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Abstract—In this paper, we develop an algorithm that can 
convert any reversible multichannel system into a reversible 
integer multichannel transform. The integer transform means 
the operation whose inputs and outputs are all sums of powers of 
two. Recently, the triangular matrix scheme was shown to be 
able to convert any nonsingular discrete transform into a 
reversible discrete integer transform. Since as other discrete 
transform, the multichannel system can also be expressed as a 
matrix form, we suggest that the triangular matrix scheme can 
also be applied for converting a multichannel system into a 
reversible integer transform. The proposed methods are useful 
for multirate signal processing, wavelet analysis, communication, 
and image processing.    

I. INTRODUCTION 

The reversible integer transform [1-8] is an operator that 
satisfies the following constraints: 
(Constraint 1)  Suppose that x[n] and y[n] are the input and 

the output of the integer transform, respectively. If x[n] is 
a sum of powers of 2 (SOPOT):            

              [ ] , 2 k
n k

k
x n c −= ±∑      where cn,k = 0 or 1,      (1) 

then y[n] should also be a SOPOT:  

              [ ] , 2 k
n k

k
y n b −= ±∑       where bn,k = 0 or 1.     (2) 

(Constraint 2) The inverse integer transform also has the 
integer-to-integer property. That is, if y1[n] and x1[n] are 
the input and output of the inverse integer transform, when 
y1[n] is a SOPOT, then x1[n] is also a SOPOT. 

(Constraint 3) If x[n] and y[n] are the input and the output of 
the forward integer transform, one can perfectly 
reconstruct the input x[n] from y[n] by the inverse integer 
transform without any loss. 
For example, the Walsh (Hadamard) transform, the Haar 

transform, and the Jacket transform [3] are integer transforms. 
The reversible integer transform is easier to implement by the 
fixed-point processor and more suitable for VLSI design. 
However, most operations, such as the discrete Fourier 
transform, the discrete wavelet transform, and the discrete 
cosine transform, are non-integer transforms. It is an 
interesting problem that how to convert a non-integer 
transform into an integer transform without the loss of perfect 
reconstruction property.  

In [1], based on the dyadic symmetry property, the integer 
cosine transform was derived. Then, in [4], the integer RGB-
to-YCbCr transform was proposed and it is widely used in the 

JPEG2000 standard and other advanced color image 
compression algorithms.  

In [2], Hao and Shi used the lifting scheme [5] and 
triangular matrix decomposition to convert any discrete linear 
operation into the reversible integer transform. If a discrete 
operation can be expressed as the following matrix form      
                           y = Ax   where det(A) ≠ 0,    (3)    
then, using the algorithm in [2], it can be converted into a 
reversible integer transform. Based on the lifting scheme, the 
integer DFT [6], the integer KLT [7], and the integer color 
transform [8] were derived successfully.  

Until now, the development of the reversible integer 
transform focuses on the discrete operation that has the matrix 
form in (3). In this paper, we extend the concept of the 
reversible integer transform and discuss how to convert a 
multichannel filter system into a reversible integer transform. 
A multichannel filter system can be expressed as  
 [ ] [ ] [ ] [ ] [ ] [ ] [ ],1 1 ,2 2 ,3 3p p p py n h n x n h n x n h n x n= ∗ + ∗ + ∗ +     

                [ ] [ ],p P Ph n x n+ ∗       (4) 

where  p = 1, 2, …., P, * means the convolution, and hp,q[n] 
can be an infinite impulse response (IIR) or a finite impulse 
response (FIR) filter. With the Z transform, the multichannel 
filter system can be rewritten as  
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. (5) 

It is similar to the matrix operation in (3), but each entry is the 
Z-transform of a filter. In this paper, we propose a way to 
convert (5) into a reversible integer transform. With the 
proposed method, one can convert any multichannel system 
into a reversible integer multichannel transform successfully 
if the determinant of leading coefficients is nonzero.    

II. REVERSIBLE INTEGER FILTER IN ONE CHANNEL CASE 

Before discussing the multichannel case, we first discuss 
how to convert a one-channel IIR / FIR filter into a reversible 
integer transform. Any IIR filter can be expressed as:             
    [ ] [ ] [ ] [ ]0 1 1 Ny n a x n a x n a x n Nτ τ τ= + + + − + + + −      

             [ ] [ ] [ ]1 21 2 Md y n d y n d y n M− − − − − − − . (6) 



Most IIR filters are not reversible integer transforms, since in 
usual an and dm are not sums of powers of 2. Although one 
can perform truncation for an and dm to make them sums of 
powers of 2, if a0 ≠ ±2k, Constraint 2 is still not satisfied. Note 
that, to recover x[n] from y[n], we should perform      

[ ] [ ] [ ] [ ]1 1 1
0 0 1 01 Mx n a y n a d y n a d y n Mτ τ τ− − −= − + − − + + − −    

   [ ] [ ] [ ]1 1 1
0 1 0 2 01 2 Na a x n a a x n a a x n N− − −− − − − − − − . (7) 

For example, if a0 = 5/2, then a0
−1 = 2/5, which cannot be 

expressed as a sum of powers of 2 and Constraint 2 is not 
satisfied.    

In the following, we introduce a method to convert an IIR 
filter into a reversible integer transform. Note that, since the 
FIR filter is a special case of the IIR filter where d1 = d2 = … 
= dM = 0 in (6) and (7), the following discussions can also be 
applied to the FIR filter case. 

First, we scale the coefficients of x[n+τ−k] in (6) as:    
[ ] [ ] [ ] [ ]0 1 1a Ny n a x n a x n a x n Nσ τ σ τ σ τ= + + + − + + + −   

      [ ] [ ] [ ]1 21 2a a M ad y n d y n d y n M− − − − − − −    (8) 

                 where 0| 2 / |k aσ = , k is some integer.   

Then we perform truncation operations for σan and dm         
                  ( )

1n b ns Q aσ= ,           ( )
1m b mc Q d=  (9)    

where Q( ) is the truncation operation:    

                        ( ) ( )1 1
1

2 2b b
b n nQ v round v−= .   (10) 

After truncation, both sn and cm are sums of powers of 2. Then, 
we can rewrite the forward and inverse IIR filters in (6) and (7) 
as the following reversible integer transform pair:          

  [ ] [ ] [ ] [ ]12 1k
Nt n s x n s x n s x n Nτ τ τ= + + + − + + + −      

           [ ] [ ] [ ]1 21 2 Mc t n c t n c t n M− − − − − − − ,       (11) 

  [ ] [ ] [ ] [ ]{ 12 1k
Mx n s t n c t n c t n Mτ τ τ−= − + − − + + − −      

              [ ] [ ] [ ]}1 21 2 Ns x n s x n s x n N− − − − − − −    (12)  

         where s = 1 if a0 > 0 and s= −1 if a0 < 0.   
Note that, in (11),    
                             [ ] [ ] [ ]at n y n y nσ≈ = .      (13) 
Since t[n] is near to y[n] multiplied by a constant, the 
performance of the IIR filter in (11) is still similar to that of 
the original IIR filter. Moreover, it is no hard to show that (11) 
and (12) satisfy all of the three constraints in Section 1. 
Therefore, they form a reversible integer IIR filter pair.   

III. REVERSIBLE INTEGER MULTICHANNEL TRANSFORMS IN 
ONE-NONTRIVIAL ROW CASES 

For the multichannel filter case in (5), the problem of 
reversible integer transform conversion becomes more 
complicated. However, we can still use the method analogous 
to the triangular matrix decomposition in [2] to convert it into 
the reversible integer multichannel transform. Before 
discussing the general case, we first discuss a special case: the 
one-nontrivial row multichannel system. It has the form of 

( ) ( ) ( ) ( ) ( ) ( ),1 ,2 , 1 , , 1 ,
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 (14) 

[Theorem 1]: For the one-nontrivial row multichannel system 
as in (14), suppose that Ep,q(z) has the IIR form of    
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If the leading coefficient is a sum of powers of 2 when p = q:             

                          , ,0 2k
p pa s= ,    s = 1 or −1, (16) 

then we can use the following way to convert (14) into the 
reversible integer system.   

(A) First, we round the coefficients of Ep,q(z) directly and 
convert Ep,q(z) into Tp,q(z): 

( )
,

, ,

,

,

1
, ,0 , ,1 , ,

, 1 2
, ,1 , ,2 , ,1

p q

p q p q
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p q

N
p q p q p q N

p q M
p q p q p q M

s s z s z
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+ + + +
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  (17) 

    where  ( ), , , ,p q n b p q ns Q a= ,     ( ), , , ,p q n b p q nc Q d= ,       

and the quantization operation Qb is defined in (10).    

(B) Then, the forward integer multichannel filter system can 
be formulated as follows:   
     [ ] [ ]q qy n x n=      for q = 1, 2, …., P,    q ≠ p,    (18) 

     [ ] [ ] [ ] [ ]1 2p Py n w n w n w n= + + + ,              (19) 

where [ ] , ,0 , , ,1 , 1q p q q p q p q q p qw n s x n s x nτ τ   = + + + − +      

         [ ] [ ]
,, , , , , ,1 , ,21 2

p qp q N q p q p q p q q p q qs x n N c w n c w nτ + + − − − − −   

         
,, , , .

p qp q M q p qc w n M − − −   (20) 

(C) To recover x1[n], x2[n], …, xP[n] from y1[n], y2[n], …, 
yP[n], we can perform the inverse transform as follows:  
(i) [ ] [ ]q qx n y n=    for q = 1, 2, …., P,  q ≠ p,      (21) 
(ii) Since xq[n] (q = 1, 2, …., P,  q ≠ p) has been recovered 

from (21), we can substitute xq[n] into (20) and calculate 
wq[n] (q = 1, 2, …., P,  q ≠ p) recursively from the 
initiation that wq[n] = 0 for n < n0 if x[n] = 0 for n < n0.   

(iii) [ ] [ ] [ ] [ ] [ ] [ ]1 2 1 1p p p pg n y n w n w n w n w n− += − − − − −  

          [ ]Pw n− − .      (Note that gp[n] = wp[n]).      (22) 
(iv) Then, we can use the way the same as that of the one-

channel case (see (12)) to recover xp[n] from gp[n]:       

[ ] { , , ,1 ,2 1k
p p p p p p p p px n s g n c g nτ τ−    = − + − − +          

[ ]
,, , , , , ,1 1

p pp p M p p p p p p p pc g n M s x nτ + − − − − −     

[ ] },, ,2 , , ,2 [ ]
p pp p p p p N p p ps x n s x n N− − − − .       (23)  



IV. REVERSIBLE INTEGER MULTICHANNEL TRANSFORMS IN 
GENERAL CASES 

From Section III, if a multichannel system has the one-
nontrivial row form as in (14) and (16) is satisfied, then we 
can convert it into the reversible integer system very easily. In 
the general case, we can first decompose a multichannel 
system into the combination of the one-row systems with the 
form of (14) and (16) and use Theorem 1 to convert each part 
into a reversible integer system. That is, we try to decompose 
the multichannel system H in (5) as 
                  σ= P P-1 P-2 1 0H E E E E E          (24) 
where E1, E2, …., and EP have the one-nontrivial-row form as 
in (17). That is, Ep is almost the same as the identity matrix, 
in addition to the pth row. The exception is that the nontrivial 
row of the rightmost matrix E0 is the last row 

  

( ) ( ) ( ) ( ) ( )0,1 0,2 0,3 0, 1 0,

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

0 0 0 1 0

P PE z E z E z E z E z−
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
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



. (25) 

Suppose that Ep,q(z) (p = 0, 1, 2, …, P, q = 1, 2, …, P) is 

   ( )
,
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             p = 0, 1, 2, …,P,      q = 1, 2,…, P. (26) 
To make E0, E1, …., and EP able to be converted into the 
integer transform, from Theorem 1, The leading coefficients 
of E1,1(z), E2,2(z), …, EP,P(z), and E0,P(z) should satisfy            
         , ,0 2 Pk

p p pa s=   for p = 1, 2, …, P,         0
0, ,0 0 2k

Pa s= , 
         sp, s0 = ±1.       (27) 

Then we discuss how to decompose H into the form as in 
(24) and convert it into a reversible integer transform.  
(A) First, we discuss how to choose σ in (24). Since  
         ( ) ( ),det p pE z=pE ,   ( ) ( )0,det PE z=0E , (28)   

   ( ) ( ) ( ) ( ) ( ), 1, 1 1,1 0,det P
P P P P PE z E z E z E zσ − −=H  . (29)  

Note that, if Φ(z) = EP,P(z)EP-1,P-1(z)…E1(z)E0(z), then the 
leading coefficient of Φ(z) is also a power of 2. Therefore, if 

     ( )
1 2

,0 ,1 ,2 ,
1 2

,1 ,2 ,

det
1

h
h h

h
h

N
h h h h N

M
h h h M

a a z a z a z
z

d z d z d z
τ

−− −

−− −

+ + + +
=

+ + + +
H


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,   (30) 

to decompose H(z) into (24), σ should be chosen as: 

         ( )1/

,0| | 2
Pk

haσ Φ−=   where kΦ is some integer.    (31) 

(B) Suppose that  
                                  Ψ = σ−1HE0

−1.  (32) 
If Ψ can be decomposed as  
                           Ψ = EpEp−1Ep−2 …. E1,        (33)  
then the first row of Ψ is all the same as the first row of E1, 
The first two rows of Ψ are all the same as the first two rows 
of E2E1, etc. Therefore, if Λp is the upper-left p×p sub-matrix 
of Ψ, then we can prove that 

                        ( ) ( ),
1

det
p

q q
q

E z
=

=∏pΛ .             (34) 

From (27), the leading coefficient of det(Λp) should be ±2k. 
To satisfy it, E0 in (32) should be chosen properly. If      
                                 G =  σ−1H          (35) 
and gp,q(z) is the entry of G at the pth row and qth column, then 
the entry of E0 in (32) can be determined from   
      ( ) ( ) ( )0,1 1,1 1 1,( ) ( ) / PE z g z f z g z= − ,    ( )0, 1PE z = ,    (36)  

        ( ) ( )( ) ( )0, det( ) / detp pE z f z= − −T
a b c dE e e E    (37)     

                          for p = 2, 3, …, P−1  
where fp(z) are some filters whose leading coefficient is a 
power of 2, and   
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       1, 2, 1, ,( ) ( ) ( ) ( )P P p P p Pg z g z g z g z− =  be  , (39)    

       0,1 0,2 0, 1( ) ( ) ( ) 0pE z E z E z− =  ce  , (40) 
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. (41)        

(3) After E0 is determined, calculate Ψ from (32). Then, we 
can determine E1, E2, …, and EP iteratively from Ψ. The first 
row of E1 is equal to that of Ψ and other rows of E1 are equal 
to those of the identity matrix. If  
                     Ψp = ΨE1

−1E2
−1

 …. Ep−1
−1,     (42) 

then the pth row of Ep is equal to that of Ψp and other rows of 
Ep are equal to those of the identity matrix.  
(4) After the above process, all the components in (24) are 
derived successfully. Then, we can apply Theorem 1 to 
convert each part into a reversible integer transform.  
   

Then, the forward integer multichannel transform 
corresponding to H can be implemented as: 
(i) Set up[n] = xp[n]  for p = 1, 2, …, P−1,  
     [ ] [ ] [ ] [ ] [ ]0,1 0,2 0, 1P P Pu n w n w n w n x n−= + + + +   (43)           
where w0,q[n] is calculated by the way as in (20). 
(ii) Set p = 1.      
(iii) [ ] [ ] [ ] [ ],1 ,2 ,p p p p Py n w n w n w n= + + +      (44) 

where [ ], , ,0 , , ,1 ,[ ] [ 1]p q p q q p q p q q p qw n s v n s v nτ τ= + + + − + +    

           [ ] [ ]
,, , , , , ,1 , , ,2 ,[ ] 1 2

p qp q N q p q p q p q p q p q p qs v n N c w n c w nτ+ − − − − −   

           
,, , , ,[ ]

p qp q M p q p qc w n M− − − ,    (45) 

    vq[n] = uq[n] if q ≥ p,     vq[n] = yq[n]   if q < p.    (46) 
(iv) If p ≠ P, set p = p+1 and return to Step (ii). If p = P, the 
process is completed.  

It is clear that if xp[n] (p ∈ [1, P]) are sums of powers of 2, 
then the output yp[n] (p  ∈ [1, P]) are also sums of powers of 



2 and Constraint 1 in Section 1 is satisfied. The inverse 
integer multichannel transform can be implemented as: 
(i) Set p = P.  

(ii) [ ] [ ] [ ],
1

P

p p p k
k
k p

g n y n w n
=
≠

= −∑             (47)  

where wp,q[n] is calculated from (45), but (46) is changed as           
      vq[n] = uq[n] if q > p,     vq[n] = yq[n]   if q ≤ p.     (48)  
(iii) [ ] { , , ,1 ,2 1pk

p p p p p p p P p pu n s y n c y nτ τ−    = − + − − +      

             [ ]
,, , , , , ,1 1

p pp p M p p p p p p p pc y n M s u nτ + − − − − −   

             [ ] },, ,2 , , ,2 [ ]
p pp p p p p N p p ps x n s x n N− − − − .  (49) 

(iv) If p ≠ 1, set p = p−1 and return to Step (ii). If p = 1, 
continue to Step (v).       
(v) Set xp[n] = up[n]  for p = 1, 2, …, P−1,      
     [ ] [ ] [ ] [ ] [ ]0,1 0,2 0, 1P P Px n u n w n w n w n−= − − − −    (50)   
where w0,q[n] is calculated by the way as in (20), but xq[n] in 
(20) is changed into uq[n].         

We can prove one can perfectly recover the original signal 
xp[n] from yp[n] by the process of (47)-(50), i.e., Constraints 2 
and 3 in Section 1 are satisfied. Therefore, the processes in 
(43)-(46) and (47)-(50) form a reversible integer multichannel 
transform pair.      

V. EXAMPLES 

We give two examples as follows. The first example is a 
one-channel IIR smooth filter:  
       | |[ ] (0.7) [ ]ny n x n= ∗ ,   * means the convolution.   (51) 
To convert (52) into a reversible integer transform, first,   
       1

0.71[ ] [ ] [ ]
1 0.71 0.7

zY z X z X z
zz−

= +
−−

         

              1
1 2

10.7286 [ ]
1 2.1286

z X z
z z

−
− −

−=
− +

. 

Then, we follow the process shown in Section 2. If in (10)-(12) 
we choose b1 = 3, then the reversible integer transform pair 
corresponding to (51) is:   

             [ ] [ ] [ ] [ ]171 1 2
8

t n x n t n t n= − − − − + − ,       (52) 

             [ ] 17[ 1] [ ] [ 1]
8

x n t n t n t n= − + + − − . (53)  

We can show that t[n] ≅ y[n]/0.7286 and Constraints 1, 2, and 
3 in Section 1 are all satisfied. That is, (52) and (53) form a 
reversible integer transform pair.    

Then, we give an example of a multichannel system. If 
there is a mutually interfered 2-channel system:     

        
1 1

1 1

2 2
1 1

0.31
( ) ( )1 0.6 1 0.7
( ) ( )0.3 1

1 0.6 1 0.7

Y z X zz z
Y z X z

z z

− −

− −

 
    − −=     

    
− − 

. (54)   

Then, we can use (24) to decompose the system. From (28)-
(46), we obtain the following one-row matrices: 

 1

1

1 0

0.1535 0.1075 1
1 0.6

z
z

−

−

 
 = − 

− 
0E , 1 1

0.31451
1 0.6 1 0.7

0 1
z z− −

 
 − −=
 
 

1E , 

 
1

1 0
10.1535

1 0.7z−

 
 =
 

− 
2E ,      σ = 0.9539.       (55)      

If in (13) b1 = 6, we quantize Ep into Tp:  

  1

1

1 0
10 7
64 64 1

1 38 / 64

z

z

−

−

 
 

= − 
 
− 

0E ,  1 1

20 / 641
38 451 164 64
0 1

z z− −

 
 − −=  
 
 

1E , 

  1

1

1 0
10 7
64 64 1

1 38 / 64

z

z

−

−

 
 

= − 
 
− 

2E .         (56) 

Then, substituting the coefficients in (55) and (56) into (43)-
(46) and (47)-(50), we can convert the multichannel system in 
(44) into a reversible integer multichannel filter system.            

VI. CONCLUSION 

The methods to convert one-channel or multi-channel IIR 
or FIR filter systems into reversible integer transforms are 
proposed in this paper. Our methods work successfully for 
any multichannel filter system if the determinant of its leading 
coefficients is nonzero. With the proposed method, one can 
recover the original signals from the outputs of multichannel 
systems perfectly without the error caused by truncation.  

As the existing integer transforms, the proposed methods 
will be useful for communication, signal synthesis, MIMO 
system analysis, and lossy and lossless image compression.   
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