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Abstract—Speech-to-speech translation (S2ST) is the process
by which a spoken utterance in one language is used to produce
a spoken output in another language. The conventional approach
to S2ST has focused on processing linguistic information only
by directly translating the spoken utterance from the source
language to the target language without taking into account par-
alinguistic and non-linguistic information such as the emotional
states at play in the source language. This paper introduces
activities of JAIST AIS lab1 that explore how to deal with
para- and non-linguistic information among multiple languages,
with a particular focus on speakers’ emotional states, in S2ST
applications called “affective S2ST”. In our efforts to construct an
effective system, we discuss (1) how to describe emotions in speech
and how to model the perception/production of emotions and (2)
the commonality and differences among multiple languages in
the proposed model. We then use these discussions as context for
(3) an examination of our “affective S2ST” system in operation.

I. INTRODUCTION

These days, communication can be carried out instanta-
neously regardless of the distance between two parties, even
if the other party is on the other side of the world. How-
ever, although spoken language is the most direct means of
communication among human beings, it is not yet possible to
communicate with others directly if a common language is not
shared. This makes it challenging to construct universal speech
communication environments. One approach to this challenge
is constructing a speech-to-speech translation (S2ST) system.
S2ST is the process by which a spoken utterance in one lan-
guage is used to produce a spoken output in another language.
Conventionally, shown in Fig. 1, automatic S2ST consists of
three component technologies whereby 1) the spoken utterance
is converted into text using an automatic speech recognition
(ASR) system, 2) the recognized speech is translated using
a machine translation (MT) system into the target language
text, and 3) the target language text is resynthesized using a
text-to-speech (TTS) synthesizer [1][2].
Speech contains a variety of information [3] including;
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Fig. 1. Schematic graph of speech-to-speech translation (S2ST) system.

• Linguistic information: discrete categorical information
explicitly represented by the written language or uniquely
inferred from context;

• Paralinguistic information: discrete and continuous in-
formation added by the speaker to modify or supplement
the linguistic information; and

• Nonlinguistic information: information not generally
controlled by the speaker, such as the speaker’s emotion,
gender, age, etc.

However, conventional S2ST focuses on processing linguistic
information only, directly translating the spoken utterance
from the source language to the target language, and does
not take into account para-linguistic and non-linguistic in-
formation such as the emotional states at play in the source
language. For example, conventional S2ST systems typically
output speech in a neutral voice that remains unchanged even
if the input speech changes from one emotional state to
another. For natural communication, it is crucial to preserve
the emotional states expressed in the source language [4].
In this work, we explore how to deal with para- and

non-linguistic information among multiple languages, with a
particular focus on speakers’ emotional states, called “affective
S2ST.” To produce an output of the affective S2ST system
colored with the emotional states of the speakers in the source
language, the system has to first detect the emotional state at
the source language and then convert the acoustic features of
the neutral speech produced by the TTS system into those of
an emotional speech among multiple languages, as well as to
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Fig. 2. Schematic graph of proposed affective S2ST. This graph contains two
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Information.

recognize, translate, and synthesize linguistic information in
the utterances, as shown in Fig. 2.
In our efforts to construct an effective system for “affective

S2ST”, we discuss (1) how to describe emotions in speech and
how to model the perception/production of emotions and (2)
the commonality and differences among multiple languages
in the proposed model. We then use these discussions as
context for (3) an examination of our emotional speech recog-
nition/synthesis system (See Fig. 3) in operation.

II. DESCRIPTION OF EMOTION

In this section, we introduce emotion space to describe
emotions in speech numerically with a two-dimensional space
spanned by Valence-Activation (V-A) axes based on dimen-
sional description of human emotion [5], in which emo-
tions are not represented categorically but formulated degree-
controllably. Additionally, a three-layer model [6] based on
Brunswik’s lens model [7] is presented to model perception
of emotions from human’s perception point of view.

A. Emotion Space

Most of the existing techniques for automatic speech emo-
tion recognition/synthesis focus only on the classification of
emotional states into discrete categories such as happy, sad,
and angry [8][9]. However, a single label or a small number
of discrete categories may not accurately reflect the complexity
of the emotional states conveyed in everyday interaction [10].
Hence, a number of researchers advocate the use of a dimen-
sional description of human emotion, where emotional states
are not classified into an emotion categories but rather are
estimated on a continuous-valued scale in a multi-dimensional
space (e.g., [11][12][13][14]).
In this work, we adopt a dimensional description of human

emotion. Using the dimensional approach, emotion is repre-
sented by a point in an n-dimensional space and emotion
categories are represented by regions in the n-dimensional
space, where the neutral category lies near the origin, and
other emotions lie in a specific region in the space. For
example, in the two-dimensional space spanned by Valence-
Activation (V-A) axes [5], happy is represented by a region
that lies in the first quarter, in which valence is positive and
activation is high, as shown in Fig. 4. Numerical representation
is more appropriate to reflect the gradual changes of expressive
source and target speech conveyed in everyday interaction,
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Fig. 4. Emotion space spanned by Valence-Activation axes.
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Fig. 5. Three layer model for emotion space spanned by Valence-Activation
axes.

representing the degree within a certain emotion: happy ‘not-’,
‘weak-’, ‘medium-’, and ‘strong-happy’ [15]. When adopting
three-dimensional emotion space, we usually use Valence-
Activation-Dominance (V-A-D) axes [16].

B. Modeling of Emotion Perception

Scherer [7], in his study of human perception, adopted a
version of Brunswik’s lens model that was originally proposed
in 1956 [17]. In this model, human perception is considered
a multi-layer process. In 2008, Huang and Akagi adopted a
three-layer model for human perception [18], in which they
assumed that human perception for emotional speech is vague
and not directly realized from a change of acoustic features
but rather from a composite of different types of smaller
perceptions expressed by semantic primitives or adjectives
describing the emotional voice.

In this work, we adopt a multi-layer model in [6] based on
[18] to represent emotional states using emotion dimensions.
Our model consists of three layers, with emotion dimensions
as the top layer, semantic primitives as the middle layer, and
acoustic features as the bottom layer (Figs. 3 and 5).

We took this approach because emotions are not generated
in a prototypical modality but rather in complex states that
feature a mixture of emotions with varying degrees of inten-
sity. This approach allows a more flexible interpretation of
emotions [19].

.
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Fig. 3. System for emotional speech recognition/synthesis.

III. COMMONALITY IN PERCEPTION OF EMOTIONAL
SPEECH

Even without an understanding of a certain language, we
can still judge the expressive content, i.e., the emotions, of a
human voice. To enable communication independent of lan-
guage, biological features common to both speech production
and perception are required [20], that is,

1) Common organ movements for production,
2) Common features produced by common movements,
3) Common impression caused by presenting common
acoustic features, and

4) Common behaviors among communicators.

In this section, we discuss commonalities and differences in
the perception of emotional speech, mainly for 3), in the V-A
space derived from the results of a listening experiment.
In the experiment, we evaluated the values of valence

and activation for three emotional speech databases using
three different languages: Japanese, German and Chinese. All
three databases were consisted of acted emotions. For the
Japanese database, we used the Fujitsu database produced
and recorded by Fujitsu Laboratory and selected 20 neutral,
40 happy, 40 angry and 40 sad utterances for a total of
140 utterances. For the German database, we used the Berlin
database and selected 200 utterances, 50 of which came from
the same four emotional states as the Japanese database. The
Chinese database produced and recorded by CASIA using four
professional actors (two male and two female) with 48 neutral,
48 happy, 48 angry, and 48 sad utterances selected for a total
of 192 utterances.
The three databases were evaluated in terms of valence and

activation by 30 subjects: 10 Japanese, 10 Chinese, and 10
Vietnamese. A 5-point scale (-2, -1, 0, 1, 2) was used for the
valence and activation evaluations. The valence scale ran from
very negative (-2) to very positive (2) and the activation scale
ran from very calm (-2) to very excited (2). Scatter plots of the
responses for all utterances by each database and each listener
group are shown in Fig. 6.

The central positions for these emotions were separately
calculated by the average value of valence and activation for
each emotion category. The central positions of all emotional
states were then individually compared for the three listener
groups for each database. The results scattered on the V-A
space are shown in Fig. 7.

In our analysis of the results obtained on the commonality
and differences of human perception for perceiving emotion
for different languages in the V-A space, we addressed the
following questions: (1) Are the neutral positions the same
or different among different languages? (2) Are the directions
from neutral to other emotional states similar? (3) Could the
subjects estimate the degree of emotional state for different
languages, i.e., perform cross-lingual estimations?

For the first question, we found that, according to ANOVA
analyses, neutral positions in the V-A space are different
among the three subject groups. For example, Japanese lis-
teners feel that Chinese utterances are excited and Chinese
listeners feel Japanese utterances are calm. This indicates
that the neutral position is dependent on the subject’s native
language. For the second question, we found that the directions
from neutral to other emotional states were quite similar for
the three subject groups of all databases. However, for the
third question, no clear tendencies were evident, although the
degrees of responses of the Chinese subject group seem larger.
More investigation is required to clarify this.

The most significant result here is that human perception
for different languages is identical in the V-A space: i.e., the
directions from neutral voice to other emotional states are
common among languages. However, the neutral positions are
different. This demonstrates that direction could be adopted as
a feature for recognizing emotional states in multi-languages
scenarios. Moreover, it is also important to normalize the
features of emotional states by the features of the neutral state
for each language individually. These findings can be used for
adapting emotion recognition system to different languages.
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Fig. 6. Scatter plots of responses for all utterances by every database and listener group in valence-activation space.
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Fig. 7. Position of emotional states in valence-activation space.

IV. MULTI-LINGUAL EMOTION RECOGNITION/SYNTHESIS
SYSTEM

Based on the above findings, we introduce examples of
the emotion recognition system for estimating positions of
uttered speech in the Valence-Activation-Dominance (V-A-D)
space [15] and of the emotional speech synthesis system for
modifying acoustic features [18], for an affective S2ST system.

A. Construction of Three-layer Model[15]

In order to construct a cross-lingual three-layer model
to deal with emotion dimensions, valence and activation,
we require at least two databases in different languages.
The databases and acoustic features used in this work are
introduced. Moreover, the semantic primitives and emotion

dimensions are evaluated by conducting two listening tests
using human subjects as described in next subsections.

1) Speech Materials

In this work, two emotional speech databases were used
to construct the model, one in the Japanese language and
the other in the German language. The Japanese database is
the multi-emotion single speaker Fujitsu database produced
and recorded by Fujitsu Laboratory. A professional actress
was asked to produce utterances using five emotional speech
categories, i.e., neutral expression, joy, cold anger, sadness,
and hot anger. The German database is Berlin database [21].
It comprises seven emotional states: anger, boredom, disgust,
anxiety, happiness, sadness, and neutral speech. Ten profes-
sional German actors (five females and five males) spoke ten



sentences with an emotionally neutral content in the seven
different emotions.

2) Acoustic Features

We extracted a set of 21 acoustic features which can be
grouped in several subgroups:
F0-related features: f0 mean value of the rising slope (F0

RS), the highest F0 (F0 HP), the average F0 (F0 AP) and the
rising slope of the first accentual phrase (F0 RS1).
Power envelope-related features: mean value of the power

range in the accentual phrase (PW RAP), the power range (PW
R), the rising slope of the first accentual phrase (PW RS1), the
ratio between the average power in the high-frequency portion
(over 3 kHz) and the average power (PW RHT).
Power spectrum-related features: the first formant fre-

quency (SP F1), the second formant frequency (SP F2), the
third formant frequency (SP F3), spectral tilt (SP TL), and
spectral balance (SP SB).
Duration related features: total length (DU TL), consonant

length (DU CL), ratio between consonant length and vowel
length (DU RCV).
Voice quality related features: the mean value of the

difference between the first harmonic and the second harmonic
H1-H2 for vowels /a/, /e/, /i/, /o/ and /u/ per utterance MH A,
MH E, MH I, MH O, and MH U.
All the 21 acoustic features were extracted for both the

Fujitsu and Berlin databases.

3) Semantic Primitives Evaluation

In this work, we assume that human perception is a three-
layer process. It is assumed that the acoustic features are
perceived by a listener and internally represented by a smaller
perception e.g adjectives describing emotional voice as re-
ported in [18]. These smaller percepts or adjectives are finally
used for detecting the emotional state of the speaker. These
adjectives can be subjectively evaluated by human subjects.
Therefore, a set of adjectives describing the emotional speech
were selected as candidates for semantic primitives. These
adjectives are: Bright, Dark, High, Low, Strong, Weak, Calm,
Unstable, Well-modulated, Monotonous, Heavy, Clear, Noisy,
Quiet, Sharp, Fast, and Slow.
For the evaluation of semantic primitives, we used listening

tests. In these tests, the stimuli were presented randomly to
each subject through binaural headphones at a comfortable
sound pressure level in a soundproof room. Subjects were
asked to give scores to each of the 17 semantic primitives on
a 5-point scale (‘1–Does not feel at all’, ‘2–Seldom feels’,
‘3–Feels a little’, ‘4–feels’, ‘5–Feels very much’). The 17
semantic primitives were evaluated for the two databases. The
scores given by the individual subject were averaged for each
semantic primitive per utterance.

4) Emotion Dimensions Evaluation

The two databases were evaluated through the listen-
ing tests along the two dimensions of valence and activa-
tion. For the emotion dimensions evaluation, a 5-point scale
{−2, −1, 0, 1, 2} was used: valence (from -2 very negative

to +2 very positive) and activation (from -2 very calm to +2
very excited).

5) Selection of Semantic Primitives and Acoustic Features

To accomplish this task, a top-down method was used as
follows:

• The correlation coefficients between evaluated values for
each emotion dimension (top-layer) and evaluated values
of each semantic primitive (middle layer) were calculated;

• The highly correlated semantic primitives were selected
for each emotion dimension as an adjective that describes
this dimension;

• the correlation coefficients between evaluated values for
each selected semantic primitive (middle layer) in the
second step and extracted values for each acoustic feature
(bottom layer) were calculated; and

• The highly correlated acoustic features were selected for
each semantic primitive.

For each emotion dimension, the selected acoustic features
are considered to be the features most relevant to the used
dimension in the top layer.

6) Selection Results

Using the method mentioned above, firstly, the most relevant
semantic primitives were selected for each emotion dimension.
Secondly, the most relevant acoustic features for each seman-
tic primitive were selected. Finally, a perceptual three-layer
model was constructed for each emotion dimension. Figure 8
illustrates the valence perceptual model, where the solid lines
in this figure represent a positive correlation, and the dashed
ones indicate a negative correlation. The thickness of each line
indicates the strength of the correlation; the thicker the line is,
the higher the correlation.
In order to construct a perceptual three-layer model for

each emotion dimension in a bilingual case, we combined
two perceptual three-layer models for the two databases in
every dimension individually. The common acoustic features
between the two languages were selected to constitute the
bottom layer for the bilingual perceptual models. Moreover,
the common semantic primitives between the two languages
were selected as semantic primitives for the bilingual case. For
example, the valence perceptual model for the bilingual case
is shown in Fig. 9.

B. Recognition of Emotional Speech: Estimation of position
in V-A-D space[15]

The task of emotion recognition using the dimensional
approach can be viewed as using an estimator to map the
acoustic features to real-valued emotion dimensions.
We used an adaptive-network-based fuzzy inference system

(AN-FIS) to construct a three-layer model that connects the
elements of our recognition system. Each FIS has multiple
inputs and one output. Once we obtained the acoustic features
set, we constructed an individual estimator to predict the
values (-2 to 2; rated by the listening test) of each emotion
dimension. For example, in order to estimate the valence
dimension using the perceptual model in Figs. 8 and 9, we used



(a) Japanese database

(b) German database

Fig. 8. Valence perceptual model. (a) Japanese database. (b) German database.
The solid lines indicates positive correlation, and the dotted ones, a negative
correlation. Width of the lines indicates degree of correlation. Simply put, the
thicker the line is, the higher the correlation.

Fig. 9. Bilingual valence perceptual model. The definition of the lines is the
same as in Fig. 8.

a bottom-up method to estimate the values (1 to 5; rated by the
listening test) of the semantic primitives in the middle layer
from the acoustic features in the bottom layer, as shown in
Fig. 10. The same number of FISs as the number of semantic
primitives was required for this task, i.e., one for estimating
each semantic primitive. One additional FIS was needed to
estimate the value of the Valence dimension from the semantic
primitives. In the same way, the Activation can be estimated
using FIS for each semantic primitive.
To avoid speaker and language dependency on the acoustic

features, we adopt an acoustic feature normalization, in which
all acoustic feature values are normalized by those of the
neutral speech.
The mean absolute error (MAE) between the predicted

values of emotion dimensions and the corresponding average
value obtained from listening tests by human subjects is used
as a metric of the discrimination associated with each case.
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Fig. 10. Block diagram of proposed approach for estimating valence based
on 3-layer model for Japanese-German bilingual system (See Fig. 9).
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Fig. 11. Mean Absolute Error (MAE) between human evaluation and the
estimated values of emotion dimensions, in the case of mono-language and
cross-language [15]. ‘German from Japanese’ in the cross-language case
indicates that the German database was processed using the trained FISs with
the Japanese database.

The MAE is calculated by

MAE(j) =

∑N
i=1

∣
∣
∣
�
x
(j)

i − x
(j)
i

∣
∣
∣

N
(1)

where j ∈ {Valence,Activation}, �
x
(j)

i is the output of the
emotion recognition system, and x

(j)
i , −2 ≤ x

(j)
i ≤ 2 are the

values evaluated by the human subjects.
Figure 11 shows the MAEs. In the figure, for example,

‘German from Japanese’ in the cross-language case indicates
that the German database was processed using the trained FISs
with the Japanese database. The results indicate that the MAEs
have small values. Even in the cross-language case, although
the mean absolute error of emotion dimensions increased,
these increments do not constitute a large difference comparing
x
(j)
i , −2 ≤ x

(j)
i ≤ 2.

C. Recognition of Emotional Speech: Results for emotion
classification in V-A-D space[22]

Every point in the emotional space can be mapped into
emotion categories. Therefore, this section evaluates the corre-
sponding categorical classification to the estimated emotional
space using the proposed method. GMM classifier was used to
map the estimated emotion dimensions into emotion categories
(Fig. 12(a)). This section also investigates whether the acoustic
feature realization of specific emotion is language independent.
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Fig. 12. Emotion classification systems. (a) Proposed system. (b) Traditional
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In order to evaluate the categorical classification, the results
of the proposed system were compared with those of the tradi-
tional categorical method that map acoustic features directly to
emotion categories using GMM classier (Fig. 12(b)). Although
the GMM classifier is a traditional one, the most important
thing in this comparison is how much is the recognition rate
using the proposed method improved comparing with that
using acoustic features directly.

For investigating the language independent for emotion
classification, the performance of the proposed bilingual sys-
tem was compared with those of the mono-language and
cross-language emotion recognition system. In case of mono-
language, the system is trained and tested using the same
language, and in case of cross-language, the system is trained
using one language and tested using the second language.
In the bilingual case, the proposed system is constructed by
combining two mono-language systems as shown in Section
4-A and the traditional system is trained using two languages.
The results of the traditional and the proposed system are
shown in Tables I and II for Japanese language and in
Tables III and IV for German language.

From Tables I- IV, it is clearly seen that the recognition rate
using the proposed method outperforms the results using the
traditional categorical approach. Comparing the classification
results for the bilingual system with the mono language system
it was found that the difference is small for German language
recognition rate decreased from 75.0% to 68.7%, which is
not so large difference. For Japanese language, the results
decreased from 92.5% to 87.5% using the proposed method,
which is very small error. These results indicate that bilingual
emotion recognition system can be used to classify the emo-
tional state for both languages with a small error. Therefore,
this method improves the classification rate for both languages.
The classification results using the proposed method as shown
in Tables II and IV indicate a small difference between
the mono-language, cross-language and the bilingual cases,
which reveal that the acoustic feature realization is language
independent.
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Fig. 13. Schematic graph of emotional speech synthesis.

D. Synthesis of Affective Speech: Modification of Acoustic
Features According to Semantic Primitives[18]

Synthesizing emotional speech is an opposite task to recog-
nizing emotion speech (See Fig. 3) i.e., converting a position
on the emotion space to the amount of deviations of the
corresponding acoustic features of neutral speech by applying
extracted rules from the FISs of the three-layer model used
in the emotion recognition, as shown in Fig. 13. In this
section, we introduce an example of voice conversion from
neutral utterances to emotional ones with impressions of
17 semantic primitives [18], to investigate relations between
acoustic features and perception of semantic primitives using
the synthesized speech. Although each FIS follows a non-
linear mapping, in this work, we linearize the FISs to generate
conversion rules. STRAIGHT [23] is adopted to synthesize
speech using the converted acoustic features.
Why we adopted voice conversion for synthesizing emo-

tional speech instead of directly applying an HMM-base text-
to-speech synthesis method learned with categorized emotional
speech data, is that we want to fill up the emotion space with
synthesized speech continuously.

1) Rule-based Voice Conversion

In our work, we used speech morphing technique to synthe-
size Japanese affective speech. Our speech morphing process is
presented in Fig. 14. Fistly, STRAIGHT[23] is used to extract
F0 contour, power envelope, and spectrum of the neutral
speech signal while segmentation information was measured
manually. Then, acoustic features in terms of F0 contour,
power envelope, spectrum, and duration were modified basing
on morphing rules inferred from the sets of variation coeffi-
cients, mentioned in the next section. Finally, affective speech
is synthesized from the modified F0 contour, power envelope,
spectrum and duration using STRAIGHT[23]. The conversions
are carried out according to the flow presented in Fig. 15.

2) Generation of Conversion Rules

To generate converting rules in the resulting relationship
between acoustic features and semantic primitives, we need to
obtain the morphing parameters by calculating the difference
of acoustic features between the input neutral utterance and
the utterances of the intended semantic primitive. Considering
the trained FISs to construct a three-layer model, especially
focusing on the FISs to estimate the values (1 to 5; rated by
the listening test) of the semantic primitives in the middle
layer from the acoustic features in the bottom layer, we
generated linearized morphing rules. There is one rule for
one semantic primitive. One rule has 16 parameters which



TABLE I
CLASSIFICATION RATE FOR JAPANESE USING THE TRADITIONAL APPROACH BY MAPPING ACOUSTIC FEATURES INTO EMOTION CATEGORIES USING

GMM CLASSIFIER, IN FOLLOWING CASES: (1) MONO-LANGUAGE, (2) CROSS-LANGUAGE AND (3) BILINGUAL EMOTION RECOGNITION SYSTEM.

The used method Classification rate (%)
Neutral Joy Sad Hot Anger Average

Japanese from Japanese 68.8 46.9 100.0 65.6 70.3
Japanese from German 75.0 81.3 68.8 9.4 58.6
Japanese from Bilingual 75.0 46.9 100.0 65.6 71.9

TABLE II
CLASSIFICATION RATE FOR JAPANESE USING THE PROPOSED APPROACH BY MAPPING THE ESTIMATED VALUES OF EMOTION DIMENSIONS USING THE

THREE-LAYER MODEL INTO EMOTION CATEGORIES USING GMM CLASSIFIER, IN FOLLOWING CASES: (1) MONO-LANGUAGE, (2) CROSS-LANGUAGE AND
(3) BILINGUAL EMOTION RECOGNITION SYSTEM.

The used method Classification rate (%)
Neutral Joy Sad Hot Anger Average

Japanese from Japanese 80.0 97.5 100.0 92.5 92.5
Japanese from German 95.0 100.0 100.0 70.0 91.3
Japanese from Bilingual 75.0 84.4 100.0 90.6 87.5

TABLE III
CLASSIFICATION RATE FOR GERMAN USING THE TRADITIONAL APPROACH BY MAPPING ACOUSTIC FEATURES INTO EMOTION CATEGORIES USING GMM

CLASSIFIER, IN FOLLOWING CASES: (1) MONO-LANGUAGE, (2) CROSS-LANGUAGE AND (3) BILINGUAL EMOTION RECOGNITION SYSTEM.

The used method Classification rate (%)
Neutral Happy Sad Anger Average

German from German 57.5 42.5 80.0 62.5 60.6
German from Japanese 22.5 50.0 40.0 42.5 38.8
German from Bilingual 60.0 62.0 77.5 42.5 60.5

TABLE IV
CLASSIFICATION RATE FOR GERMAN USING THE PROPOSED APPROACH BY MAPPING THE ESTIMATED VALUES OF EMOTION DIMENSIONS USING THE

THREE-LAYER MODEL INTO EMOTION CATEGORIES USING GMM CLASSIFIER, IN FOLLOWING CASES: (1) MONO-LANGUAGE, (2) CROSS-LANGUAGE AND
(3) BILINGUAL EMOTION RECOGNITION SYSTEM.

The used method
Classification rate (%)

Neutral Happy Sad Anger Average
German from German 74.0 62.0 80.0 84.0 75.0
German from Japanese 40.0 87.5 72.5 42.5 60.6
German from Bilingual 75.0 67.5 62.2 70.0 68.7

Fig. 14. Process of morphing voices in STRAIGHT.

control the 16 acoustic features. The values of the parameters
are the percentage of changes to an acoustic feature of an
input neutral utterance, and the ranges of the values were
pre-calculated by the following method. Firstly, we measured
the differences between the values of the acoustic features
of emotional speech and those of the neutral utterance from
which it should be morphed. Then we calculated how much

Fig. 15. Acoustic Feature Modification Process.

the acoustic features of each utterance varied compared to
those of the neutral utterance (i.e., percentage variation) by
dividing the differences in the values of the acoustic features
with those of the corresponding neutral utterance. Finally, we
averaged the percentage variations of each of the utterances in



the database to give the values of acoustic features for each
semantic primitive.

3) Listening Tests and Results

To examine whether the morphed acoustic features are sig-
nificant to the perception of semantic primitives or not, an lis-
tening test was conducted to evaluate the morphed utterances
by comparing them to the neutral utterances from which they
were morphed. In this experiment, 68 (17 semantic primitives
x 3 degrees) morphed speech utterances were produced by
implementing the generated rules for the semantic primitives,
giving three morphed speech utterances controlled on degrees
of the impressions of each semantic primitives. Neutral speech
utterances were in the Japanese Fujitsu database.
In the experiment, Scheffe’s method of paired comparison

was used to evaluate the intensity of the semantic-primitive.
Two stimuli, which were selected two from four (one neutral
and three morphed) utterances for each semantic primitives,
were presented to the subjects randomly through a binaural
headphone at a comfortable sound pressure level. Subjects
were ten male Japanese graduate students with normal hearing
ability and were asked to evaluate which stimulus (A or B)
had a stronger intensity (0 to 2 for B and 0 to 2 for A) of
the semantic primitive according to a five-grade scale. The
detailed results are shown in Chapter 5 “Verification of the
emotional perception model” in [18].
The results of the listening test indicate that (1) most of the

morphed speech utterances were perceived as the semantic-
primitive intended by the morphed speech utterance, and (2)
listeners were able to perceive four levels of intensity for each
semantic primitive, except for quiet, for which only three levels
were perceived. The difficulty in perceiving different intensity
levels for quiet could be because the neutral utterances are
intrinsically quiet. These results suggest that the created base
rules are effective.

4) Future works

In this section, we introduced a method to give listeners
impressions of 17 semantic primitives by modifying the appro-
priate acoustic features. In the next steps, (1) we will propose
a model to estimate which acoustic features are selected and
how much the selected acoustic features are modified from
those of neutral utterances, according to positions of semantic
primitives (from 1 to 5), and (2) we will propose another
model to estimate the positions of semantic primitives (from
1 to 5) from desired positions in the V-A or V-A-D emotion
space. Combining these two models, we will construct a
emotional speech synthesis system according to the position
in the emotional space. This is the strategy the authors are
following.
Rules for relationship between the middle layer (semantic

primitives) and the top layer (positions in emotion space)
in the three-layer model are still under investigation and
are tuned carefully. According to internal listening tests, the
synthesized speech based on the positions in the V-A space is
controlled well and can give the intended impression. In future
conferences, we will present better results.

V. CONCLUSIONS

In this paper, we introduced how to deal with para- and
non-linguistic information among multiple languages, with
a particular focus on speakers’ emotional states, in S2ST
scenarios called “affective S2ST.” The system was formulated
in the V-A or V-A-D emotional space based on an discussion
of commonality and differences of emotion perception among
multiple languages. An example of our “affective S2ST”
system in operation was also shown.
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