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Abstract—Recently, Dynamic Streaming over HTTP (DASH)
has been widely deployed in the Internet. However, it is still
a challenge to play back video smoothly with high quality in the
time-varying Internet. In this paper, we propose a buffer based
rate adaptation scheme, which is able to smooth bandwidth varia-
tions and provide a continuous video playback. Through analysis,
we show that simply preventing buffer underflow/overflow in the
greedy rate adaptation method may incur serious rate oscilla-
tions, which is poor quality-of-experience for users. To improve it,
we present a novel control-theoretic approach to control buffering
size and rate adaptation. We modify the buffered video time
model by adding two thresholds: an overflow threshold and an
underflow threshold, to filter the effect of short-term network
bandwidth variations while keeping playback smooth. However,
the modified rate adaptation system is nonlinear. By choosing
operating point properly, we linearize the rate control system. By
a Proportional-Derivative (PD) controller, we are able to adapt
video rate with high responsiveness and stability. We carefully
design the parameters for the PD controller. Moreover, we show
that reserving a small positive/negative bandwidth margin can
greatly decrease the opportunities of buffer underflow/overflow
incurred by the bandwidth prediction error. At last, we demon-
strate that our proposed control-theoretic approach are highly
efficient through real network trace.

I. INTRODUCTION

In recent years, Dynamic Adaptive Streaming over HTTP
(DASH) has been widely adopted for providing uninterrupted

video streaming service to users with dynamic network condi-

tions and heterogeneous devices [1]–[3]. Contrary to the past

RTP/UDP, the use of HTTP over TCP is easy to configure

and in particular, it greatly simplifies the traversal of firewalls

and network address translators (NAT). Besides, it is cheap

to be deployed since it employs standard HTTP servers and it

also can be easily deployed within Content Delivery Networks

(CDN). In DASH, a video content is encoded into multiple ver-

sions at different rates. Each encoded video is further divided

into small video segments, each of which normally contains

seconds or tens of seconds worth of video. Using HTTP

protocol, a client downloads video segments sequentially by

sending HTTP ”GET” requests to a server. Upon network

condition changes, a client dynamically switches video version

for the segments to be downloaded. Dynamic HTTP streaming

is preferred by more and more content providers, including

Microsoft smooth streaming [4], Apple HTTP live steaming

[5], Adobe HTTP dynamic streaming [6], Netflix [7], [8], etc.

Different from the traditional video streaming algorithms,

DASH does not directly control the video transmission rate.

Transmission rate of a segment is totally controlled by TCP

protocol, which reacts to network bandwidth along the server-

client path. Intuitively, if bandwidth is high, the client can

choose a video with higher rate to give user better video

quality; otherwise, it should switch to a low video rate to

avoid playback freezes. To maximally utilize bandwidth and

avoid video freezes, video rate adaptation should be responsive

to network conditions. On the other hand, TCP congestion

control incurs inherent rate fluctuations, and cross-traffic has

both long-term and short-term variations. Adapting video rate

to short-term TCP throughput fluctuations will significantly

degrade user video experience. It is therefore desirable to adapt

video rate smoothly.

In this paper, we present a novel control-theoretic approach

to switch video rates in dynamic adaptive HTTP stream-

ing. Our approach use the client-side buffered video time

as feedback signal. Through analysis, we find that though

traditional buffer based rate adaptation method by simply

preventing buffer underflow/overflow can ensure continuous

video playback, it may cause video rate oscillation. To address

this problem, we propose a control-theoretic approach to select

the best bitrate considering both the heterogeneous bandwidth

and feedback buffered video time. We use two thresholds as

the operating points to filter the effect of bandwidth variations

on rate adaptation. By theoretical analysis, we model and

linearize the rate control logic. A Proportional-Derivative

(PD) controller is further involved to improve rate adaptation

performance. By carefully designing the parameters for the PD

controller, we balance the needs for video bitrate smoothness

and bandwidth utilization. At last, our proposed rate adaptation

approach is shown to be highly efficient and robust in fluctuant

network conditions via real-trace based experiments.

The rest of the paper is organized as follows. Section II

describes the related work. Bandwidth prediction is presented

in Section III. In Section IV, we present the buffer based rate

adaptation logic. In Section V, we propose a PD controller



to improve the the video rate adaptation performance. We

show real trace based experimental results in Section VI, and

conclude the paper in Section VII.

II. RELATED WORK

Although DASH is a relatively new application, due to its

popularity, it has generated lots of research recently. More

specially, dynamic rate adaptation is one of the most hot

research topics since it is able to automatically throttle the

video quality to match the available bandwidth, so that the

user receives the video at the maximum possible quality.

The existing rate adaptation techniques can be classified

into two main categories: 1)bandwidth-based [9], and 2)buffer-

based [10], [11]. In the bandwidth-based rate adaptation tech-

nique, it switches up or down the rate with estimated network

bandwidth. Most of the rate adaptation schemes adopted in

some commercial vendors belong to this category. However,

the inherent time-varying bandwidth would lead to short-term

rate oscillation and deteriorate user experience of streaming

services. This is demonstrated by experimental evaluation [12].

In [12], the authors compared rate adaptation of three popular

DASH clients: Netflix client, Microsoft Smooth Streaming [4],

and Adobe OSMF. They concluded that none of them is good

enough. They are either too aggressive or too conservative.

Some clients even just jump between the highest video rate

and the lowest video rate. Also, all of them have relatively long

response time under network congestion level shift. Besides,

it is still challenging to accurately predict network bandwidth

due to the complex network conditions, and playback freezes

and buffer overflow may be caused by bandwidth prediction

error.

For buffer-based rate adaptation technique, the rate selection

decision is made to provide a continuous video playback

through preventing buffer underflow/overflow. There are very

few work about buffer-based rate adaptation technique. Aka-

mai [10], [11] adopt buffer-based rate adaptation technique,

but it adjusts the video rate at the server side. This makes

it has limitation in supporting the large-scale multimedia

delivery since it will dramatically increase the burden on

the web server or cache. Moreover, though preventing buffer

underflow/overflow can ensure video playback continually, it

may cause dramatic video rate changes and lead to inferior

user quality-of-experience [13].

III. BANDWIDTH PREDICTION

ARMA/GARCH model can be used for exact prediction

applications [14]. In this paper, we use ARMA model [14]

for conditional mean (expectation conditioned on the history)

prediction and the GARCH model [15] for conditional vari-

ance prediction of the network bandwidth. We briefly describe

these statistical models here. Interested readers are referred to

[14], [15] for details.

The ARMA model is a tool for understanding and, perhaps,

predicting future values in time series. The model consists of

two parts, an autoregressive (AR) part and a moving average

(MA) part. The notation ARMA(r, m) refers to the model with

r autoregressive terms and m moving-average terms. Let μ(k)
as the average bandwidth when downloading segment k, we

have

μ̂ (k) = μ0 + εk +
r∑

i=1

φiμ (k−i) +
m∑
i=1

θiεk−i (1)

where μ̂ (k) is the predicted value of μ (k), μ0 is a constant,

εk is white noise, φi is the parameters of the MA model and θi
is the parameter of the AR model. Both φi and θi are derived

by training.

On the other hand, it is impossible to completely eliminate

the prediction errors. Therefore, we propose to use GARCH

model to predict the conditional variance of μ(k). Applying

GARCH(g, h) model (where g is the order of the GARCH

terms and h is the order of the ARCH terms), the variance is

written as

σ̂2 (k) = γ0 +
h∑

i=1

γ2
i ε

2
k−i +

g∑
i=1

λ2
iσ

2 (k−i) (2)

where σ̂(k) is the predicted value of σ (k), γi and λi are the

model parameters also derived by training.

Now, we have obtained the average bandwidth and its vari-

ance for segment k. In section V, we propose to compensate

the average bandwidth prediction error by its variance and

propose to reserve a bandwidth margin for conservative rate

adaptation.

IV. OVERVIEW OF BUFFER BASED RATE ADAPTATION

A. Buffered Video Time Model

To sustain continuous playback, a video streaming client

normally maintains a video buffer to absorb temporary mis-

match between video download rate and video playback rate.

In conventional single-version video streaming, video buffer is

measured by the size of buffered video, which can be easily

mapped into buffered video playback time when divided by

the average video playback rate. In DASH, different video

versions have different video playback rates. Since a video

buffer contains segments from different versions, there is

no longer direct mapping between buffered video size and

buffered video time. To deal with multiple video versions, we

use buffered video time to directly measure the length of video

playback buffer.

Buffered video time process, denoted as q(t), can be mod-

eled as a single-server queue with constant service rate of 1,

i.e., with continuous playback, in each unit of time, a piece

of video with unit playback time is played and dequeued

from the buffer. The enqueue process is driven by the video

download rate and the downloaded video version. Specifically,

for a video content, there are L different versions, with

different playback rates V1<V2< · · · <VL. The set of these

different versions is denoted as V . All versions of the video

are partitioned into segments, each of which has the same

playback time of Δ. Without loss of generality, a client starts

to download segment k at time instant t
(s)
k . Let t

(e)
k be the



time instant when segment k is downloaded completely, then

we have ∫ t
(e)
k

t
(s)
k

R (t)dt=v (k)Δ (3)

where R(t) is the bandwidth at time t, v(k) is the video rate for

segment and v(k) ∈ V . We denote R̃ (k) as average bandwidth

when downloading segment k, from Eq.(3), we derive the time

needed to downloaded segment k as

t
(e)
k −t

(s)
k =

v (k)Δ

R̃ (k)
(4)

When a segment is completely downloaded, enqueue time

is the duration of a segment Δ, dequeued time is the time

consumed to downloaded the segment t
(e)
k −t

(s)
k . Then we have

q
(
t
(e)
k

)
=q

(
t
(s)
k

)
+Δ−

(
t
(e)
k −t

(s)
k

)
=q

(
t
(s)
k

)
+Δ

(
1− v (k)

R̃ (k)

) (5)

and the rate of change for buffered video time, i.e. the first

derivative of q(t) is written as

q′ (t)=
q
(
t
(e)
k

)
−q

(
t
(s)
k

)
t
(e)
k −t

(s)
k

=
R̃ (k)

v (k)
−1,t ∈

(
t
(s)
k ,t

(e)
k

]
(6)

B. Underflow and Overflow Control

From Eq.(5), if the rare of the requested video version is

higher than R̃ (k), the buffered video time decreases, and video

playback freezes whenever q
(
t
(e)
k

)
may go down to zero;

if the requested video rate is lower than R̃ (k), the buffered

video time ramps up and buffer overflow may happen, it

suggests that user gets stuck at low video rate even though

his connection supports higher rate. A responsive video rate

adaptation scheme should control video rate that no video

playback freeze and buffer overflow happens.

In order to ensure no video freeze happens, we must select

a video version guaranteeing that q
(
t
(e)
k

)
≥ 0, i.e.

v (k) ≤ R̃ (k)+
R̃ (k)

Δ
q
(
t
(s)
k

)
(7)

Eq.(7) indicates an upper bound of v(k) to prevent buffer

underflow and the upper bound is denoted as v(u) (k).

On the other hand, in order to ensure no buffer overflow

happens, we must have q
(
t
(e)
k

)
≤ S, i.e.

v (k) ≥ R̃ (k)+
R̃ (k)

Δ

(
q
(
t
(s)
k

)
−S

)
(8)

where S is the buffer size. Eq.(8) indicates an lower bound

of v(k) to prevent buffer underflow and the lower bound is

denoted as v(l) (k).

C. Greedy Video Version Selection

It is therefore in order to ensure continuous video playback,

the selected video rate v(k) must satisfy the constraints in

inequality (7) and (8) at the same time. On the other hand,

a high video rate is preferred to ensure high bandwidth

utilization. However, if the lower bound is higher than the

highest video version VL or the upper bound is lower than

lowest video version V1, there is no video version in V
satisfying the constraints in inequality (7) and (8). Considering

these extreme cases, the rate decision can be made as follows:

v (k)= argmaxVi

s.t. Vi ∈ V
Vi ≥ max

(
v(l) (k) ,V1

)
Vi ≤ min

(
v(u) (k) ,VL

) (9)

To maximally utilize bandwidth and ensure continuous

video playback, the the maximal discrete video rate satisfying

the constraints in (9) is selected. However, this greedy video

rate adaptation method has some drawbacks:

• Bandwidth prediction is still challenging and prediction

error is inevitable, it is therefore the bounds described

in inequality (7) and (8) may not be accurate enough to

guarantee buffer underflow/overflow not happens.

• The inherent time-varying bandwidth makes the buffered

video size fluctuant. This further affects the bounds and

leads to video rate oscillation.

• There may be no video version in V satisfying the con-

straints in inequality (7) and (8), the heuristic method em-

ployed in (9) may still cause buffer underflow/overflow.

V. CONTROL-THEORETIC APPROACH FOR RATE

ADAPTATION

To address the problem proposed in section IV-C, we first

modify the buffer model by adding two buffered video time

thresholds, qmin and qmax as the operating points to filter

the effect of buffer oscillations on rate decision. Then, we

analyze this rate adaptation system and a PD controller is

proposed to stable the rate adaptation system and improve its

performance. Moreover, we propose to adjust the thresholds

dynamically and a small positive/negative bandwidth margin

is reserved to compensate the bandwidth prediction error. We

briefly summariz the rate control logic as follows:

• If q
(
t
(s)
k

)
< qmin, qmin is used as the operating point

to select a video version whose aim is to drag current

buffered video time to qmin and ensure no buffer under-

flow happens.

• If q
(
t
(s)
k

)
> qmax, qmax is used as the operating point

to select a video version with the aim to drag current

buffered video time to qmax and ensure no buffer overflow

happens.

• If qmin ≤ q
(
t
(s)
k

)
≤ qmax, the video version has the

same rate with that of last requested video version. This



avoids video rate oscillation and a smooth video playback

is provided.

• When the bandwidth is too low, a rate reset mechanism

is adopted to set the video rate to the lowest video

version. On the other hand, when the bandwidth is too

high, a sleeping mechanism is proposed to consume some

buffered video before downloading next segment and no

buffer overflow happens.

A. Rate Control Model and Linearization

To control video rate oscillation and buffer underflow or

overflow, we set two buffered video time thresholds, qmin and

qmax, to filter the effect of buffer oscillations on video rate

decision. More specifically, if qmin ≤ q
(
t
(s)
k

)
≤ qmax, the

video version having the same rate with that of last request

video version is selected, i.e.

v (k)=v (k−1) (10)

On the other hand, when q
(
t
(s)
k

)
< qmin, qmin is used as

the operating point to selected an appropriate video version

to drag current buffered video time q(t) to qmin. To ensure

no buffer underflow happens, we must have q
(
t
(e)
k

)
≥ qmin,

therefore

v (k) ≤ R̃ (k)+
R̃ (k)

Δ

(
q
(
t
(s)
k

)
−qmin

)
(11)

In this case, we prefer to select the highest video version

satisfying above inequality to make full use of the bandwidth

while guaranteeing no buffer underflow happens.

Similarly, when q
(
t
(s)
k

)
> qmax, we have

v (k) ≥ R̃ (k)+
R̃ (k)

Δ

(
q
(
t
(s)
k

)
−qmax

)
(12)

However, we prefer to select the lowest video version satis-

fying above inequality in this case. The main reason is that

any version satisfying above inequality decrease the buffered

video time and guarantees no buffer overflow happens. The

buffered video time approaches to qmin quickly when a too

high video version is selected, and it causes rate oscillation.

Since the rate of requested video version is set the same

with last downloaded segment when qmin ≤ q
(
t
(s)
k

)
≤ qmax,

we mainly focus on the rate adaptation in the cases that when

q
(
t
(s)
k

)
< qmin or q

(
t
(s)
k

)
> qmax in the following of this

paper. Now, the rate control model can be represented as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v (k)=R̃ (k)+ R̃(k)
Δ (q (t)−q0)

q′ (t)= R̃(k)
v(k)−1

q0=

{
qmin,
qmax,

if q (t)<qmin

if q (t)>qmax

(13)

The block diagram of the model described in (13) is shown

in Fig.1, where Q (·) and R (·) are quantization and reciprocal

operations respectively. It is is a nonlinear system, which is

not suitable for analysis and implementation.

Fig. 1. Block diagram of the buffer based rate adaptation model.

Fig. 2. Block diagram of the linearized model.

We next linearize the model described in (13) around the

operating point q0 satisfying q′ (t)=0. Let the corresponding

video rate be v0, then we have

q′ (t)=0 ⇒ v0=R̃ (k) (14)

The following linearized state and output equations are

obtained for the feedback system:{
δ (v (k))= R̃(k)

Δ δ (q (t))
δ (q′ (t))= − 1

R̃(k)
δ (v (k))

(15)

where δ (v (k))=v (k)−v0 and δ (q′ (t))=q′ (t)−q′0. Apply-

ing the Laplace transform to the differential equations, we

derive the linearized system block as shown in Fig.2. With

some manipulation of the block diagram, we obtain the

transfer function of the plant as

H (s) =
1

Δs+1
(16)

Remark 1 (Stability): The pole of the linearized system is

sp= − 1
Δ . Since Δ > 0, the pole is located in the left phase

plane. This indicates that the equilibrium state of the dynamics

of the system is stable.

B. PD Controller for Rate Adjustment

Generally, a pure proportional controller would cause sys-

tem oscillations and may not converge. In this subsection,

we design an effective controller for the linearized feedback

system in (15). We redraw the block diagram in Fig.3, where,

from the control system prospective, the rate control module

Gc(s) is the controller to be designed, while the combination

of the other blocks is the plant to be controlled.

We choose a proportional derivative (PD) controller since

the proportional cycle can accelerate response time and im-

prove system accuracy, and the derivative element can improve

Fig. 3. Block diagram of the feedback control system for rate adjustment.



system dynamic performance. The classic PD controller can

be designed with the following transfer function:

Gc (s) = Kp +Kds (17)

This controller is implemented at the client side. It uses the

difference between current buffered video time and operation

point q0, and the variation tread of buffered video time to

compute the adjustment of video rate. Then the final video

version is selected.

Consider that the video version can be adjusted only when a

segment is completely downloaded, then in the time domain,

we have the control law as Eq.(18) shows. Now, the target

video rate for segment k is written in Eq.(19). Taking into

account the finite discrete video rates, the actual requested

video rate for segment k is v (k) = Q (ṽ (k)) with

Q (ṽ (k))
Δ
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
{Vi:Vi≤ṽ(k)}

Vi if q
(
t
(s)
k

)
<qmin

min
{Vi:Vi≥ṽ(k)}

Vi if q
(
t
(s)
k

)
>qmax

v (k−1) if qmin ≤ q
(
t
(s)
k

)
<qmax

(20)

where Q (·) is the quantization function.

C. Parameter Analysis

In this subsection, we analyze the parameters Kp and Kd to

stabilize the close loop system described in Fig. 3. The settling

time of the control system is also analyzed. The overall system

transfer function is expressed by

Hc (s) =
Kds+Kp

(Δ+Kd) s+Kp
(21)

Suppose that it takes no more than τ seconds to switch to the

suitable bitrate. Now, we have the following propositions:

Proposition 1. The feedback system in Fig.3 is stabilized
by the PD controller, if the parameters satisfy the following
conditions: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
wc ≥ 1

τ

√
Δ+Kd

Δ−Kd
ln

20Δ

Δ+Kd

Kp =
√
Δ2−K2

dwc

0 < Kd < Δ

(22)

Proof. According to proposition 1, the only pole of (21) is

sp = − Kp

Δ+Kd
< 0 (23)

It is located in the left phase plane and the system is stable.

�
Proposition 2. For a PD controller satisfying Proposition 1,
the 5% step response settling time (Ts) of the feedback control
system satisfies: Ts ≤ τ .

Proof. The step response of the the system in Fig.3 is

Uc (s)=
Kds+Kp

(Δ+Kd) s+Kp

1

s
(24)

Applying inverse Laplace transform, we have

uc (t)=u (t)

(
1− Δ

Δ+Kd
e
− Kp

Δ+Kd
t

)
(25)

From the constraints in proposition 1, the 5% step response

settling time (Ts) of the feedback control system is

Ts=
Δ+Kd√
Δ2−K2

dwc

ln
20Δ

Δ+Kd
≤ τ (26)

The last inequality is derived by the first constraint in proposi-

tion 1. �
D. Dynamic Thresholds

Since the bandwidth is time-varying, when the threshold

(qmin and qmax) are fixed, there may be still no video version

in V satisfies the constraints in formula (11) and (12) and the

reasons are given in section (IV-C). To address this problem,

we adjust the thresholds dynamically.
1) Dynamic qmin: In order to guarantee that there always

exists available video version in V ensuring buffer not under-

flow, the right term of inequality (11) must be no smaller than

V1, then we have

qmin ≤ q̂min=q
(
t
(s)
k

)
+Δ−αV1Δ

R̃ (k)
, (α ≥ 1) (27)

where t
(s)
k = t

(e)
k−1, and parameter α is used to adjust qmin

conservatively when α > 1. Then qmin is determined as

qmin=min
(
max (q̂min, 0) , q

(T )
min

)
(28)

and q
(T )
min is the maximal qmin with typically q

(T )
min=Δ ∼ 3Δ.

Furthermore, q̂min < 0 denotes that bandwidth is smaller

than the lowest video rate and playback freeze is inevitable.

In this case, a rate reset mechanism is proposed to set the

video rate to the lowest video version, i.e. v(k) = V1.
2) Dynamic qmax: On the other hand, in order to guarantee

that there always exists available video version in V ensuring

buffer not overflow, the right term of inequality (12) must be

not bigger than VL, therefore

qmax ≥ q̂max=q
(
t
(s)
k

)
+Δ−βVLΔ

R̃ (k)
, (β ≤ 1) (29)

and parameter β is used to adjust qmax conservatively when

we set β < 1. We denote q
(T )
max as the minimum qmax with

typically q
(T )
max=S −Δ ∼ S − 3Δ, then we have

qmax=max
(
q̂max, q

(T )
max

)
(30)

However, when q̂max > S, buffer overflow happens even the

highest video rate is selected. In order to address this problem,

we propose a sleeping mechanism to idle some period to

consume the buffered video data since q̂max is an increasing

function of buffered video data q
(
t
(s)
k

)
, therefore{

t
(s)
k =t

(e)
k−1+Δ

(idle)
k

q
(
t
(s)
k

)
=q

(
t
(e)
k−1

)
−Δ

(idle)
k

(31)

where Δ
(idle)
k is the idle time. After idling Δ

(idle)
k seconds,

we except that q̂max=q
(T )
max and then we have

Δ
(idle)
k =q

(
t
(e)
k−1

)
+Δ−βVLΔ

R̃ (k)
−q(T )

max (32)

and the existence of available video versions is guaranteed.



δ (v (k))=
R̃ (k)

Δ
Kp

(
q
(
t
(s)
k

)
−q0

)
+
R̃ (k)

Δ
Kd

q
(
t
(e)
k−1

)
−q

(
t
(s)
k−1

)
t
(e)
k−1−t

(s)
k−1

(18)

ṽ (k) ≈
⎧⎨
⎩

v0+δ (v (k)) if q
(
t
(s)
k

)
<qmin or q

(
t
(s)
k

)
>qmax

v (k−1) if qmin ≤ q
(
t
(s)
k

)
≤ qmax

(19)

E. Conservative Rate adaptation with Bandwidth Margin

Generally, R̃ (k) is set to the predicted average bandwidth in

previous works. However, it comes with the risk of playback

freezes or buffer overflow without any bandwidth margin,

since prediction error is inevitable. To address these problems,

we introduce a middle client download scheme.

To avoid buffer underflow, we must select a video rate

satisfying the constraint in (11). According to inequality (27),

we have q
(
t
(s)
k

)
−qmin ≥ αV1Δ

R̃(k)
−Δ> −Δ, so the right

hand of inequality (11) is decreasing as R̃ (k) decreases.

Therefore, when q
(
t
(s)
k

)
<qmin, we reserve a small negative

bandwidth margin for R̃ (k) to avoid buffer underflow. The

average bandwidth is adjusted by its conditional variance,

i.e.R̃ (k)=μ (k)−ρδ (k), where parameter ρ > 0.

On the other hand, when q
(
t
(s)
k

)
>qmax, the video rate

must satisfy the the constraint in (12) to avoid buffer overflow.

The lower bound is increasing as R̃ (k) increases. Therefore,

we reserve a small positive bandwidth margin for R̃ (k) to

avoid buffer overflow, i.e. R̃ (k)=μ (k)+ρδ (k).
The essence of above bandwidth reserving method is to

compute confidence intervals of R̃ (k) and ρ = 3 typically.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our rate adaptation approach

via real network trace. The bandwidth trace is extracted

from www.youku.com. Considering that the background traf-

fic is various at different times, we choose two traces,

one is extracted in the daytime (Trace I) with length

of about 3000s and the other is extracted in the night

(Trace II) with length of about 3800 seconds. The first

500 seconds of each trace is used for training. In all

our experiments, the server provides five video rate V =
{400kbps,800kbps,1200kbps,1600kbps,2000kbps}. The initial

buffered video time is set to S
2 (40 seconds). The smoothed

HTTP/TCP throughput based rate adaptation method (STRA)

proposed in [9] and greedy rate adaptation (GRA) described

in section IV are implemented for comparison. Table I sum-

marizes the default parameter values.

A. Bandwidth Prediction Accuracy

For bandwidth prediction, we use ARMA(1,6) model for

conditional mean prediction. We compare it with other

history-based bandwidth prediction methods, such smoothed

HTTP/TCP throughput (ST) [9] prediction. Fig.4 compares the

accuracy of ST and our ARMA based bandwidth prediction.

TABLE I
PARAMETER SUMMARY

Parameter α β Δ Δs Kp Kd

Default 1 1 10 10 -0.03 0.03

Parameter q
(T )
min q

(T )
max S qmin qmax ρ

Default 10 70 80 10 70 3
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Fig. 4. Bandwidth Prediction Accuracy : (a)-(b):Trace I; (c)-(d):Trace II

We can see that our ARMA based bandwidth prediction

is obviously better than ST prediction. Especially for some

bandwidth peaks, ARMA based prediction matches well with

practical bandwidth while ST prediction has a relative very

poor performance. This is mainly because ARMA can capture

the characteristics of self-similarity and long range dependence

which are exhibited by network bandwidth [16].

We also use GARCH(1,1) model for conditional variance

prediction which is used to compute confidence intervals

of the predicted average bandwidth. Fig.5 plots the ±3σ
intervals for both traces. The figures clearly shows that the

bandwidth is confidently located in the intervals at most times.

It is therefore when the bounds is used for conservative rate

adaptation, the client-side buffer underflow/overflow which is

caused by prediction error can be avoided. The results in the

next subsection demonstrate this.
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Fig. 6. Proposed Control-Theoretic Approach for Rate adaptation of Trace I under Different Bandwidth Margins: (a)-(d):video rate and bandwidth; (e)-(h):buffer
size evolution
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Fig. 7. Proposed Control-Theoretic Approach for Rate adaptation of Trace II under Different Bandwidth Margins: (a)-(d):video rate and bandwidth; (e)-(h):buffer
size evolution
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Fig. 5. Bandwidth Margin for Prediction Error

B. Performance Evaluation under Bandwidth Margin

Prediction error is unavoidable. Underestimating or overesti-

mating the bandwidth comes with the risk of playback freezes

(buffer underflow) or buffer overflow. Reserving a bandwidth

margin can potentially reduce these risks. Fig.6(e) and Fig.7(e)

show that playback playback freeze happens two times and

one time respectively when there is no bandwidth margin. As

the bandwidth margin increases, playback freeze disappears

demonstrated by Fig.6(e) to Fig.6(g) and Fig.7(e) to Fig.7(g).

Moreover, the video rate at ρ = 3 is much more smooth than

the rate at ρ = 0 and ρ = 1. This is because that higher ρ
provides more conservative than lower ρ. However, too big

bandwidth margin also may cause playback freezes and video

rate fluctuations as Fig.6(d), Fig.6(h), Fig.7(d) and Fig.7(h)

show. The main reason is that the gap between the adjusted

bandwidth and practical bandwidth is too big, and it can not

be used for effective rate adaptation. We choose ρ = 3 as

the default value in our work, and this is coincident with the



confidence interval of Gaussian distribution. Though relative

smooth video rate is provided by reserving appropriate band-

width margins, there is still some rate spikes. For example, the

short-term negative rate spikes happen around t = 2350s in

Trace I, t = 630s and t = 1600s in Trace II and these spikes

can be annoying to user. In the next subsection, we show that

these short-term rate spikes can be eliminated by dynamically

setting buffer thresholds qmin and qmax.

C. Performance Evaluation under Dynamic Thresholds

In the above subsection, qmin and qmax are fixed. However,

it is not trivial to set the values of these thresholds in practice

since the bandwidth is time-varying. Low qmin and high

qmax increase the risk of buffer underflow/overflow, this is

demonstrated in Fig.8(e) and Fig.9(e). On the other hand,

when qmin increases and qmax decreases, the gap between qmin

and qmax becomes small and video rate fluctuates drastically

as Fig.8(c) and Fig.9(c) shows. Though when qmin = 10
and qmax = 70, the performances are relative better, there

is still some rate spikes. From Fig.9(a) and Fig.9(b), we can

clearly find that the two short-term negative rate spikes which

happens around t = 630s and t = 1600s in Fig.9(b) can be

eliminated by setting a lower qmin. This also demonstrates that

more smooth video rate can be provided by setting appropriate

values of the thresholds at different times. In this paper, we

propose to adjust the thresholds dynamically. Fig.8(d) and

Fig.9(d) shows that the video rate performance under dynamic

thresholds is much better than that under fixed values. The

plots in Fig.8(h) and Fig.9(h) also demonstrate that playback

freezes and buffer overflow never happens. More specifically,

from Fig.9(h) we find that the buffer becomes very small

around t = 630s and t = 1600s, but it still bigger than qmin

which has been set to smaller values dynamically, so the video

rate keeps constant and no rate spikes happen. At most times,

qmin and qmax keep unchanged, this is because that they are

bounded by q
(T )
min and q

(T )
max as Eq.(28) and Eq.(30) show.

D. Performance Comparison with Existing Schemes

At last, we compare the performance of our proposed

control-theoretic approach with STRA and GRA. Fig.10 plots

the video rate and buffer size of different schemes. For space

limit, we only plot the results under Trace I. The figures

clearly show that the video rate in our proposed approach

is much more smooth than the other methods. On the other

hand, no playback freeze and buffer overflow happens in

our proposed approach. In STRA, the video rate is switched

up/down according to the smoothed throughput. However,

since bandwidth is time-varying and ST prediction is not

accurate enough, the video rate fluctuate drastically. The

performance loss of GRA is mainly because that it only

provides a continuous video playback without considering the

smoothness of video rate. Moreover, in STRA, the video rate

which is closest to the predicted bandwidth and smaller than

bandwidth is selected, so the buffer always stays at a high

level. On the other hand, GRA selected the highest video rate

under the constraint of ensuring buffer not overflow/underflow,
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Fig. 10. Performance Evaluation with Existing Schemes: (a):video rate and
bandwidth; (b):buffer size evolution

therefore its buffered video time always keeps at a low level

and underflow happens at some times due to the prediction

error.

VII. CONCLUSION

In this paper, we have proposed a novel control-theoretic

approach to switch video rates in dynamic adaptive HTTP

streaming. We show that though traditional buffer based rate

adaptation can ensure video playback continually, it results

to serious rate oscillation. To address this problem, we add

an underflow threshold and an overflow threshold to filter

the effect of short-term network bandwidth variations while

keeping playback smooth. Then a novel control-theoretic

approach is designed to switch video rates. Based on the

properly chosen operating points, we linearize the rate control

system and develop a PD controller to stabilize the video rate

adaptation. Moreover, we show that the opportunities of buffer

overflow/underflow incurred by bandwidth prediction error can

be greatly decreased by reserving a small positive/negative

bandwidth margin. At last, the real network trace based exper-

iments demonstrate the highly effectiveness of our proposed

control-theoretic approach.
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Fig. 8. Proposed Control-Theoretic Approach for Rate adaptation of Trace I under Different Buffer Thresholds: (a)-(d):video rate and bandwidth; (e)-(h):buffer
size evolution
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Fig. 9. Proposed Control-Theoretic Approach for Rate adaptation of Trace II under Different Buffer Thresholds: (a)-(d):video rate and bandwidth; (e)-(h):buffer
size evolution
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