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Abstract—In this paper, a nonlinear adaptive noise canceller
(ANC) based on the functional link artificial neural network
(FLANN) is proposed for extracting fetal electrocardiogram
(FECG). The FLANN is placed in parallel with an FIR filter. The
two filters are designated to implement the linear and nonlinear
mappings between the maternal ECG (MECG) and the composite
abdominal ECG (AECG) acquired in the thoracic and abdominal
areas, respectively. The AECG is used as the primary signal
while the MECG serves as the reference signal in the ANC. The
FLANN is essentially a linear combiner with nonlinear input,
and thus enjoys many nice properties such as fast convergence,
computational efficiency etc. The LMS algorithm is applied to
the proposed ANC. Application to a real dataset reveals that the
proposed system is quite effective and outperforms previous ANC
with only FIR filters.

I. INTRODUCTION

Fetal Electrocardiogram (FECG) presents the electrical ac-
tivity of fetal heart. The FECG signal is of relatively low
voltage and is severely contaminated by maternal Electrocar-
diogram (MECG) and other noises such as base line wan-
dering, power line interference and electromyography (EMG)
signals etc. If one can extract a clean FECG signal from the
composite abdominal ECG (AECG) signal(s) recorded in the
abdominal area, the fetal health and cardiac defects may be
detected and monitored during pregnancy and necessary and
appropriate treatments may be performed before delivery.

Extracting the FECG by using of both AECG and MECG
recordings is a very difficult task. There are several reasons.
Firstly, the FECG is very weak as compared with the MECG.
Secondly, it is also seriously contaminated by other noise
elements. Thirdly, the MECG portion contained in the AECG
is not only linearly but also nonlinearly related to the MECG.
Lastly, the FECG itself may also present some non-stationarity.

Despite all of the afore-mentioned difficulties, many ap-
proaches have been attempted to extract the FECG. Among
those techniques are adaptive filtering algorithms [1], [2],
Wavelet transform [3], blind source separation (BSS) [4], poly-
nomial networks [5], artificial neural fuzzy inference system
(ANFIS) [6] etc.

As the first successful approach to FECG extraction, a
technique based on linear adaptive noise canceller (ANC) and
the least mean square (LMS) was developed by Widrow et al.
in 1975 [1]. In [4], Zarzoso and Nandi presented a noninvasive
FECG extraction technique which uses the BSS technique

based on higher-order statistics with multiple chest ECG
recordings as well as one AECG recording. Their technique
assumes that signal sources of those recordings are statistically
independent to meet the requirements of the BSS. This compli-
cated technique is very effective, but computational complex-
ity is considerably high. Assaleh and Al-Nashash proposed
polynomial networks to nonlinearly map the MECG signal
recorded in the thoracic region to the AECG signal recorded
from the abdominal lead [5]. They only adopted one primary
channel and one reference channel, and this technique was
non-iterative and can be applied to off-line FECG extraction
in practice. Recently, a new extraction system, which uses a
multi-sensory linear noise canceller with multiple reference
channels and multiple primary signals, has been put forward
[7]. A method based on the use of an adaptive Volterra
filter (AVF) was proposed that is capable of synthesizing the
nonlinear mappings between the mother’s thoracic ECG signal
and the abdominal signal [8]. Experimental results provided in
[7] and [8] were very promising, but both approaches require
large computational cost due to the use of RLS algorithm.

In this paper, we propose a novel extraction system by using
of the unctional link artificial neural network (FLANN). The
proposed ANC is equipped with multiple reference channels
and a single primary channel. The FLANN has been success-
fully used in many applications, e.g., nonlinear active noise
control [9], [10]. The FLANNs combined with FIR filters are
capable of approximating the nonlinear relationship between
the original MECG signal and the distorted MECG component.
The coefficients of the FLANN and the FIR filters are updated
by the LMS algorithm.

The organization of this paper is as follows. In Section
2, a new FECG extraction system is proposed. In Section
3, experiments with real ECG signals are conducted and the
analysis of experimental results is provided. Finally, Section
4 presents conclusions as well as topics for future research.

II. A NEW EXTRACTION SYSTEM BASED ON FLANN

In this paper, a new FECG extraction system is proposed
that consists of adaptive FLANN(s) combined with FIR fil-
ter(s). This type of nonlinear filter has its advantage over other
adaptive nonlinear filters, e.g., kernel adaptive filters in terms
of algorithm complexity and performance. The potentialities
of this kind of FLANN filters can be explained by the fact that
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both sine basis functions and cosine basis functions, can be
approximated by truncated Taylor series expansions including
odd and even powers of the input samples, respectively. Hence
adaptive FLANN filters are employed as part of the new FECG
extraction system.

The basic formation process of a composite AECG signal
is provided in Fig. 1. The original MECG signal travels
through kinds of tissues and bodily humors from the chest
to the abdominal area. It is usually very difficult, if not
impossible, to identify the relationship between the original
MECG and its distorted version [6]. This relationship is mainly
of linear nature, but also contains some nonlinearity. It is this
unknown nonlinearity that makes the extraction task difficult,
complicated, and costly.
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Fig. 1. Formation of an AECG signal.

In Fig. 1, the original MECG is represented by m(n), the
deformed version of the MECG is defined as m̂(n) which is
derived from a nonlinear transformation of m(n),

m̂(n) = T (m(n)). (1)

where T (·) indicates the linear and nonlinear mappings be-
tween the original MECG and its distorted version. The AECG
signal f(n) is a sum of the original FECG signal s(n),
the deformed MECG m̂(n) and an additive noise v(n) that
embodies various noise elements.

f(n) = s(n) + m̂(n) + v(n). (2)

In this paper, an ANC equipped with FLANNs and FIR
filters is proposed to implement the linear and nonlinear map-
pings T (·) between the MECG and the composite AECG in
Fig. 2. The proposed system has multiple reference channels,
with each channel having one FLANN and one FIR filter.
There is only one primary channel. This system structure can
also be considered as a special case of an ANC developed for
multi-sensory signals [11].

In the proposed FLANNs, the trigonometric functional
expansion is adopted to process the reference measurements.
In this section, the FLANN enjoys many nice properties such
as fast convergence, computational efficiency etc. Moreover,
the nonlinear expansions satisfy a time-varying property. A
compact representation of the expansion function in the mean
square sense is given below [9].

{1, cos(πu), sin(πu), ..., cos(pπu), sin(pπu)}. (3)

where u denotes a reference input to the FLANN. The FLANN
output depends linearly on the FLANN coefficients. The
FLANN structure based on the trigonometric expansion in Fig.
2 is expected to approximate the nonlinear mappings between
the MECG and its distorted version.
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Fig. 2. The new FECG extraction system.

In the new extraction system, the primary signal acquired in
the abdominal area is denoted by fm(n). There are q reference
measurements, which are recorded by multiple thoracic leads
and are denoted by mi(n), where i=1, 2, ..., q. The ANC
output or error of the proposed system is given by

e(n) = fm(n)− y(n). (4)

where y(n) is a summed output of all FIR and FLANN filters.
The above error signal e(n) may be regarded as an estimate
of the original FECG s(n).

In this paper, the LMS algorithm is adopted to update the
parameters of the FLANNs and FIR filters. The coefficients of
the ith FIR filter are wi,j , i = 1, 2, ..., q, j = 0, 1, · · · ,M1−1.
M1 presents the length of the FIR filter.

The FIR filter output in the ith channel is calculated by

yi(n) =

M1−1∑
j=0

wi,jmi(n− j). (5)

The output of the ith FLANN contains both sine and cosine
components that are expressed by

zs,p,i(n) =

M2−1∑
j=0

hs,p,i,j sin[pπmi(n− j)]. (6)

zc,p,i(n) =

M2−1∑
j=0

hc,p,i,j cos[pπmi(n− j)]. (7)

where p is the order of expansion (p = 1, 2, · · · , P ), P is
the upper bound of p, and M2 is the length of expansion in
time domain. The total output of the reference channels can
be obtained as

y(n) =

q∑
i=1

yi(n) +

q∑
i=1

P∑
p=0

[zs,p,i(n) + zc,p,i(n)]. (8)



The FIR filter coefficients are updated by the LMS algo-
rithm.

wi,j(n+ 1) = wi,j(n) + µ1,ie(n)mi(n− j). (9)

where µ1,i denotes the step size of the ith FIR filter. Similarly,
the weights of the ith FLANN are updated by

hs,p,i,j(n+ 1) = hs,p,i,j(n)

+µ2,ie(n) sin[pπmi(n− j)]. (10)

hc,p,i,j(n+ 1) = hc,p,i,j(n)

+µ2,ie(n) cos[pπmi(n− j)]. (11)

where µ2,i denotes the step size of the ith FLANN.

III. EXPERIMENTAL RESULTS

In our experiments, the performance of the proposed sys-
tems is evaluated by applying it to a real ECG dataset which
was developed by De Moor [12]. The recorded signals in
this dataset are 10 seconds long, the sampling frequency is
250 Hz, and there are eight (8) cutaneous potential recordings
which contain five (5) abdominal ECG and three (3) thoracic
ECG signals. An AECG signal as shown in Fig. 3 and three
(3) thoracic ECG signals as shown in Fig. 4 are used as
primary and reference signals in the proposed ANC system,
respectively.
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Fig. 3. Later part of an AECG sequence fm(n).
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Fig. 4. Later part of three thoracic ECG sequences,
(m1(n), m2(n), m3(n)).

To verify the effectiveness of the new FECG extraction
system, extensive simulations using the above-mentioned real
data have been conducted. The representative results to be
shown below are divided into four (4) different cases. The
FLANN(s) and FIR filter(s) are all updated by the LMS
algorithm with different step sizes in the four cases.

In Case 1, there is only one reference channel and only a
single FIR filter is used in the ANC. The reference signal is
m1(n). An FLANN is equipped in parallel with an FIR filter
in Case 2, where the same reference signal m1(n) is used.

In Cases 3 and 4, we attempted to incorporate more ref-
erence signals to improve the performance of the proposed
system. Multiple reference signals (m1(n), m2(n), m3(n),
q = 3) are used in both cases. In Case 3, only FIR filters
are adopted, while multiple FLANNs are also incorporated in
Case 4 as shown in Fig. 2.

In all cases, the length of the linear FIR filters (M1) as well
as the expansion length in time (M2) of the FLANNs were
all set to be 75, and the upper bound of expansion order of
the FLANNs was chosen as P = 20. The selection of values
of parameters such as P or step sizes was determined through
lots of practical experiments in consideration of computational
efficiency and fast convergence. In Case 1 and Case 2, the step
sizes of the linear FIR filer(s) and the FLANN(s) were 0.05
and 0.0001, respectively. Fig. 5 shows two estimated FECG
signals of Case 1 and Case 2. The step sizes in Case 3 and
Case 4 were 0.05/3 and 0.00005 for the FIR filers and the
FLANNs, respectively. Estimates of FECG signals in Case 3
and Case 4 are shown in Fig. 6.

As seen from Fig. 3, it is obvious that the FECG and the
MECG waveforms overlap in time domain between iteration
number 1600 and 1700. Fig. 5 shows that the extraction results
obtained in Case 2 are visually clearer to identify than those
in Case 1. The FLANN placed in parallel with the FIR filter
can improve the performance of FECG extraction even though
the FECG and MECG waveforms overlap at some points.

In Cases 3 and 4, multiple reference channels are designated
to increase the extraction accuracy. It can be observed that
the estimated FECG signal in Fig. 6 is much cleaner than
that shown in Fig. 5, for an iteration range between 1600 and
1700. Moreover, the extraction outcome in Case 4 does look
better than that of Case 3. For example, on an iteration range
between 2400 and 2500, where the FECG and the MECG
partially overlap, the extracted FECG in Case 4 may be given
a better visual judgment than that of Case 3. This implies
that the proposed system outperforms the previous one with
only FIR filter(s). That is to say, the use of the FLANN(s)
makes the proposed system more capable of coping with the
nonlinearity than the FIR filter(s) based extraction system.

To summarize, the experimental results from these four cas-
es demonstrate that, 1) the new extraction system consisting of
both FLANN(s) and FIR filter(s) can provide better extraction
performance than the conventional technique with FIR filter(s)
alone, and 2) the more reference signals are included, the
improved FECG extraction one may achieve.

It should be noted that some noise elements still remain in



the extracted waveforms, though the quality of FECG signals
obtained by the proposed system looks improved as compared
with those produced by the conventional FIR filter(s). Further-
more, the expansion length of the FLANNs may significantly
increase the computational cost, which inspires us to pursue a
fast algorithm for the FLANN in the future.
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Fig. 5. The estimated FECG signal in Case 1 and Case 2
(LMS, fm(n), m1(n)).
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Fig. 6. The estimated FECG signal in Case 3 and Case 4
(LMS, fm(n), m1(n), m2(n), m3(n)).

IV. CONCLUSIONS

We have proposed an adaptive nonlinear filter based on
the FLANN to extract FECG from the composite AECG
signal. The new ANC system consists of both FIR filter(s)
and FLANN(s) which are all updated by the LMS algorithm.
Application to the Daisy database reveals that the use of the

nonlinear FLANN structure provides improved extraction per-
formance as compared with the use of FIR filter alone. That is,
the adaptive FLANN filter is more capable of approximating
the complex relationship between the original MECG and its
transformed version. Extending the proposed system to a case
with multiple primary signals is a future topic. Developing a
fast algorithm for the FLANN is also an open topic for further
research.
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