very high degree.

D. Emotion Dimensions Evaluation

Most of the existing emotional speech databases were
annotated using the categorical approach. Few databases were
annotated using the dimensional approach. The Fujitsu and
Berlin databases are categorical databases. Therefore, listening
tests are required to annotate each utterance in the used
databases using the dimensional approach. Thus, the two
databases were evaluated through the listening tests along the
three dimensions of valence, activation, and dominance. For
the emotion dimensions evaluation, a 5-point scale {-2, -1, 0,
1, 2} was used: valence (from -2 very negative to +2 very
positive), activation (from -2 very calm to +2 very excited),
and dominance (from -2 very weak to +2 very strong).

The subjects used a MATLAB GUI to evaluate the stimuli.
Repeats were allowed. Subjects were asked to evaluate one
emotion dimension for the whole database in one session.
There were three sessions, one for each emotion dimension. As
done in [26] for emotion dimensions evaluation, before starting
the experiment, the basic theory of emotion dimension was
explained to the subjects. Then, they took a training session
to listen to an example set composed of 15 utterances, which
covered the used 5- point scale, which are three utterances
for each point in the used scale. In the test, the stimuli were
presented randomly for each utterance. Subjects were asked to
evaluate their perceived impression from the way of speaking,

not from the content itself, then to rate each dimension indi-
vidually using the 5-point scale. The average per utterances of
the subjects rating for each emotion dimension was calculated
. The subjects show a high inter-rater agreement. It was found
that all subjects agreed to a high degree on the valence,
activation, and dominance.

IV. SELECTION OF SEMANTIC PRIMITIVES AND ACOUSTIC
FEATURES

A. Selection Procedures

This section describes the proposed acoustic features selec-
tion method to identify the most relevant acoustic features for
the emotion dimensions of valence, activation and dominance.
For this purpose, we investigate the effectiveness of the three-
layer model, which imitates human perception, to understand
the relationship between acoustic features and emotion dimen-
sions. To accomplish this task, a top-down method shown in
Fig. 3 was used as follows:

• the correlation coefficients between evaluated values for
each emotion dimension (top-layer) and evaluated values
of each semantic primitives (middle layer) were calcu-
lated using Eq.(1) as shown in Table 1;

• the highly correlated semantic primitives were selected
for each emotion dimension as an adjective that describes
this dimension;

• the correlation coefficients between evaluated values for
each selected semantic primitive (middle layer) in the
second step and extracted values for each acoustic feature
(bottom layer) were calculated using Eq.(2), as shown in
Table 2,

• and the highly correlated acoustic features were selected
for each semantic primitive.

For each emotion dimension, the selected acoustic features
are considered to be the features most relevant to the used

Fig. 3. Process for acoustic feature selection



TABLE I
GERMAN DATABASE: CORRELATION COEFFICIENTS BETWEEN THE SEMANTIC PRIMITIVES AND THE EMOTION DIMENSIONS
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1 Valence 0.9 -0.7 0.6 -0.6 0.1 -0.4 -0.2 0.1 0.3 -0.2 -0.9 0.8 0.1 -0.4 0.3 0.4 -0.5 7
2 Activation 0.7 -0.9 0.9 -0.9 0.9 -1.0 -0.9 0.9 0.9 -0.9 -0.6 0.7 0.9 -1.0 0.9 0.8 -0.8 17
3 Dominance 0.6 -0.9 0.8 -0.9 1.0 -1.0 -0.9 0.9 0.9 -0.8 -0.5 0.6 0.9 -1.0 1.0 0.8 -0.8 17

# 3 3 3 3 2 2 2 2 2 2 3 3 2 2 2 2 3 41

TABLE II
GERMAN DATABASE: CORRELATION COEFFICIENTS BETWEEN THE ACOUSTIC FEATURES AND SEMANTIC PRIMITIVES
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#
1 MH A -0.6 0.8 -0.7 0.8 -0.8 0.8 0.7 -0.7 -0.7 0.7 0.5 -0.6 -0.8 0.8 -0.8 -0.7 0.7 17
2 MH E -0.5 0.6 -0.6 0.6 -0.7 0.7 0.7 -0.7 -0.6 0.6 0.4 -0.4 -0.7 0.7 -0.7 -0.6 0.6 15
3 MH O -0.5 0.6 -0.6 0.6 -0.6 0.7 0.6 -0.6 -0.6 0.6 0.4 -0.5 -0.6 0.7 -0.6 -0.5 0.6 16
4 MH U -0.4 0.5 -0.4 0.5 -0.4 0.5 0.4 -0.4 -0.4 0.3 0.3 -0.4 -0.4 0.5 -0.5 -0.5 0.5 7
5 F0 RS 0.5 -0.6 0.7 -0.7 0.7 -0.7 -0.8 0.7 0.8 -0.8 -0.5 0.4 0.7 -0.7 0.7 0.4 -0.4 14
6 F0 HP 0.5 -0.6 0.7 -0.6 0.6 -0.6 -0.7 0.7 0.7 -0.7 -0.4 0.3 0.6 -0.6 0.6 0.3 -0.3 13
7 PW R 0.5 -0.7 0.7 -0.7 0.7 -0.7 -0.8 0.8 0.8 -0.8 -0.4 0.4 0.8 -0.8 0.7 0.5 -0.5 15
8 PW RHT 0.1 -0.3 0.3 -0.3 0.6 -0.4 -0.5 0.6 0.5 -0.5 0.0 0.0 0.6 -0.5 0.5 0.2 -0.2 8
9 PW RAP 0.3 -0.3 0.4 -0.4 0.4 -0.3 -0.4 0.4 0.5 -0.5 -0.2 0.2 0.4 -0.4 0.4 0.0 -0.1 2
10 SP F1 -0.6 0.6 -0.5 0.6 -0.3 0.5 0.3 -0.3 -0.4 0.3 0.5 -0.6 -0.3 0.5 -0.4 -0.4 0.5 9
11 DU TL -0.3 0.4 -0.3 0.4 -0.3 0.4 0.2 -0.2 -0.2 0.1 0.3 -0.5 -0.2 0.4 -0.3 -0.4 0.5 2

# 7 8 7 8 7 8 7 7 8 8 3 4 7 9 8 5 7 118

dimension in the top layer. Firstly, the correlations between
the elements of the top layer and the middle layer were
calculated as follow: let x(i) = {x(i)

n }(n = 1, 2, . . . , N) be the
sequence of the values of the ith emotion dimension rated with
the listening test, i ∈ {V alence, Activation, Dominance},
where N is the number of utterances in our database (N = 179
for the Japanese database and N = 200 for the German
database). Moreover, let s(j) = {s(j)

n }(n = 1, 2, . . . , N) be
the sequence of the values of the jth semantic primitive rated
with another listening test, j ∈ {Bright, Dark, . . . , Slow},
where N is the number of utterances in our database. Then,
the correlation coefficient R

(i)
j between the semantic primitive

s(j) and the emotion dimension x(i) can be determined by the
following equation:

R
(i)
j =

∑N
n=1(sj,n − sj)(x

(i)
n − x(i))√∑N

n=1(sj,n − sj)2
√∑N

n=1(x
(i)
n − x(i))2

(1)

where sj , and x(i) are the arithmetic mean of the semantic
primitive and emotion dimension respectively. Correlation
coefficients between semantic primitives and emotion dimen-
sions for the German database are shown in Table 1.

The correlation coefficients between elements of the middle
layer (semantic primitive), and the bottom layer (acoustic
feature) are calculated as follows. Let am = {am,n}(n =

1, 2, . . . , N) be the sequence of values of the mth acoustic
feature, m = 1, 2, . . . ,M , where M is the number of extracted
acoustic features in this study, M = 21. Moreover, let s(j) =
{s(j)

n }(n = 1, 2, . . . , N) be the sequence of the rated values of
the jth semantic primitive, j ∈ {Bright,Dark, . . . , Slow},
where N is the number of utterances in our database. Then
the correlation coefficient R

(j)
m between the acoustic parameter

am and the semantic primitive s(j) can be determined by the
following equation:

R(j)
m =

∑N
n=1(am,n − am)(s(j)

n − s(j))√∑N
n=1(am,n − am)2

√∑N
n=1(s

(j)
n − s(j))2

(2)

where am, and s(j) are the arithmetic mean for the acoustic
feature and semantic primitive respectively.

Table 2 lists only 11 acoustic features, which yield a
significant correlation with semantic primitives.

B. Selection Results

Using this method, firstly, the most relevant semantic prim-
itives were selected for each emotion dimension. Secondly,
the most relevant acoustic features for each semantic primitive
were selected. Finally, a perceptual three-layer model was con-
structed for each emotion dimension as follows: the emotion



dimensions in the top layer, and the most relevant semantic
primitives for this dimension are in the middle layer, while the
relevant acoustic features are in the bottom layer. For example,
Fig. 4 illustrates the valence perceptual model, where the solid
lines in this figure represent a positive correlation, and the
dashed ones indicate a negative correlation. The thickness of
each line indicates the strength of the correlation; the thicker
the line is, the higher the correlation.

(a) Japanese Database

(b) German Database

Fig. 4. Valence perceptual model

Using the acoustic features selection method, which was
introduced in the previous subsection for the German database,
it was found that there were 7 semantic primitives which are
highly correlated with valence. These semantic primitives are
the adjectives describing the valence dimension, as shown in
the middle layer of Fig. 4(b). These 7 semantic primitives are
highly correlated with 9 acoustic features, as shown in the
bottom layer of Fig. 4(b), which implies that these acoustic
features can be used to improve the estimation of the valence
dimension. In a similar way, two perceptual three-layer models
were constructed for activation and dominance. For activation,
it was found that 9 acoustic features were highly correlated
with the semantic primitives which are more correlated to
activation, while for dominance, it was found that 10 acoustic
features were selected to represent the most relevant acoustic
features. The results for the Japanese database were presented
in [22].

Here, in order to construct a perceptual three-layer model
for each emotion dimension in the case of cross-language: we
firstly construct a perceptual three-layer model individually
for each dimension for the two databases, then the common
acoustic features between the two languages were selected to
constitute the bottom layer for the cross-language perceptual
models. Moreover, the common semantic primitives between

Fig. 5. Cross-lingual: valence perceptual model.

the two-languages were selected as semantic primitives for
the cross-language case. For example, the valence perceptual
model for the cross-language is shown in Fig. 5.

C. Discussion

Our model mimics the human perception process for un-
derstanding emotions based on Brunswick’s lens model [20],
where the speaker expresses his/her emotional state through
some acoustic features. These acoustic features are interpreted
by a listener as some adjectives describing the speech signal.
From these adjectives, the listener can judge the emotional
state. For example, if the adjectives describing the voice are
Dark, Slow, Low and Heavy, these make the human listener
feel that the emotional state is of negative valence and of very
weak activation, so that it can be detected as a Sad emotional
state in the categorical approach.

On the other hand, the traditional acoustic features selec-
tion method was based on the correlations between acoustic
features and the emotion dimension as a two-layer model.
In order to investigate the effectiveness of the proposed
feature selection method, the results were compared with the
traditional method. Therefore, the traditional feature selection
method was used by calculating the correlations between
acoustic features and emotion dimensions directly, as shown
in Table III.

From this investigation, it is obvious that only one acoustic
feature is highly correlated with the valence dimension, 8
acoustic features are highly correlated with the activation and
dominance dimensions. Therefore, valence shows a smaller
number of correlated acoustic features than that of activation
and dominance. This result is similar to that described in many
previous studies [27], [5]. The poor correlation between the
acoustic features and valence is the reason behind the very
low performance for valence estimation using the traditional
approach. Due to this drawback, most of the previous studies
achieved a good performance for the activation and dominance
estimation, while a lower performance was obtained for the
valence [28], [29].

The most important result is that, using the proposed three-
layer model for feature selection, the number of acoustic fea-
tures correlated to emotion dimensions increases. For example,
the number of correlated features for the most challenging



TABLE III
CORRELATION COEFFICIENTS BETWEEN THE ACOUSTIC FEATURES AND

THE EMOTION DIMENSIONS FOR THE GERMAN DATABASE

m AF/ED V A D #
1 MH A -0.33 -0.82 -0.81 2
2 MH E -0.18 -0.70 -0.71 2
3 MH I -0.03 -0.19 -0.24 0
4 MH O -0.28 -0.67 -0.68 2
5 MH U -0.25 -0.47 -0.47 2
6 F0 RS 0.21 0.69 0.65 2
7 F0 HP 0.19 0.59 0.54 2
8 F0 AP -0.05 -0.14 -0.13 0
9 F0 RS1 -0.05 -0.10 -0.09 0
10 PW R 0.23 0.75 0.74 2
11 PW RHT -0.25 0.44 0.49 1
12 PW RS1 0.08 0.14 0.14 0
13 PW RAP 0.08 0.36 0.35 0
14 SP F1 -0.55 -0.49 -0.43 2
15 SP F2 -0.03 -0.29 -0.29 0
16 SP F3 -0.04 -0.04 0.01 0
17 SP TL 0.28 0.26 0.26 0
18 SP SB -0.02 -0.05 -0.02 0
19 DU TL -0.28 -0.38 -0.39 0
20 DU CL -0.24 -0.36 -0.36 0
21 DU RCV -0.14 -0.39 -0.37 0

# 1 8 8 17

dimension valence increases from one feature using the tra-
ditional method to 9 features using the proposed method.
Moreover, the number of features for activation increased from
8 to 9, and for dominance from 8 to 10. These selected acoustic
features can be used to improve emotion dimension estimation,
as described in details in the next section.

The comparison between Fig. 4(a), and Fig. 4(b) helps us
to find the common acoustic features and semantic primitives
related to each emotion dimension for the Japanese and Ger-
man languages. For example, in both languages, the valence
dimension is usually positively correlated with bright, high
and clear semantic primitives, while it is negatively correlated
with dark, low, and heavy semantic primitives. Therefore, the
two languages not only share the same semantic primitives but
also similar correlations between the emotion dimensions and
the corresponding semantic primitives. Similarly, in both lan-
guages, the 6 semantic primitives were found to be correlated
with 6 acoustic features.

V. AUTOMATIC EMOTION RECOGNITION SYSTEM

The task of emotion recognition using the dimensional ap-
proach can be viewed as using an estimator to map the acoustic
features to real-valued emotion dimensions. The desired output
is not a classification into one of a finite set of categories
but an estimation of real-values for the emotion dimensions
of valence, activation, and dominance. However, every point
in the dimensional space can be mapped into one emotion
category.

In the previous section, a perceptual three-layer model was
constructed for each emotion dimension. Emotion dimension
values can be estimated using any estimator such as K-nearest
neighborhood (KNN), Support Vector Regression (SVR), a

Fuzzy Inference System (FIS) or any other estimator. In this
study, for selecting the best estimator among KNN, SVR
and FIS, pre-experiments not included here indicated that our
best results were achieved using the FIS estimator. Therefore,
FIS was used to connect the elements of the three-layer
model. Most of the statistical methodology is mainly based
on linear and precise relationships between the input and
the output, while the relationship between acoustic features,
semantic primitives, and emotion dimensions is non-linear.
Therefore, fuzzy logic is a more appropriate mathematical tool
for describing this non-linear relationship [28], [21], [30].

A. System Implementation

An Adaptive-Network-based Fuzzy Inference System (AN-
FIS) was used to construct FIS models which connect the
elements of our recognition system. Each FIS has the structure
of multiple inputs and of one output. Having identified the best
acoustic features set, we constructed an individual estimator
to predict the values (-2 to 2 rated by the listening test) of
each emotion dimension. For example, in the case of cross-
language, in order to estimate the valence dimension using
the perceptual model in Fig. 5, a bottom-up method was used
to estimate the values (1 to 5 rated by the listening test)
of the 6 semantic primitives in the middle layer from the
6 acoustic features in the bottom layer, as shown in Fig. 6.
In order to accomplish this task, 6 FISs were needed, one
for estimating each semantic primitive. In addition, one FIS
was needed to estimate the value of the valence dimension
from the 6 semantic primitives. In a similar way, the activation
and dominance can be estimated using FIS for each semantic
primitive, and one FIS for the activation and dominance
respectively.

VI. SYSTEM EVALUATION

The aim of this study, is to investigate whether an automatic
emotion recognition system trained using one language has

Fig. 6. Block diagram of the proposed approach for estimating valence based
on the three-layer model
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Fig. 7. Mean Absolute Error (MAE) between human evaluation and the estimated values of emotion dimensions, in the case of mono-language and cross-
language

the ability to detect the emotion dimension from different lan-
guages. To accomplish this task, the most important acoustic
features for the two-languages were investigated. As explained
in section IV, it was found that 6 acoustic features were
common between the two Japanese and German databases.
For example, in the case of the valence dimension, 6 acoustic
features can be used as the input of the proposed system, as
shown in Fig. 6. The features found in German were used to
estimate emotion dimensions for the Japanese, and vice-versa.

The mean absolute error MAE between the predicted values
of emotion dimensions and the corresponding average value
given by human subjects is used as a metric of the discrim-
ination associated with each case. The MAE is calculated
according to the following equation

MAE(j) =
∑N

i=1|x̂
(j)
i − x

(j)
i |

N
(3)

where j ∈ {valence, activation, dominance}, x̂
(j)
i is output

of the emotion recognition system, and x
(j)
i ,−2 ≤ x

(j)
i ≤ 2

is the values evaluated by the human subjects, as described in
Subsection III-D.

The estimations of emotion dimensions using the acous-
tic features of Japanese utterances from a speech emotion
recognition system trained using the information from the
German database will be explained in section VI-A, while
in section VI-B, the estimations of emotion dimensions for
German utterances from another speech emotion recognition
system trained using the Japanese database will be presented.
In order to avoid the multi-speaker variation, the evaluation
of cross-language emotion recognition systems was conducted
by training the system using one speaker from one language,
and by testing the system using one speaker from the other
language.

A. Emotion dimension estimation for the Japanese database
from the German database

For detecting Japanese from German, we build 10 automatic
emotion recognition systems, one for each German speaker.
The 10 systems were trained using the German utterances and
tested using Japanese utterances. The Japanese database was
tested 10 times using German speakers.

Finally, for each utterance in the Japanese database, we
have 10 estimations from 10 different speakers for the three
dimensions: valence, activation, and dominance. The average
value for each dimension was calculated for each utterance.

For a comparative analysis of the performance of the pro-
posed cross-language emotion recognition system, the results
were compared with those of the mono-language emotion
recognition system, which was trained and tested using the
Japanese database. The MAE for all emotion dimensions, for
the mono-language (Japanese-from-Japanese) system and the
cross-language (Japanese-from-German) system are illustrated
in Fig. 7(a).

From this figure, the MAE for estimating Japanese emotion
dimensions from the German database is as follows: the
valence increased from 0.28 in the mono-language case to
0.41 in the cross-language case, the activation increased from
0.19 to 0.32, and the dominance increased from 0.17 to 0.42.
In all cases, the mean absolute error of emotion dimensions
increased, however these increments do not constitute a large
difference.

Another interesting evaluation method for the proposed
system can be performed by comparing the estimation of
MAE for the dimensional approach with the performance
achieved based on the categorical approach. Therefor, the
dimensional space is mapped into emotion categories using
Gaussian Mixture Model GMM classifier. Using GMM every
point in the dimensional space is mapped into one emotion



category. Thus, the estimated values of emotion dimensions
valence, activation, dominance were used as an input fea-
tures to train GMM classifier to classify emotional state into
emotion categories. Therefore, every point in the dimensional
space is mapped into one emotion category. The confusion
matrix of the results is shown in Table IV in the mono-
language case, and in Table V for the cross-language case.

TABLE IV
MONO-LANGUAGE: CONFUSION MATRIX FOR AUTOMATICALLY

CLASSIFYING EMOTION CATEGORIES FROM EMOTION DIMENSIONS USING
A GMM CLASSIFIER, FOR JAPANESE-FROM-JAPANESE DATABASE,

(AVERAGE RECOGNITION RATE 94.0% )

Category Classification rate (%)
Neutral Joy Cold Sad Hot

Anger Anger
Neutral 80.0 10.0 5.0 5.0 0.0

Joy 0.0 97.5 2.5 0.0 0.0
Cold Anger 0.0 0.0 100.0 0.0 0.0

Sad 0.0 0.0 0.0 100.0 0.0
Hot Anger 0.0 2.5 5.0 0.0 92.5

TABLE V
CROSS-LANGUAGE: CONFUSION MATRIX FOR AUTOMATICALLY

CLASSIFYING EMOTION CATEGORIES FROM EMOTION DIMENSIONS USING
A GMM CLASSIFIER, FOR JAPANESE-FROM-GERMAN DATABASE,

(AVERAGE RECOGNITION RATE 92.7% )

Category Classification rate (%)
Neutral Joy Cold Sad Hot

Anger Anger
Neutral 95.0 0.0 5.0 0.0 0.0

Joy 0.0 100.0 0.0 0.0 0.0
Cold Anger 0.0 0.0 100.0 0.0 0.0

Sad 0.0 0.0 0.0 100.0 0.0
Hot Anger 0.0 0.0 30.0 0.0 70.0

The emotion classification accuracies listed in the above
tables correspond to the MAEs for the dimensional approach.
It is clearly seen that the recognition rate in the mono-
language case is 94.0% which decreased to 92.7% for the
cross-language system for detecting Japanese-from-German.
Therefore, we can conclude that emotion dimensions for the
Japanese database can be detected from a speech emotion
recognition system trained with the German database with a
small error.

B. Emotion dimensions estimation for the German database
from the Japanese database

On the other hand, in order to estimate German from
Japanese, we construct one cross-language emotion recogni-
tion system trained using the Japanese database. This system
was tested using the utterances from German, for each German
speaker individually. The MAE for the estimation of the whole
database using the cross-language emotion recognition system
was calculated and compared with the emotion dimensions
estimation in the case of the mono-language, as shown in
Fig. 7(b).

From this figure, the MAE for estimating German speakers
emotion dimensions from a Japanese database is as follows:

The estimation for the valence is unchanged, the activation
increases from 0.17 in the mono-language case to 0.30 in
the cross-language case, and the dominance increases from
0.14 to 0.34. In the cases of the activation and dominance,
the mean absolute error of the emotion dimension increases,
however these increments do not constitute a large difference.
Therefore, we can conclude that the emotion dimension for
the German database can be detected from a speech emotion
recognition system trained with the Japanese database with a
small error.

Moreover, the results of classification for German database
into 4 categories Neutral, Happy, Anger, and Sad are as follow:
the confusion matrix of the results is shown in Table VI,
for mono-language German-from-German emotion recognition
system, Table VII for cross-language German-from-Japanese
system.

TABLE VI
MONO-LANGUAGE: CONFUSION MATRIX FOR AUTOMATICALLY

CLASSIFYING EMOTION CATEGORIES FROM EMOTION DIMENSIONS USING
A GMM CLASSIFIER, FOR GERMAN-FROM-GERMAN IN CASE OF

SPEAKER-DEPENDENT RESULTS (AVERAGE RECOGNITION RATE 95.5% )

Category Classification rate (%)
Neutral Happy Anger Sad

Neutral 98.0 0.0 2.0 0.0
Happy 0.0 94.0 6.0 0.0
Anger 0.0 8.0 92.0 0.0
Sad 2.0 0.0 0.0 98.0

TABLE VII
CROSS-LANGUAGE: CONFUSION MATRIX FOR AUTOMATICALLY

CLASSIFYING EMOTION CATEGORIES FROM EMOTION DIMENSIONS USING
A GMM CLASSIFIER, FOR GERMAN-FROM-JAPANESE IN CASE OF

SPEAKER-DEPENDENT RESULTS (AVERAGE RECOGNITION RATE 89.0% )

Category Classification rate (%)
Neutral Happy Anger Sad

Neutral 100.0 0.0 0.0 0.0
Happy 0.0 76.0 24.0 0.0
Anger 0.0 4.0 96.0 0.0
Sad 12.0 2.0 2.0 84.0

The results in the above tables reveal that there is small
degradation for detecting emotion using cross-language recog-
nition system, where the average recognition rate decreased
from 95.5% in case of mono-language to 89.0% in case of
cross-language.

VII. CONCLUSION

In this paper, we investigate whether the following as-
sumption is satisfied or not: an automatic speech emotion
recognition system can detect the emotional state regardless
of the used language. We adopt a three-layer model of human
perception, in order to precisely predict the values of the
emotion dimensions from the acoustic features.

In this study, a novel feature selection method based on
the three-layer model was successfully used to find many
acoustic features related to each emotion dimension. These
acoustic features were used as the inputs to the speech



emotion recognition system, the output of our system are the
estimated values of emotion dimensions: valence, activation,
and dominance. Through identification of the best acoustic
features, the estimation performance of the proposed system
is improved. Therefore, using the proposed model for building
an automatic speech emotion recognition system allows us to
find many acoustic features, which allow us to investigate the
cross-language mode.

For estimating emotion dimensions for the German database
from the Japanese database, the proposed system was trained
using the Japanese database, which contains one speaker,
and tested using 10 German speakers individually. To detect
the emotional state for the Japanese database from German
database, we trained 10 speech emotion recognition systems
using one German speaker at a time. Finally, the results reveal
that values of emotion dimensions for the Japanese database
can be detected from a cross-language speech emotion recog-
nition system trained with German database with a small error,
and and vice-versa.

The most important result is that, using our normalization
method, we found that emotion recognition is language inde-
pendent, which means that our assumption that the positions
of neutral voices are different among languages, and that
the distance and directions from the neutral voice to other
emotional ones are common among languages is confirmed.
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