
Towards a More Efficient Sparse Coding Based
Audio-word Feature Extraction System

Chin-Chia Michael Yeh and Yi-Hsuan Yang
Research Center for Information Technology Innovation, Academia Sinica, Taiwan.

E-mail: {mcyeh, yang}@citi.sinica.edu.tw Tel: +886-2-2787-2300

Abstract—This paper is concerned with the efficiency of sparse
coding based audio-word feature extraction system. In particular,
we have defined and added the concept of early and late temporal
pooling to the classic sparse coding based audio-word feature
extraction pipeline, and we have tested them on the genre tags
subset of the CAL10k data set. We define temporal pooling as
any functions that are able to transforms the input time series
representation into a more temporally compact representation.
Under this definition, we have examined the following two
temporal pooling functions for improving the feature extraction’s
efficiency, and they are: Early Texture Window Pooling and
Multiple Frame Representation. Early texture window pooling
tremendously boost the efficiency by compromising the retrieving
accuracy, while multiple frame representation slightly improve
both the feature extracting efficiency and retrieving accuracy.
Overall, our best feature extraction setup achieves 0.202 in mean
average precision on the genre tags subset of the CAL10k data
set.

I. INTRODUCTION

As the number of available digital music explosively grows,

the importance of research on music information retrieval

(MIR) increases. The size of current digital music library has

made it difficult to discover new music for human users. One

of the countermeasure is to label each song with a set of

descriptions (or tags), with which users can search for new

music using keyword search. Given that it is impossible to

manually label all the music, recent years have witnessed

growing interest in developing content-based music tagging

(a.k.a. auto-tagging) system [1], [2], [3], [4].

In the early stage of content-based audio analysis for text-

based MIR, the song-tag relation is modeled as multi-class

problem [5]. Under this multi-class framework, systems are

developed specifically to classify music into mutually exclu-

sive groups by genre, emotion, or instrumentation [5], [6],

[7]. More recently, for a more comprehensive representation

of music, systems which model song-tag relation as multi-class

multi-label problem (i.e., auto-tagging) are developed because

such multi-class multi-label modeling uses multiple tags to

represent a song [1], [3], [8] comparing to the case of using

only one tag to represent a song for plain multi-class.

There are generally two types of work targeting auto-tagging

system: sophisticated machine learning algorithms with simple

features (e.g., MFCC), versus simple classifiers (i.e., binary

classifiers) with advanced features. For the first type, Miotto et
al. [9] considered the tag correlation, Lo et al. [10] introduced

the idea of cost-sensitive learning, and Coviello et al. [11]

incorporated temporal information of music. On the contrary,

Nam et al. [4] and Yang [3] used simple binary classifier with

advanced features generated by deep believe net and random-

ized clustering forest respectively. Out of these two kinds of

system, we are particularly interested in the development of

later one because simple and efficient classifiers are applicable

to large-scale or mobile device applications [3], [12].

Similar to our previous work [3], we are interested in

the efficiency of the feature extraction system. Among all

the features, audio-word has been shown useful in a variety

of MIR tasks [13], [14], [15], [16], owing to its ability to

represent music information that happens in a short temporal

moment (e.g., “guitar solo”) [17]. Based on our previous

experience [18], [19], sparse coding based audio-word feature

significantly outperforms other conventional coding method,

such as Vector Quantization. However, one of the main draw-

back of sparse coding is the expensive computational cost [3].

As a result, we are interested in improving the efficiency of

sparse coding based audio-word feature.

In our previous audio-word extraction system [18], [19], the

computational cost of a given song’s encoding is proportional

to O(NT), where N is the number of frames and T is the

average time spend on computing sparse coding for each

frame. Based on such relation, we could further decompose the

computational cost reduction problem into two subproblems:

how to reduce N and how to reduce T ? If we look at the

low level representation prior to encoding, it usually store as

a matrix, where the first dimension is time, and the second

dimension is feature. Since sparse coding is performed on a

frame by frame fashion, we can see that N is directly linked

to the first dimension and T is directly linked to the second

dimension. Subsequently, we have looked into the possibility

of using different temporal pooling and dimension reduction

techniques to reduce the first and second dimension prior to

encoding in order to enhance the efficiency of current audio-

word feature extraction.

Formally speaking, the term temporal pooling is often used

to describe functions in which the information from different

time is fused together to form a temporally compact represen-

tation. For example, a naı̈ve way to generate feature vector for

a given song is to temporal pool it by calculating mean and

variance across MFCC from all frames [20]. In this study, we

have generalized the term to describe any functions that trans-

form the input representation into a more temporally compact

representation. In other words, the act of applying any function

that reduces the number of instance of a given song can be

called temporal pooling, where the number of instance is the

number of frames for frame-based representation (e.g., MFCC)

[20] and number of texture-window for texture-window-based

representation (e.g., Low-Energy) [5]. Specifically for audio-

word framework, since temporal pooling can be applied either

prior or after the encoding (e.g., sparse coding), we have define

the act of applying temporal pooling before encoding as early
temporal pooling, and applying temporal pooling afterward as

late temporal pooling. Both early temporal pooling and late

temporal pooling are essential for audio-word features: early

temporal pooling has the potential to reduce the computational

cost of encoding, and late temporal pooling is a required step

for generating the final feature vector for audio-word features.

Although this work represents one of the first attempts

that investigate early temporal pooling methods for better

efficiency, early temporal pooling has been used to improve

the accuracy of MIR system before [4], [21]. For example,

Nam et al. [4] incorporated multiple frame representation to

increase the performance of their sparse feature, in which the

method was performed prior to feature encoding, and Hamel

et al. [21] designed a multi-scale neural network based auto-

tagger by applying various pooling functions between the first

two layers. Aside form the performance boost, early temporal

pooling techniques could also be viewed as a way to increase

the efficiency of any given frame-based feature extraction

systems since they reduce the number of frames for each

inputed music. However, such “side effect” has never been

study before for early temporal pooling methods. We have

conducted a preliminary experimentation on the early temporal

pooling concept.

In summary, the contributions of this paper include:

• We explore the time/accuracy trade-off of an audio-word

feature extraction system when early temporal pooling is

applied.

• We demonstrate that our pyramid based bag-of-segments

implementation dost not improve the performance while

introducing unnecessary computational cost.

• Our best performance system setup achieves the state-of-

the-art accuracy of 0.202 in mean average precision on

the genre tags subset of the CAL10k data set.

The paper is organized as follows. Section II describes the

baseline feature extraction system. Section III describes our

enhancement to the baseline system, including the descriptions

of multiple frame representation and early texture window

pooling. Section IV presents experiment setups and results.

Lastly, Section V concludes the paper.

II. BASELINE AUDIO-WORD EXTRACTION PIPELINE

Fundamentally, an audio-word feature extraction pipeline is

defined as a function that transform an input music signal’s low

level representation into higher level audio-word feature. In

the baseline system, the input low level representation is first

encoded in a frame-by-frame fashion, then the encoded result

is temporal pooled and normalized. The detailed explanation

of each system components are as follow:

x1

Texture Win.

x2 x3

Texture Win.

x4 x5 x6 x7

Texture Win.

1st Level 2nd Level 3rd Level

Fig. 1. The three-level pyramid pooling partitioned a given texture win-
dow in three different resolutions. Each of the seven partitions is then
pooled with summation. The result histograms are concatenated as x =
[x1, x2, x3, · · · , x7]T to form the output vector x.

Low Level Representation: Logarithmic scaled 513-D

spectrogram with 92ms and 50% overlapping frames is chosen

as the low level representation. Refs. [18] and [19] show that

spectrogram is the best local representation for sparse coding

based audio-word type features comparing to Mel-spectrum,

MFCC, Sonogram, and Constant-Q transform.

Encoding: Since our work’s target is to improve sparse

coding based audio-word feature extraction system, using

sparse coding as the encoding method is mandatory. Please

refereed to Section II-A for the details of sparse coding.

Late Temporal Pooling: In our previous work [18], [19],

[22], we have considered two types of late temporal pooling

scheme: Bag-of-Frames (BoF) and Histogram based Bag-of-
Segments (HBoS). BoF is the most common and simple way

to pool audio-word-type features [14], [16], [22], where the

audio-words for a given music clip are summed holistically

over the whole clip. Alternative methods such as taking

maximum or medium for pooling has been found empirically

inferior to taking summation [23]. Different in time scale,

HBoS sums the audio-words in a segment-by-segment fashion;

each segment is defined by the concept of texture window

explained in Section II-B. The setting of texture window is

5-second with 50% hop. Additional to BoF and HBoS, we

also include a new pooling scheme call Pyramid based Bag-
of-Segments (PBoS). Similar to HBoS, the pooling function

is applied to each segment. However, rather than pooling

sparse coding coefficients for each segment by summation,

a pyramid pooling operation is employed [23]. The setting

of texture window is also 5-second with 50% hop. Please see

Section II-C for details about pyramid pooling. Since the song

is represented with multiple segment-based feature vectors

when summarized with HBoS and PBoS, while training, all

the segments for a given song inherits the song’s labels, and

the predicted association strength for each given test song is

calculated by averaging the predicted association strength over

all segments.

Normalization: Based on our finding in [19], [22], normal-

ization is crucial for linear classifier, and power normalized

audio-word feature outperformed its correspondent. As we

adopted linear SVM as the base classifier for our auto-tagging

system, our feature is first power normalized then sum to one

normalized. For more detailed information regarding power

normalization, please referred to Section II-D.

Early Temporal
Pooling

Low Level
Representation

Encoding

Late Temporal
Pooling

FeatureLate Dimension
Reduction

Normalization

Early Dimension
Reduction

Fig. 2. The audio-word based music signal processing framework.

A. Sparse Coding

Given an input signal vector x ∈ R
m, the sparse represen-

tation problem can be mathematically formulated as

α∗ = argmin
α

1

2
‖x−Dα‖22 + λ‖α‖1, (1)

where α ∈ R
k is the sparse coding of x, D ∈ R

m×k is a

given dictionary, and λ is a turning parameter for the trade-off

between α’s sparsity and the representation accuracy. Typically

λ is set to 1/
√
m for that is the classical normalization

factor [24], where m is the feature dimension of x. This

problem is usually referred to as basis pursuit or Lasso in the

machine learning and statistics literature [25]. It can be solved

efficiently by off-the-shelf programs such as LARS-lasso [26].

In terms of generating the dictionary for Eq. (1), we employ

a first-order stochastic gradient descent algorithm called online

dictionary learning (ODL) [24]. ODL is known to be more

scalable than standard second-order batch algorithms for its

relatively lower computational cost, memory consumption, and

capability of learning in an online, rather than batch, fashion.

The dictionary learning problem can be formulated as

D∗ = argmin
D∈C

1

n

n∑
i=1

(
1

2
‖xi −Dαi‖22 + λ‖αi‖1

)
, (2)

where xi denotes the i-th signal among a dataset of n signals,

and C � {D ∈ R
m×k} is a set of convex matrices in which

the l2 norm of each column dj is not larger than one, i.e.,

dTj dj ≤ 1, ∀j. This constraint is imposed to constrain the

energy of the dictionary elements. The formulation in (2) is a

joint optimization problem in α and D, and a natural solution

is to optimize the two variables in an alternating fashion. We

use the implementation due to Mairalet al. [24].

B. Texture Window

It has been found that partitioning a song into short seg-

ments, each span a number of frames, and generate feature

based on the segmentation usually improves the classification

accuracy [5], [21], [27]. These segments are called “texture

windows” [5] as it should correspond to the minimum time

amount of music that is necessary to identify a particular

music’s timbre, pitch, and loudness.

C. Pyramid Pooling

One of the most popular shift-invariant pooling methods

for visual/audio-word-type features is pyramid pooling. Being

first proposed in the computer vision community, this method

has led to state-of-the-art performances in many tasks [23],

[28]. The main idea behind pyramid pooling is to approximate

global geometric correspondence in an image by partitioning

the image into increasingly fine sub-regions and computing

histograms of local features found inside each sub-region. For

a three level pyramid, the whole image’s features are pooled in

the first level. Next, in the second level, the image is divided

into 2 × 2 sub-region, and each sub-region’s features are

pooled. For the third level, each sub-region is further divided

into 2×2 sub-sub-region (i.e., 16 sub-sub-region in total), and

features within each sub-sub-region are pooled individually.

Finally, all the result histograms are concatenated to form the

output feature vector.

The pyramid pooled features are more shift-invariant com-

paring to directly summed features [28]. Huang et al. [23]

extended this idea to acoustic event by partition the sound clip

into segments similar to the sub-regions partition for image.

Unlike images, sounds are 1-D data. Therefore, the partition

split the clip into 2 segments instead of 2 × 2 segments. For

music clips, we apply pyramid pooling to each segment as in

[23], meaning we partition the music segment into increasingly

fine sub-segment and compute histograms of local feature for

each sub-segment. We use a three-level pyramid structure as

shown in Fig. 1 in this work, and each segment is defined

by a 5-second with 50% hop fixed texture window. We name

the feature produced by this pooling method Pyramid based
Bag-of-Segments (PBoS).

D. Power Normalization

Given an input feature vector w ∈ �k, the power normal-

ization can be calculated with

w∗ = sign(w)|w|a , (3)

where sign(·) is the sign function and a ∈ [0, 1] is a pre-set

parameter, and Jégou et al. [29] has empirically determined

that a = 0.5 constantly leads to near-optimal results. Such

transformation has been shown to increase the performance

for a BoF based image search system, due to its ability to

reduce the influence of bursty visual elements. It can also be

interpreted as variance stabilizing transform, which corrects

the dependence between the variance and the mean. It has been

applied to BoF, GMM, and Fisher vector, yielding improved

performances comparing to their original version in both

image and music applications [19], [22], [29].

III. EFFICIENT AUDIO-WORD EXTRACTION PIPELINE

Fig. 2 shows the complete feature extraction process for this

study. The main difference with the baseline process described

in Section II is the addition of early temporal pooling, early

dimension reduction, and late dimension reduction. The details

about each added component is as follow:

Early Temporal Pooling: As we defined in Section I,

early temporal pooling is refereed to functions that convert

the raw low level representation to a more temporally com-

pact representation. Under this definition, four early temporal

pooling functions are discussed detailedly in Section III-A.

Within them, we only conduct experiments on early texture

window pooling and multiple frames representation due to

time limitation.

Early Dimension Reduction: Aside from using early tem-

poral pooling to reduce the number of instance for encoding,

we could also use dimension reduction algorithm to reduce

the dimension of each instance. Among all the dimension

reduction algorithm, we have selected Principle Component

Analysis (PCA) due to its popularity. Additionally, the act

of applying PCA to low level representation has been known

as PCA whitening, and widely used in the literature [4],

[21]. Throughout the experiment, the number of principle

component is set to maintain 90% of variance.

Late Dimension Reduction: Although this component does

not affect the efficiency of feature extraction, we still include

this in our evaluation because it is related to the overall

system efficiency. Once again, PCA is chosen as the dimension

reduction algorithm, and the number of principle component

is set to maintain 90% of variance.

A. Early Temporal Pooling

We propose the following four early temporal pooling

methods:

Early Texture Window Pooling (ETWP): Utilizing the

concept of texture window defined in Section II-B, Each

segment is pooled by maximum, mean, and variance functions

with fix 3-second texture window. Then, the pooled results

from each function are linearly mapped to the range [0, 1],
and concatenated together.

Multiple Frames Representation (MFR): It has been

shown that when multiple consecutive frames are concatenated

and used as the input vectors for feature learning algorithms

(e.g., Vector Quantization, Sparse Coding, or Deep Learning)

yields significantly superb results comparing to using just a

single frame [4]. Ref. [4] also empirically determined the

optimal number of frames is 6. As a result, we adopt their

best setting, and generate multiple frames representation by

concatenating six consecutive spectrum with 50% hop.

Random Down-sampling: Because of the music signals’

repetition natural, it is possible to maintain sufficient infor-

mation for a high level semantic tag while only a randomly

selected subset of frames are used in the auto-tagger. Thus,

random down-sampling could be thought as an applicable early

temporal pooling method.
Clustering-based Down-sampling: Akin to the idea of

random down-sampling, Clustering-based down-sampling also

chooses a subset of frames of a given song to represent

the whole song. But, instead of using randomly selection,

Clustering-based down-sampling adopt kmeans algorithm to

cluster all the frames of a given song into k cluster, then

selects the nearest frame around each centroid as the new set

of frames representing the given song.

IV. EXPERIMENT

We perform the auto-tagging experiments on genre tag

subset of CAL10k data set [8], which consist of 10,870

partially annotated songs from 4,597 artists. Up to 1,053 tags

are used to annotate each song, and the song-tag association is

defined by expert musicologists of the music service company

Pandora1. Because the original audio files are not provided, we

have collected the 30-second audio previews of 7,799 songs

in this data set using the 7digital API.2 In terms of dictionary

learning, we use an external data set, USPOP [30], for better

generalizability. USPOP consists of 8,764 tracks from 400

manually selected popular artists.
Following [8], the performance measurements used in this

study are the area under the receiver operating characteristic

curve (AUC), mean average precision (MAP), 10-precision

(P10), and R-precision (PR). The training and test sets are

partitioned also based on the specification of Tingle et al. [8].

Five different partitions are used, and the average performance

across the five partitions is reported.

A. Binary Classifier Based Auto-tagging System
Auto-tagging system is generally designed to solve a multi-

label, multi-class problem. That is to say, each song can be

labeled with single or multiple tags. One of the simplest ways

to attack this problem is breaking down the complex multi-

label, multi-class problem into a series of binary classifying

problems. For each tag, a binary classifier is constructed to

predict whether the tag should be labeled to a given song, and

the decision value can be used as an indication on level of

association.
We consider two types of feature: BoF-type feature, where

the song is represented with a single holistic feature vector, and

BoS-type feature, where the song is represented with multiple

segment-based feature vectors. For the first type of feature, the

feature vector is simply input to linear SVM. For the second

type of feature, all the segments for a given song inherits

the song’s labels while training, and the association strength

is calculated by averaging the association strength over all

segments for prediction.

1http://www.pandora.com
2http://developer.7digital.com

TABLE I
THE FEATURE DIMENSION AND NUMBERA OF INSTANCE FOR EACH EXPERIMENT SETUP.

Early Temporal Early Dim. Late Temporal Late Dim. Audio-word
Exp. Pooling Reduction Pooling Reduction Feature Encode
ID Pooling Feat. # of Dim. Feat. Pooling Feat. # of Dim. Feat. Feat. # of Timeb

Method Dim. Inst. Red. Dim. Method Dim. Inst. Red. Dim. Dim. Inst.
1 No – – No – BoF 1024 1 No – 1024 1 8.30
2 No – – No – BoF 1024 1 Yes 197 197 1 8.30
3 No – – No – HBoS 1024 10 No – 1024 10 8.30
4 No – – No – HBoS 1024 10 Yes 347 347 10 8.30
5 No – – No – PBoS 7168 10 No – 7168 10 8.30
6 No – – No – PBoS 7168 10 Yes 1562 1562 10 8.30
7 ETWP 1539 19 No – BoF 1024 1 No – 1024 1 0.27
8 ETWP 1539 19 No – BoF 1024 1 Yes 497 497 1 0.27
9 ETWP 1539 19 Yes 299 BoF 1024 1 No – 1024 1 0.15

10 ETWP 1539 19 Yes 299 BoF 1024 1 Yes 524 524 1 0.15
11 MFR 3078 428 No – BoF 1024 1 No – 1024 1 6.15
12 MFR 3078 428 No – BoF 1024 1 Yes 155 155 1 6.15
13 MFR 3078 428 No – HBoS 1024 10 No – 1024 10 6.15
14 MFR 3078 428 No – HBoS 1024 10 Yes 306 306 10 6.15
15 MFR 3078 428 Yes 1440 BoF 1024 1 No – 1024 1 5.09
16 MFR 3078 428 Yes 1440 BoF 1024 1 Yes 160 160 1 5.09
17 MFR 3078 428 Yes 1440 HBoS 1024 10 No – 1024 10 5.09
18 MFR 3078 428 Yes 1440 HBoS 1024 10 Yes 303 303 10 5.09

a The numbers here are for a 30 seconds long music clip, and each spectrogram consist of 1290 frames of 513-D spectrum
b average time (second) spend on encoding a song

TABLE II
THE RESULT ACCURACIES OF DIFFERENT EXPERIMENT

SETUPS

Exp. AUC MAP P10 PR Predict
ID Time a

1 0.834 0.171 0.219 0.179 1.08
2 0.836 0.169 0.220 0.179 0.20
3 0.838 0.168 0.212 0.179 41.19
4 0.839 0.169 0.215 0.179 19.10
5 0.837 0.169 0.211 0.179 83.43
6 0.836 0.166 0.209 0.177 81.52
7 0.787 0.118 0.159 0.133 0.77
8 0.795 0.123 0.163 0.136 0.50
9 0.783 0.119 0.158 0.133 0.83

10 0.789 0.122 0.164 0.140 0.58
11 0.846 0.193 0.248 0.206 0.94
12 0.848 0.190 0.242 0.205 0.12
13 0.851 0.197 0.246 0.206 34.77
14 0.850 0.194 0.245 0.206 7.05
15 0.848 0.194 0.251 0.207 0.95
16 0.848 0.189 0.245 0.201 0.12
17 0.854 0.202 0.253 0.214 47.19
18 0.850 0.194 0.245 0.205 7.55

a average time (minute) spend on predict association
strength for a fold in the five-fold cross validation.

Throughout the experiment, we employ linear SVM from

LIBLINEAR [31] to train binary classifiers. The efficiency

measurements are done on a server with Intel Xeon CPU E5-

2680 @ 2.70GHz processors.

B. Late Temporal Pooling

This section seeks the best way to perform late temporal

pooling for efficient audio-word features. To this end, we

generate the audio-word feature based on the feature extraction

pipeline outlined in Section II. The experiment results are

shown in Table I and II, and experiment 1 through 6 are

discussed in this section.

Since experiment 1 through 6 share the same low level

representation and encoding method, we uses prediction time

as the indication of efficiency for each late temporal pooling

method. We do not include training time in this discussion

because training is considered as an off-line process, and the

efficiency of an off-line process is less important. From this

set of experiment results, we have three observations: First, the

prediction time of PBoS and HBoS is much greater than BoF’s,

while BoF yield similar accuracy. Thus, it should be fair to

say that using PBoS and HBoS in music genre auto-tagging

system brings no merit. Second, PBoS’s prediction time is

double of HBoS’s while HBoS’s prediction time is 38 times of

BoF’s without lat dimension reduction. This fact suggests that

the number of instance could be more important comparing

to feature dimension. Third, although the dimension for the

dimension reduced PBoS is much smaller than its original,

the difference in prediction time is negligible. Based on

above three observations, we can conclude that late dimension

reduced BoF is the best option for building a music genre

auto-tagger when the prediction time is crucial.

C. Early Temporal Pooling

In this section, we have tested two of the methods we

mentioned in Section III-A, and they are ETWP and MFR.

Since the goal of adopting them into the system is to reduce

the computational cost of encoding, we have use the encoding

time as the indication if efficiency. Experiment 7 through 18

in Table I and II are discussed in this section.

First of all, ETWP have dramatically increase the efficiency

of encoding with a speed up factor of 55 given that the number

of instance have dropped from 1209 to 19. Additionally,

comparing to other feature, only ETWP feature’s accuracy

benefit from late dimension reduction while others’ accuracies

do not. However, the accuracies of ETWP feature are 5%

TABLE III
OUR BEST RESULT COMPARING TO THE STATE-OF-THE-ART

PERFORMANCES

Feature Classifier AUC MAP P10 PR
Our Besta

SVM-Ld
0.854 0.202 0.253 0.214

Our Fastestb 0.789 0.122 0.164 0.140
Our Balancedc 0.848 0.189 0.245 0.201

ENT+Δ [8]

GMMe 0.887 0.211 0.266 0.224
SVM-L 0.668 0.051 0.064 0.057

SVM-Rf 0.743 0.079 0.104 0.091
BDSg 0.801 0.114 0.157 0.129

SC [3]
SVM-L 0.813 0.128 0.165 0.136

SVM-HIh 0.812 0.153 0.200 0.170

RCFT [3]
SVM-L 0.807 0.130 0.167 0.144
SVM-HI 0.773 0.121 0.167 0.133

a Experiment 17
b Experiment 10
c Experiment 16
d Linear SVM
e GMM with Mixutre Hierarchies EM algorithm
f Kernelized SVM with RBF kernel
g Boosted decision stumps
h Kernelized SVM with Histogram Intersection kernel

worse than the baseline features. On the other hand, the

speedup factor (1.63) of MFR is much smaller comparing to

ETWP, and it could caused by that the difference in number

of instance between MFR and low level representation is also

much smaller than ETWP. In spite of that, MFR audio-word

feature outperforms the baseline feature by 2%, and MFR

feature with HBoS surpass BoF by a small margin. Thus,

MFR slightly enhance both the result accuracy and encoding

efficiency. Overall, we can conclude that ETWP is a viable

solution for systems that requires efficient feature extraction

system such as large-scale or mobile device application, while

MFR is favorable for feature extraction systems that are less

strict on efficiency.

According to Table III, although we are unable to get the

full set of 10,870 audio files, roughly speaking, our best (i.e.,

Experiment 17) and balanced (i.e., Experiment 16) feature

are only behind [8], which uses GMM-based classifier. If

we only consider results with SVM-L-based classifier, both

feature extraction systems are superior comparing to others. In

consequence, it should be fair to say that our features are more

distinguishable in linear space. On the other hand, our fastest

feature (i.e., Experiment 10) is on par with other features

when SVM-L-based classifier is used. This shows that even

if our modification has traded 5% of accuracy for efficiency,

our feature still remain competitive to the EchoNest feature

used in [8] and randomized clustering forest feature used in

[3].

V. CONCLUSIONS

In this paper, we have evaluated the ideas of early/late tem-

poral pooling and early/late dimension reduction for improving

the efficiency of sparse coding based audio-word feature

extraction system. Specifically, for early temporal pooling, we

have tested the idea of early texture window pooling (ETWP)

and multiple frames representation (MFR). Our evaluation on

genre-based auto-tagging on the CAL10k dataset shows that

ETWP is a promising method, as it trades 5% of accuracy

for a speedup factor of 55. On the other hand, although the

speed gained from MFR is only marginal, MFR is able to

enhance the accuracy by a small margin. Our experiments

lead to three setups ‘best,’ ‘balanced,’ and ‘fastest’ that can

be used depending on whether accuracy or efficiency is of

higher concern. With the ‘best’ setup, we are able to obtain

MAP 0.202 for genre-based auto-tagging on CAL10k, one of

the best results when linear SVM is employed as the classifier.

With the ‘fastest’ setup, we are able to reduce the encoding

time from 5.09 sec/song to 0.15 sec/song, while attaining MAP

that is on par with some other existing efficient autotaggers.

For future work, we plan to implement the random down-

sampling and clustering-based down-sampling methods for

early temporal pooling, and to design better temporal pooling

mechanics for sparse coding based audio-word feature based

on the findings in this paper.

ACKNOWLEDGMENT

This work was supported by the National Science Coun-

cil of Taiwan under Grants NSC 101-2221-E-001-017, NSC

102-2221-E-001-004-MY3 and the Academia Sinica Career

Development Award.

REFERENCES

[1] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet, “Semantic
annotation and retrieval of music and sound effects,” in IEEE TASLP,
2008.

[2] M. Levy and M. Sandler, “Music information retrieval using social tags
and audio,” in IEEE TMM, 2009.

[3] Y.-H. Yang, “Towards real-time music auto-tagging using sparse
features,” in ICME, 2013.

[4] J. Nam, J. Herrera, M. Slaney, and J. Smith, “Learning sparse feature
representations for music annotation and retrieval,” in ISMIR, 2012, pp.
565–560.

[5] G. Tzanetakis and P. Cook, “Musical genre classification of audio
signals,” IEEE Trans. Speech and Audio Processing, 2002.

[6] Y.-H. Yang and H. H. Chen, “Machine recognition of music emotion:
A review,” in ACM TIST, 2012.

[7] S. Scholler and H. Purwins, “Sparse approximations for drum sound
classification,” IEEE J. Sel. Topics Signal Processing, vol. 5, no. 50, pp.
933–940, 2011.

[8] D. Tingle, Y. E. Kim, and D. Turnbull, “Exploring automatic music
annotation with “acoustically-objective” tags,” in ISMIR, 2010.

[9] R. Miotto and G. Lanckriet, “A generative context model for semantic
music annotation and retrieval,” in IEEE TASLP, 2012.

[10] H.-Y. Lo, J.-C. Wang, H.-M. Wang, and S.-D. Lin, “Cost-sensitive multi-
label learning for audio tag annotation and retrieval,” IEEE TMM, vol.
13, no. 3, pp. 518–529, 2011.

[11] E. Coviello, A. B. Chan, and G. Lanckriet, “Time series models for
semantic music annotation,” in IEEE TASLP, 2011.

[12] J.-C. Wang, H.-M. Wang, and S.-K. Jeng, “Playing with tagging: A
real-time music tagging player,” in ICASSP, 2012.

[13] J.-C. Wang, H.-S. Lee, H.-M. Wang, and S.-K. Jeng, “Learning the
similarity of audio music in bag-of-frames representation from tagged
music data,” in ISMIR, 2011.

[14] B. McFee, L. Barrington, and G. R. G. Lanckriet, “Learning content
similarity for music recommendation,” IEEE Trans. Audio, Speech and
Lang. Processing, vol. 20, no. 8, 2012.

[15] J. Wülfing and M. Riedmiller, “Unsupervised learning of local features
for music classification,” in ISMIR, 2012, pp. 139–144.

[16] J.-Y. Liu, C.-C. M. Yeh, Y.-C. Teng, and Y.-H. Yang, “Bilingual analysis
of song lyrics and audio words,” in ACM Multimedia, 2012, pp. 829–
832.

[17] M. I. Mandel, D. Eck, and Y. Bengio, “Learning tags that vary within
a song,” in ISMIR, 2010, pp. 399–404.

[18] C.-C. M. Yeh and Y.-H. Yang, “Supervised dictionary learning for music
genre classification,” in ACM ICMR, 2012.

[19] L. Su, C.-C. M. Yeh, J.-Y. Liu, J.-C. Wang, and Y.-H. Yang, “A
systematic evaluation of the bag-of-frames representation for music
information retrieval,” in IEEE TMM, 2013.

[20] A. Meng, P. Ahrendt, J. Larsen, and L. K. Hansen, “Temporal feature
integration for music genre classification,” IEEE Trans. Audio, Speech
and Lang. Processing, vol. 15, no. 5, pp. 1654–1664, 2007.

[21] P. Hamel, S. Lemieux, Y. Bengio, and D. Eck, “Temporal pooling
and multiscale learning for automatic annotation and ranking of music
audio,” in ISMIR, 2011, pp. 729–734.

[22] C.-C. M. Yeh, L. Su, and Y.-H. Yang, “Dual-layer bag-of-frames model
for music genre classification,” in ICASSP, 2013.

[23] P.-S. Huang, J. Yang, M. Hasegawa-Johnson, F. Liang, and T. S.
Huang, “Pooling robust shift-invariant sparse representations of acoustic
signals,” in Interspeech, 2012.

[24] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online dictionary learning
for sparse coding,” in ICML, 2009, pp. 689–696.

[25] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM J. Scientific Computing, vol. 20, pp. 33–61,
1998.

[26] B. Efron, T. Hastie, L. Johnstone, and R. Tibshirani, “Least angle
regression,” Annals of Statistics, 2004.

[27] J. Bergstra and B. Kegl, “Aggregate features and adaboost for music
classification,” in Machine Learning, 2006, vol. 65, pp. 473–484.

[28] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories,” in CVPR,
2006.

[29] H. Jégou, F. Perronnin, M. Douze, J. Sánchez, P. Pérez, and C. Schmid,
“Aggregating local image descriptors into compact codes,” IEEE TPAMI,
2012.

[30] A. Berenzweig, B. Logan, D. P. W. Ellis, and B. Whitman, “A large-
scale evaluation of acoustic and subjective music similarity measures,”
in Computer Music Journal, 2003.

[31] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” J. Machine
Learning Research, 2008.

