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Abstract—Replay, which is to playback a pre-recorded speech
sample, presents a genuine risk to automatic speaker verification
technology. In this study, we evaluate the vulnerability of text-
dependent speaker verification systems under the replay attack
using a standard benchmarking database, and also propose an
anti-spoofing technique to safeguard the speaker verification
systems. The key idea of the spoofing detection technique is to
decide whether the presented sample is matched to any previous
stored speech samples based a similarity score. The experiments
conducted on the RSR2015 database showed that the equal
error rate (EER) and false acceptance rate (FAR) increased
from both 2.92 % to 25.56 % and 78.36 % respectively as a
result of the replay attack. It confirmed the vulnerability of
speaker verification to replay attacks. On the other hand, our
proposed spoofing countermeasure was able to reduce the FARs
from 78.36 % and 73.14 % to 0.06 % and 0.0 % for male and
female systems, respectively, in the face of replay spoofing. The
experiments confirmed the effectiveness of the proposed anti-
spoofing technique.
Index Terms: Speaker verification, spoofing attack, replay
attack, anti-spoofing, countermeasure

I. INTRODUCTION

Speaker verification is to automatically accept or reject an
identity claim based on the provided speech sample. Typically,
there are two types of systems: text-dependent and text-
independent. Text-dependent speaker verification systems re-
quest the client to speak a promoted or fixed passphrase, while
text-independent systems do not have such a constraint. As
text-dependent speaker verification achieves high verification
accuracy with short utterances, it is usually deployed for
access control applications such as logic access control in
the smartphone [1]. However, during deployment of the text-
dependent systems, a major concern arises as whether such
systems are still reliable in the face of spoofing attacks.

In the literature, there are four kinds of spoofing ap-
proaches [2], [3]: impersonation, speech synthesis, voice con-
version and replay. Impersonation is an approach that an
attacker tries to mimic a target genuine speaker and the vulner-
ability of speaker verification under impersonation attacks had
been studied in [4], [5], [6], [7]. Speech synthesis is to generate
the target genuine speaker’s voice through a speech synthesis
system to spoof the speaker verification systems [8], [9]. Voice
conversion is to automatically manipulate an attacker’s voice
to mimic the target genuine speaker through a conversion
function and the ability to spoof speaker verification systems

had been studies in [10], [11], [12], [13], [14], [15], [16].
The last but the most easily implemented approach is replay,
which was examined in [17], [18], [19], [20], [21] to assess
the vulnerability of speaker verification. In this work, we focus
on the replay attack and countermeasures.

Replay is a low technology spoofing attack approach with-
out the need of speech processing techniques. Unfortunately
there have been very few reported studies. The vulnerability of
speaker verification to replay attack was evaluated in [17] for
the first time. Pre-recorded isolated digits were concatenated
and replayed to attack a hidden Markov model (HMM) based
text-dependent speaker verification system. A considerable
increase in both equal error rates (EERs) and false acceptance
rates (FARs) was observed as a result of the replay attack.
However, only two speakers’ data were used in the database.
The vulnerability of a text-independent joint factor analysis
(JFA) system was evaluated in [18] and [19]. The pre-recorded
speech samples were recorded through a far-field microphone
and then replayed using a mobile phone. The experimental
results also showed significant increase in the FAR as a result
of replay attack. Note that only five speaker were involved in
the dataset. Similar observation was also observed in [20],
where a text-independent GMM-UBM system was adopted
and a dataset collected from 13 speakers was employed.

Even though the previous work used several different
speaker verification system, they concluded similar findings,
that is significant increase in FARs as a result of replay
attacks. Hence, the development of anti-spoofing technique to
replay attacks is necessary to safeguard the speaker verification
systems.

Let us start by reviewing the prior work on replay coun-
termeasure studies. In [22], a replay attack detector was
developed in the context of text-dependent speaker verification
for the first time. The detector was designed to compare
the verification sample with previous enrolled samples for
enrolment or stored samples of past access attempts. The
detector was evaluated in various playback detection tasks and
was shown to achieve good performance in lowering the EERs.
In [19], [23], a countermeasure was implemented to prevent
replay attacks using far-field recordings. The countermeasure
was designed based on the fact that the noise and reverberation
levels will increase in the far-field recorded signals. In [20], an
anti-spoofing approach based on examining the channel noised
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was proposed to protect a GMM-UBM speaker verification
system, as the replayed speech contains the channel noise by
two recording device and one loudspeaker used for replay,
while licit recordings only have the channel noise introduced
by the recording device of the speaker verification system.

The previous works have used much smaller datasets than
those used in speaker verification. A typical speaker verifi-
cation task usually involves several hundreds or even several
thousands speakers. In this work, we first evaluate the vulnera-
bility of the state-of-the-art text-dependent speaker verification
in the face of replay attack. A standard database with a large
number of speakers is adopted in the experiment. We then
propose an anti-spoofing technique to detect the replay attacks
to secure the speaker verification system. In the anti-spoofing
technique, we extract some key points from the speech signal
to compare the verification sample with the stored speech
samples from enrolment or previous access attempts. If the
similarity score is higher than a pre-defined threshold, we
classify it as a replay attack sample; otherwise, classify it as
a licit speech sample.

II. VULNERABILITY OF SPEAKER VERIFICATION TO
REPLAY SPOOFING

A. Speaker verification systems

In this work, we focus on the vulnerability of the text-
dependent speaker verification systems. We employ a hier-
archical acoustic modeling approach, which is presented in
Figure 1. This structure consists of three layers: universal
background model (top), text-dependent Gaussian mixture
model (middle), and text-dependent hidden Markov model
(bottom). The speaker- and text-dependent GMM is adapted
from the UBM model using the maximum a posterior (MAP)
adaptation [24], [25]. The speaker- and text-dependent HMM
consists of five states, each of which is a GMM adapted from
the GMM of the same text and speaker with the MAP criteria.
Hence, the UBM and the GMM make the GMM-UBM system,
and the UBM and the HMM make the HMM-UBM system. It
is noted that the difference between GMM-UBM and HMM-
UBM systems is whether temporal constraint is considered.

Fig. 1. An illustration of the hierarchical acoustic model approach to text-
dependent speaker verification.

The GMM-UBM and HMM-UBM speaker verification sys-
tems make the verification decisions according to a log-

likelihood ratio (LLR) score `, which is calculated as

` = log
p(X|H0)

p(X|H1)
, (1)

where X is the observation in the form of a collection of
feature vectors, H0 is the hypothesized speaker model, and
H1 is the alternative speaker model. In this work, the UBM
model corresponds to the alternative speaker model, while
speaker- and text-dependent GMM and HMM correspond to
the hypothesized speaker model.

B. Vulnerability of speaker verification

In speaker verification, three levels of features can be ex-
tracted to represent the speaker identity: a) short-term spectral
and voice source features, such as Mel-frequency cepstral
coefficients (MFCCs), linear predictive cepstral coefficients
(LPCCs) and fundamental frequency (F0); b) spectro-temporal
and prosodic features, such as modulation features and into-
nation patterns; c) high-level linguistic features, such lexical
features [26]. These features can be used as the observations
X for speaker verification.

In the context of replay attacks, the attacker plays the pre-
recorded speech from the exact target speaker to spoof the
speaker verification system. Hence, it is possible for the replay
speech to have exactly the same spectral attributes, prosodic
and high-level features as that of the target speaker. Figure 2
presents a comparison of a genuine speech and its correspond-
ing replay speech. It is observed that the spectrogram of the
replay speech is almost indistinguishable to the target genuine
speech. If features are extracted from the replay spectrogram,
it is possible to move the verification score towards that of
the target speaker. In this way, the speaker verification system
will lose the ability to distinguish genuine and impostor via
replay.
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Fig. 2. Comparison of a genuine speech and its corresponding replay speech.

III. DETECTION OF REPLAY ATTACK

In response to the replay attack, a detection technique is
proposed in this work, assuming that each passphrase spoken
by the client to the speaker verification system has been
recorded by the system. In this way, the detection technique
is able to decide whether the verification sample is matched
to any stored speech samples based a detection score. The
detection score is calculated from two bitmaps, which relate to



spectral peaks. We introduce the proposed detection technique
in this section.

A. Extraction of spectral bitmap

The proposed detection technique is based on the spectro-
gram bitmaps, which is similar to the audio fingerprint as
proposed in [27]. Such fingerprint is found to be efficient in
computation and robust to channel or noise in audio retrieval
applications [27].

The spectral bitmap is related to spectral peaks, which are
the time-frequency points having higher amplitudes than the
neighboring points or than a pre-defined threshold. In this
work, the spectral bitmap is computed as follows: a fast
Fourier transform (FFT) is first applied to the speech signal
to extract the magnitude spectrogram. Then, the spectrogram
is divided into a number of non-overlapping blocks, each of
which is a time-frequency block spanning a fixed range of
frequencies and durations in frequency and time domains,
respectively. After that, a mean and variance normalization
is applied to the amplitude values in each block. Then, the
normalized amplitude values are compared with a pre-defined
threshold. If the amplitude of a time-frequency point is higher
than the threshold, the point is chosen as a spectral peak and
assigned a value of 1; otherwise, the point is not chosen as
a spectral peak and assigned a value of 0. Finally, the new
spectrogram consisting only values of 0 and 1 is generated as
the spectral bitmap.

Figure 3 presents an example of spectral bitmaps of an
original speech signal and its corresponding replay speech.
From the observation of the spectral bitmap, it has some
relations with the harmonics in the spectrogram, and the data
point in the spectral bitmap is very sparse. In this way, the
storage of the spectral bitmap does not require too much space.
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Fig. 3. Comparison of the bitmaps extracted from the genuine and replay
speech signals.

B. Calculation of detection score

The spectral bitmap derived as illustrated in Figure 3 is
used to compute the replay detection score. In order to make
it consistent with the speaker verification task, we define the

replay speech which is a fake sample as an imposture sample,
and the real speech sample as a genuine sample. In this way,
the replay or imposture sample is expected to have a lower
detection score than the real human speech sample.

To compute the detection score, the bitmap of the verifica-
tion sample is compared with every stored bitmaps belonging
to the target genuine speaker at runtime. An element-wise
product is calculated between two bitmaps, and the summation
of the element-wise product is used as the similarity score,
which means the number of matched peak points between two
bitmaps. A higher similarity score, much closer between two
bitmaps. We define the detection score as the inverse of the
similarity score for distinguishing the replay speech and the
real speech.

As presented in Figure 3, a detection score can be calculated
from the two blocks in the green color windows. If the two
blocks match well, the detection score is extremely small,
implying presence of replay speech; otherwise, the detection
score is extremely high.

IV. EXPERIMENTS

A. Designing the dataset

In this study, we used the Part I of the RSR2015 corpus [28],
which is a standard benchmark database for text-dependent
speaker verification, to design the dataset for replay attack
and anti-spoofing. The database is recorded through multiple
mobile devices. During the recording, each speaker reads 30
passphrases for each session, respectively, and each passphrase
is repeated for nine sessions. More details of the corpus can
be found in [28].

We divided the speakers into two non-overlapping sets: a
background set consisting of 60 male and 60 female speaker,
and an evaluation set including 30 male and 30 female speaker.
The data from the speakers in the background set were used
to train the UBM, and those in the evaluation set were used to
adapt the UBM model as well as to evaluate the performance
of the speaker verification systems.

As in the experiment, each utterance from each speaker in
the evaluation set was used as a genuine trial for the same
target model as well as an impostor trial against the other
speakers of the same gender, this resulted into a huge number
of trials. For the analysis purpose, we used only 10 utterances
out of the 30 passphrases. For each utterance, three sessions,
in particular sessions 1, 4 and 7, were used for enrolment
to train the speaker- and text-dependent model, and the other
six sessions were kept as verification trials. The six sessions
were also replayed through a laptop and at the same time
recorded by a laptop to produce the replay version of the
natural human speech. In this work, we assumed the attackers
know the gender of the target speaker as well as the promoted
passphrase, in this way, we only considered the genuine and
impostor trials that with matched passphase and gender. We
note that the replay version of the target speaker’s verification
trial is used as the verification trial to match the exact target
speaker’s model, assuming the attacker has recorded the target
speaker’s previous verification samples.



Table I presents the statistics of the genuine, impostor and
replay trials. In the experiments, we mixed the genuine trials
and the impostor trials as a baseline test, and mixed the
genuine trials and the replay trials as a replay test. Note that
the genuine trials are exactly the same in the two tests, in this
way, we are able to compare the error rates.

TABLE I
A SUMMARY OF GENUINE, IMPOSTOR AND REPLAY TRIALS USING

RSR2015 DATABASE.

Male Female Total
Target speakers 30 30 60
Genuine trials 1,796 1,797 3,593
Impostor trials 51,621 51,853 103,474
Impostor trials via replay 51,621 51,853 103,474

B. Experimental setups

For feature representation in speaker verification, 12-order
MFCCs with the delta and delta-delta coefficients were ex-
tracted from the speech signal at 16 kHz via a 27-channel Mel-
frequency filter-bank. RASTA filtering, voice activation de-
tection (VAD) to remove non-speech segments and sentence-
level cepstral mean-variance normalization (CMVN) were
performed on the 36 dimensional MFCCs.

C. Vulnerability evaluation of speaker verification

In the first set of experiments, we evaluated the vulnerability
of the speaker verification systems to replay spoofing. The
equal error rate (EER) and false acceptance rate (FAR) results
before and after the replay attack are presented in Table II. As
a result of replay attacks, the EERs of the HMM-UBM system
increase from 2.92 % and 2.39 % to 25.56 % and 20.05 %
for male and female, respectively, and the EERs of the GMM-
UBM system also increase considerably from 4.01 % and 3.67
% to 24.95 % and 21.95 % for male and female, respectively.
Generally, from the EER results, the performance of the two
systems are degraded considerably.

The FAR result is more related to spoofing attacks [16]. We
calculated the FARs by setting the decision threshold at the
EER point in order to compare the performance before and
after spoofing. It is observed that after the replay attacks, the
FARs of the HMM-UBM system increase to 78.36 % and
73.14 % for male and female, respectively, and the FARs
of the GMM-UBM system also increase considerably, that
is from 4.01 % and 3.67 % to 74.32 % and 65.28 % for
male and female, respectively. Even though the performance
of the HMM-UBM system is better than that of the GMM-
UBM system in terms of EERs and FARs, under replay
attacks, the two systems are both damaged and achieve similar
performance.

The EERs and FARs reflect the underlying classifier scores
shift before and after spoofing. We further took a look at
the score distributions, which are presented in Figure 4. It
is obviously observed that after replay spoofing, the impostor
scores are moved towards the target genuine scores, and such
shifting makes a considerable overlap between the impostor’s

score distribution and that of the genuine. This explains why
the classifier is compromised in face of replay attacks.
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Fig. 4. Score distribution of the HMM-UBM system before and after replay
attacks.

D. Spoofing countermeasure for speaker verification

In the second set of experiments, we assessed the perfor-
mance of the spoofing countermeasure for speaker verification.
We first evaluated the performance of the stand-alone anti-
spoofing replay detector. We made use of the trials for speaker
verification evaluation to assess the performance of the replay
detector. The original genuine and impostor trials were used
as the natural human speech, while the replay trials as the
replay speech. We also used the equal error rate to assess the
performance, as there are two types of errors: replay speech is
classified as human speech, and human speech is classified
as replay. The countermeasure gave EERs of 0.00 % and
0.06 % for male and female, respectively. This confirms the
effectiveness of the stand-alone detector.

We then evaluated the performance of the speaker verifica-
tion systems with an integrated countermeasure. We set the
decision thresholds for the speaker verification systems and
the anti-spoofing detector to their own EER points. The false
rejection rates (FRRs) and false acceptance rates (FARs) are
presented in Table III. Comparing the performance of baseline
and baseline+CM in Table II and III, respectively, it clearly
shows that the performance of speaker verification systems
is not affected by the countermeasure in face of zero-effort
impostors. It is also observed that the countermeasure is able
to reduce the FARs in face of replay attacks, by comparing
the performance of replay and replay+CM in Table II and III,
respectively.

V. CONCLUSIONS

In this study, we evaluated the vulnerability of text-
dependent speaker verification systems in the face of replay
attacks, and also proposed a countermeasure for anti-spoofing
in order to secure the speaker verification systems against
replay attacks. The experiments confirmed the weakness of
the speaker verification systems under replay spoofing, and



TABLE II
PERFORMANCE OF THE TEXT-DEPENDENT SPEAKER VERIFICATION SYSTEMS UNDER THE REPLAY SPOOFING ATTACK. THE FALSE ACCEPTANCE RATES

(FARS) ARE OBTAINED BY SETTING THE THRESHOLD TO THE EQUAL ERROR RATE POINT ON BASELINE DATASET.

Experiments
EER (%) FAR (%)

HMM-UBM GMM-UBM HMM-UBM GMM-UBM
Male Female Male Female Male Female Male Female

Baseline 2.92 2.39 4.01 3.67 2.92 2.39 4.01 3.67
Replay 25.56 20.05 24.94 21.95 78.36 73.14 74.32 65.28

TABLE III
PERFORMANCE OF THE TEXT-DEPENDENT SPEAKER VERIFICATION SYSTEMS UNDER REPLAY SPOOFING ATTACK. THE FALSE REJECTION RATES (FRRS)

AND FALSE ACCEPTANCE RATES (FARS) ARE OBTAINED BY SETTING THE THRESHOLD TO THE EQUAL ERROR RATE (EER) POINTS OF THE BASELINE
DATASET. CM = COUNTERMEASURE

Experiments
FRR (%) FAR (%)

HMM-UBM GMM-UBM HMM-UBM GMM-UBM
Male Female Male Female Male Female Male Female

Baseline + CM 2.90 2.39 4.01 3.67 2.92 2.39 4.01 3.67
Replay + CM 2.90 2.39 4.01 3.67 0.06 0.00 0.06 0.00

also confirmed the effectiveness of the proposed anti-spoofing
detector, which decides whether the verification sample is
matched to any previous stored speech sample through a
similarity/detection score.
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