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Abstract—In this paper, we develop an algorithm that can
convert any reversible multichannel system into a reversible
integer multichannel transform. The integer transform means
the operation whose inputs and outputs are all sums of powers of
two. Recently, the triangular matrix scheme was shown to be
able to convert any nonsingular discrete transform into a
reversible discrete integer transform. Since as other discrete
transform, the multichannel system can also be expressed as a
matrix form, we suggest that the triangular matrix scheme can
also be applied for converting a multichannel system into a
reversible integer transform. The proposed methods are useful
for multirate signal processing, wavelet analysis, communication,
and image processing.

L INTRODUCTION

The reversible integer transform [1-8] is an operator that

satisfies the following constraints:

(Constraint 1) Suppose that x[n] and y[n] are the input and
the output of the integer transform, respectively. If x[n] is
a sum of powers of 2 (SOPOT):

x[n]=%) ¢, 2"  wherec, =0orl, )
k
then y[n] should also be a SOPOT:
y[n]=%>b,,27"  where b, =0o0r1. ()
k

(Constraint 2) The inverse integer transform also has the
integer-to-integer property. That is, if y,[#] and x,[n] are
the input and output of the inverse integer transform, when
yi[n] is a SOPOT, then x[n] is also a SOPOT.

(Constraint 3) If x[n] and y[n] are the input and the output of
the forward integer transform, one can perfectly
reconstruct the input x[n] from y[n] by the inverse integer
transform without any loss.

For example, the Walsh (Hadamard) transform, the Haar
transform, and the Jacket transform [3] are integer transforms.
The reversible integer transform is easier to implement by the
fixed-point processor and more suitable for VLSI design.
However, most operations, such as the discrete Fourier
transform, the discrete wavelet transform, and the discrete
cosine transform, are non-integer transforms. It is an
interesting problem that how to convert a non-integer
transform into an integer transform without the loss of perfect
reconstruction property.

In [1], based on the dyadic symmetry property, the integer
cosine transform was derived. Then, in [4], the integer RGB-
to-YCbCr transform was proposed and it is widely used in the

JPEG2000 standard and other advanced color
compression algorithms.

In [2], Hao and Shi used the lifting scheme [5] and
triangular matrix decomposition to convert any discrete linear
operation into the reversible integer transform. If a discrete
operation can be expressed as the following matrix form

y = Ax where det(A) # 0, 3)
then, using the algorithm in [2], it can be converted into a
reversible integer transform. Based on the lifting scheme, the
integer DFT [6], the integer KLT [7], and the integer color
transform [8] were derived successfully.

Until now, the development of the reversible integer
transform focuses on the discrete operation that has the matrix
form in (3). In this paper, we extend the concept of the
reversible integer transform and discuss how to convert a
multichannel filter system into a reversible integer transform.
A multichannel filter system can be expressed as

vp[n]=h, [n]*x [n]+ b, [n]*x, [n]+ b, 5 [n]*x; [n]+

“4)
where p =1, 2, ...., P, * means the convolution, and 4, ,[n]
can be an infinite impulse response (IIR) or a finite impulse

response (FIR) filter. With the Z transform, the multichannel
filter system can be rewritten as

image
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It is similar to the matrix operation in (3), but each entry is the
Z-transform of a filter. In this paper, we propose a way to
convert (5) into a reversible integer transform. With the
proposed method, one can convert any multichannel system
into a reversible integer multichannel transform successfully
if the determinant of leading coefficients is nonzero.

II.  REVERSIBLE INTEGER FILTER IN ONE CHANNEL CASE

Before discussing the multichannel case, we first discuss
how to convert a one-channel IIR / FIR filter into a reversible
integer transform. Any IIR filter can be expressed as:

y[n]:aox[n+r]+a1x[n+r—l]+
—dly[n—l]—dzy[n—2]— ----- —dMy[n—M]. (6)

+aNx[n+r—N]



Most IIR filters are not reversible integer transforms, since in
usual g, and d,, are not sums of powers of 2. Although one
can perform truncation for a, and d,, to make them sums of
powers of 2, if ay # i2k, Constraint 2 is still not satisfied. Note
that, to recover x[n] from y[n], we should perform

x[n]:agly[n—r]+agld1y[n—r—l]+ ------ +a51dMy[n—T—M]
—aglalx[n—l]—aglan[n—2]— ------ —aglaNx[n —N]. (7)

For example, if ay = 5/2, then ao’l = 2/5, which cannot be
expressed as a sum of powers of 2 and Constraint 2 is not
satisfied.

In the following, we introduce a method to convert an IIR
filter into a reversible integer transform. Note that, since the
FIR filter is a special case of the IIR filter where d; = d, =
=dy =0 1in (6) and (7), the following discussions can also be
applied to the FIR filter case.

First, we scale the coefficients of x[n+7k] in (6) as:

ya[n]=0'a0x[n+r]+0'a1x[n+r—l]+ ~~~~~~ +0'aNx[n+r—N]
~dy,[n-1]-dyy,[n=2]==dyy,[n-M]  (8)
where o =|2"/a, |, k is some integer.

Then we perform truncation operations for ou, and d,,

s, = le (O'a”), ¢, = Qb] (dm) )
where Q() is the truncation operation:
Qb] ( ) round(Z Y ) (10)

After truncation, both s, and ¢, are sums of powers of 2. Then,
we can rewrite the forward and inverse IIR filters in (6) and (7)
as the following reversible integer transform pair:

t[n]:s2kx[n+r]+slx[n+r—1]+ ------ +sNx[n+T—N]

—clt[n—l]—czt[n—Z]— ------ —th[n—M], (11)
x[n]=s2_k {t[n—r]+clt[n—r—l]+ ------ +th[n—r—M]
—slx[n—l]—szx[n—2]— ------ —sNx[n—N]} (12)

where s =1 if ay > 0 and s= —1 if ay < 0.
Note that, in (11),
t[n]zya [n]:ay[n]. (13)

Since #[n] is near to y[rn] multiplied by a constant, the
performance of the IIR filter in (11) is still similar to that of
the original IIR filter. Moreover, it is no hard to show that (11)
and (12) satisfy all of the three constraints in Section 1.
Therefore, they form a reversible integer IIR filter pair.

III. REVERSIBLE INTEGER MULTICHANNEL TRANSFORMS IN
ONE-NONTRIVIAL ROW CASES

For the multichannel filter case in (5), the problem of
reversible integer transform conversion becomes more
complicated. However, we can still use the method analogous
to the triangular matrix decomposition in [2] to convert it into
the reversible integer multichannel transform. Before
discussing the general case, we first discuss a special case: the
one-nontrivial row multichannel system. It has the form of

1 0 0 0
0 1 0 0
£ 0 0 1 0 0 0 | (14
’ Epl(z) Ep’(z) Ep,pfl(z) Ep p(z) Ep.,p+l(z) Ep N (Z)
0 0 0 0 1 0
0 0 0 0 0 1

[Theorem 1]: For the one-nontrivial row multichannel system
as in (14), suppose that £, ,(z) has the IIR form of

E,y(2)=

If the leading coefficient is a sum of powers of 2 when p = q:
=s2F, s=1lor-1, (16)

pg0 Ty g2 Foeee +a z M

zv . (15)
...... P4
1+dp,qylz +dp.qylz + +dp,q,Mp,qZ

Ay po

then we can use the following way to convert (14) into the
reversible integer system.

(A) First, we round the coefficients of E, () directly and
convert £, ,(z) into T, (z):

T, (z)=—"4 vt ()

pyq

Where Sp,q,n = Qb (ap,q‘n ) H p q.n Qh ( P, q,n) >

and the quantization operation Q, is defined in (10).

(B) Then, the forward integer multichannel filter system can
be formulated as follows:

y,[n]=x,[n] forg=1,2,..,P, q#p, (18)
v, [n]=wi[n]+w, [n]+--+wy [n], (19)
_1J+ ......

N ] Cpai¥, [n—l]—cp,qlwq[n—Z]
g W q[,, M,,] (20)

where w [n] 8, 00%, [n+rpq]+ S p.aiXy [n+rM

+, 08, % [n +7,

(C) To recover xl[n]a x2[n]5 i3} xP[n] ﬁom yl[n]7 JQ[”];
ypln], we can perform the inverse transform as follows:

@) x,[n]=y,[n] forg=1,2,....P, q#p, 1)
(ii) Since x,[n] (¢ = 1, 2, ...., P, g # p) has been recovered
from (21), we can substitute x,[n] into (20) and calculate
win] (g =1, 2, ..., P, g # p) recursively from the

initiation that w,[n] = 0 for n < ng if x[n] = 0 for n <n,.
(iii) g, [n] =y, [n] -w, [n] -W, [n] —mW, [n] W, [n]
—-—wp[n].  (Note that g,[n] = w,[n]). (22)

(iv) Then, we can use the way the same as that of the one-
channel case (see (12)) to recover x,[n] from g,[n]:

X, [n] =s27* {gp [n —rp’p}+cp’pﬁlgp [n -7, _1] Feeeens
+Cppu,, &) [n—rp -M, J Sy piX, [n—l]—

S, 2%, [n—Z]— ------ —sp,p,NPvpxp[n—Np’p]}. (23)



IV. REVERSIBLE INTEGER MULTICHANNEL TRANSFORMS IN
GENERAL CASES

From Section III, if a multichannel system has the one-
nontrivial row form as in (14) and (16) is satisfied, then we
can convert it into the reversible integer system very easily. In
the general case, we can first decompose a multichannel
system into the combination of the one-row systems with the
form of (14) and (16) and use Theorem 1 to convert each part
into a reversible integer system. That is, we try to decompose
the multichannel system H in (5) as

H=0cE,E, E,, --EE, (24)
where Eq, E,, ...., and Ep have the one-nontrivial-row form as
in (17). That is, E, is almost the same as the identity matrix,
in addition to the p™ row. The exception is that the nontrivial
row of the rightmost matrix Ey is the last row

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
E, = : : : - : : - (23)
0 0 0 1 0
| Eoi(2) Eon(2) Eys(2) Eypi(2) Eop(z)]

Suppose that £, (z) (p =0, 1,2, ..., P,q=1,2, ..., P)is

-1

...... P4
P (z) B a,,0ta,,,z + ta,,y Z v
pq - 71 72 ...... _MP“[ ’
1+dp,qylz +dp‘qyzz + +dp!qupqu
p=0,1,2,...P, g¢q=1,2,..,P. (26)

To make Ey, E,, ...., and Ep able to be converted into the

integer transform, from Theorem 1, The leading coefficients

OfEl,l(Z), E2,2(Z), ey EP’P(Z), and Eo,p(Z) should Satisfy

o =8,2'7 forp=1,2,.., P,

Spy So = 1. (27)

Then we discuss how to decompose H into the form as in

(24) and convert it into a reversible integer transform.

(A) First, we discuss how to choose o in (24). Since

det(Ep ) =£,, (2), det(Ey)=E,,(z), (28)

det(H)=O'PEP,P(Z)EP71!P71(Z)~~EI,1(Z)E0,P(Z). (29)
Note that, if ®(z) = Epp(2)Ep.1p.1(2)...E1(2)Eo(z), then the

leading coefficient of ®(z) is also a power of 2. Therefore, if
,Nh

_ ko
a Ay po =527,

-1 -2
@@,z a7 +a, 2

det(H) &, (30)

l+d, 27" +d, 27+ +d,, 2
to decompose H(z) into (24), o should be chosen as:
/
o= (| a,, | 2o )l ’ where kg is some integer.  (31)

(B) Suppose that

¥ = o 'HE, . (32)
If ¥ can be decomposed as
Y= EpEp_lEp_z coee E], (33)

then the first row of W is all the same as the first row of E,,
The first two rows of W are all the same as the first two rows
of E,E,, etc. Therefore, if A, is the upper-left pxp sub-matrix
of P, then we can prove that

det(Ap) = ﬁEM (2). (34)

From (27), the leading coefficient of det(A;) should be +2F,
To satisfy it, Eg in (32) should be chosen properly. If

G=oc'H (35)
and g, ,(z) is the entry of G at the p™ row and ¢ column, then
the entry of Ey in (32) can be determined from

Ey(2)=(2,(0- /(D) g,(2). Ep(z)=1, (36)

E, ,(z) = (det(E, —eye,) - £, (2))/det(E,) (37)
forp=2,3,..., P-1
where f,(z) are some filters whose leading coefficient is a
power of 2, and

gly](Z) gl,z(Z)
= gz,ll(Z) gz‘,z‘(z)

E1p-1 (2) &p (2)

E gz.p—.l (2) ngp.(z)

a

) (3%)

gl’v.ﬂ-l(z) gl’-l’(z)
2,02 g,,(2)], (39
E,,,(z) 0], (40)

gl‘pfl(z) gl,P(Z)
gz,p—.l(z) gu,‘(z) '

gp,l(z) gp,z(z)
€ :[gl,P(Z) 8.p(2)
€ = [EO,] (2) Eo,z (2)

& (Z) &in (Z)

() &ald) @1)

Ed
2,1(2) g,2(2)  8,,1(2) g,s(2)
(3) After Ey is determined, calculate ¥ from (32). Then, we
can determine E;, E,, ..., and Ep iteratively from ¥. The first
row of E; is equal to that of ¥ and other rows of E; are equal
to those of the identity matrix. If
¥, =WE,'E,”" ... .., (42)

then the p" row of E,, is equal to that of ¥, and other rows of
E, are equal to those of the identity matrix.
(4) After the above process, all the components in (24) are
derived successfully. Then, we can apply Theorem 1 to
convert each part into a reversible integer transform.

Then, the forward integer multichannel transform
corresponding to H can be implemented as:
(1) Setuy[n] =x,[n] forp=1,2, ..., P-1,

Up [n] = Wy, [n] + Wy, [n] ot W p [n] +Xp [n] (43)
where wy [7] is calculated by the way as in (20).
(ii) Setp=1.

(iii) y, [n] =W, [n]+ W, [n] +eotw, [n] (44)
where w, [n] =58, 0% n+7, 1+s, vn+7, , —1]+ +

sp,q.Nqu[n+rp,q —prq]—cp,qlwm [n—l]—cp,qizwp,q [n—Z]

e —Cpart, W ln=M, 1, (45)

vonl=u,n]ifqg>p, vn]=y,[n] ifg<p. (46)

(iv) If p # P, set p = p+1 and return to Step (ii). If p = P, the
process is completed.

It is clear that if x,[n] (p € [1, P]) are sums of powers of 2,
then the output y,[n] (p € [1, P]) are also sums of powers of



2 and Constraint 1 in Section 1 is satisfied. The inverse
integer multichannel transform can be implemented as:
(i) Setp = P.

P

(i) &p [n]:yp [”]_pr,k [}’l] (47)
kep

where w, ,[7] is calculated from (45), but (46) is changed as

velnl=u,n]ifg>p, vyn]=y4n] ifg<p. (48)
(i) u,[n] :s[,2_k” {yp [n—rppr+cp,p’1y,, [n—rp’p —1]+ ~~~~~~

oo, Vp [n T~ Mp,p :' T Sppatty [n - 1] -

Sp.p2%p [n—Z]— """" “SpoN,, P[n_NpaP ]} - (49

(iv) If p # 1, set p = p—1 and return to Step (ii). If p = 1,
continue to Step (V).
(v) Setx,[n] =uy[n] forp=1,2, ..., P-1,

xp[n]=up [n]=wy, [n]=wos [n] == wo i [1] (50)
where wy4[n] is calculated by the way as in (20), but x,[#] in
(20) is changed into u,[n].

We can prove one can perfectly recover the original signal
x,[n] from y,[n] by the process of (47)-(50), i.e., Constraints 2
and 3 in Section 1 are satisfied. Therefore, the processes in
(43)-(46) and (47)-(50) form a reversible integer multichannel
transform pair.

V. EXAMPLES
We give two examples as follows. The first example is a
one-channel IIR smooth filter:
y[n]=(0.7)" *x[n], * means the convolution.  (51)
To convert (52) into a reversible integer transform, first,

1 0.7z
Y[z]=—— X[z]+ 22X
(2] = ol KTl 205 X2]

=0.7286 -l
1-2.1286z" +z~

Then, we follow the process shown in Section 2. If in (10)-(12)
we choose b; = 3, then the reversible integer transform pair
corresponding to (51) is:

z ' X[z].

t[n]==x[n-1]-"Le[n-1]+¢[n-2]. (52)
x[n]:—t[n+1]+1§7t[n]—t[n—1]. (53)

We can show that #[n] = y[r]/0.7286 and Constraints 1, 2, and
3 in Section 1 are all satisfied. That is, (52) and (53) form a
reversible integer transform pair.

Then, we give an example of a multichannel system. If
there is a mutually interfered 2-channel system:

1 0.3

Yi(2)| |1-06z" 1-0.7z7" || Xi(2)

Y,(2)| |__03 1 X,(2)|
1-0.6z" 1-0.7z"

Then, we can use (24) to decompose the system. From (28)-

(46), we obtain the following one-row matrices:

(54)

1 0 1 0.3145
Ey=|0.1535-0.1075z" |» Ei=[1-06z" 12072711,
1-0.62"" 0 1
1 0
E,=| ) 1535 L o=0.9539. (55)
1-0.7z"
Ifin (13) b, = 6, we quantize E, into T}
1 0 1 20/64
|10 7 - _[1-38,10 45 0
Bo=l gi ea” | BT Tea” 64” |
1-38z7'/64 0 l
1 0
E,=| 10_7 . 56
271 64 64° (56)
1-3827" /64

Then, substituting the coefficients in (55) and (56) into (43)-
(46) and (47)-(50), we can convert the multichannel system in
(44) into a reversible integer multichannel filter system.

VI. CONCLUSION

The methods to convert one-channel or multi-channel IIR
or FIR filter systems into reversible integer transforms are
proposed in this paper. Our methods work successfully for
any multichannel filter system if the determinant of its leading
coefficients is nonzero. With the proposed method, one can
recover the original signals from the outputs of multichannel
systems perfectly without the error caused by truncation.

As the existing integer transforms, the proposed methods
will be useful for communication, signal synthesis, MIMO
system analysis, and lossy and lossless image compression.
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