

3D Object Modeling with a Kinect Camera

Mayoore Jaiswal*, Jun Xie# and Ming-Ting Sun†
*#†Department of Electrical Engineering, University of Washington, Seattle, USA

*E-mail: mayoore@uw.edu #E-mail: junx@uw.edu
†E-mail: mts@uw.edu

Abstract— RGB-D (Kinect-style) cameras are novel low-cost

sensing systems that capture RGB images along with per-pixel
depth information. In this paper we investigate the use of such
cameras for acquiring multiple images of an object from multiple
viewpoints and building complete 3D models of objects. Such
models have applications in a wide range of industries. We
implemented a complete 3D object model construction process
with object segmentation, registration, global alignment, model
denoising, and texturing, and studied the effects of these functions
on the constructed 3D object models. We also developed a process
for objective performance evaluation of the constructed 3D object
models. We collected laser scan data as the ground truth using a
Roland Picza LPX-600 Laser Scanner to compare to the 3D
models created by our process.

I. INTRODUCTION

3D object modelling is the process of developing a
mathematical representation of the three
dimensional surface of an object. A 3D model can represent a
3D object using a collection of points in the 3D space known
as a 3D point cloud. These points can also be connected by
various geometric entities such as triangles, lines, and curved
surfaces. There is a plethora of 3D modelling applications in
the media, movie, video game, and industries.

Laser scanners and stereo cameras can be used for 3D model
constructions. Laser scanners are precise but are slow to
compute a full scan, and are expensive. Stereo cameras can be
cheap but require complex processing to compute depth
estimations, and have poor depth estimations in homogeneous
areas. The Kinect camera is capable of delivering real-time,
good accuracy, and dense 3D scans at an economical cost.
However, one of the limitations of Kinect is that the depth map
is noisy and may contain regions without data (holes) due to
the surface property of the object and the occlusions. This
makes the construction of high quality 3D object models using
Kinect a challenging task.

A notable system KinectFusion [1] and its variants [2] [3]
create 3D reconstructions of indoor scenes using only the depth
data captured by Kinect in real time. This system relies on slow
motion of the Kinect camera and high cluttered environment to
maintain its tracking. KinectFusion uses spatial and temporal
averaging to reduce the noise. In the registration of the 3D
partial point clouds from different views, KinectFusion uses
the ICP (Iterative Closest Point) algorithm which requires the
3D point clouds to be close to each other. Thus, the scene has
to be scanned slowly in order to make sure the neighboring
views have significant overlaps so that the denoising and the
registration can work well. Another potential problem is that in
the registration KinectFusion relies on salient structural

features in the registration, thus, it may have difficulty in
handling objects lacking salient structural features, such as
round objects. CopyMe3D [4] proposes an approach to create
3D model of a person sitting on a swivel chair who is rotated
while being scanned by a Kinect. ReconstructMe and KScan
are two commercial products which use a Kinect to create 3D
models of objects.

In this paper, we investigate a scenario where only a limited
views from Kinect are available for constructing the 3D object
models. Since only a relatively small number of frames are
available, the overlapped areas between frames from different
views are rather limited, and thus, the denoising and
registration methods used in KinectFusion may not be as
effective. Also, the algorithm needs to be able to take care of
objects lacking salient structural features and provide good
texture for the constructed 3D object models. We propose a
framework to overcome these problems. Specifically, in the
registration process, we add an initial registration step using
Random Sample Consensus (RANSAC) before the ICP fine
registration. We also modify the ICP algorithm to include
texture features so that it can handle objects without salient
structural features. We detect the loop closure and perform
global alignment to overcome the error-propagation problem.
We also perform model denoising and texturing to remove the
noise and give texture to the 3D object models.

The rest of this paper is organized as follows. In Section 2, a
brief overview of Kinect is given. In Section 3, we describe our
detailed 3D object modelling framework. In Section 4, we
discuss the denoising and the texturing for the 3D object
models. In Section 5, we discuss the evaluation of the 3D object
models. The paper is concluded in Section 6.

II. OVERVIEW OF KINECT

We will focus our discussions based on Kinect v1 which is
used in our current implementation. RGB image has a 640 x
480 pixel resolution. Each pixel has 8 bits. The depth image is
acquired using an Infrared laser projector and a Monochrome
CMOS sensor using structured light imaging. The data from
the IR sensor are represented in 11 bits, which includes 1 bit
allocated to mark the validity of the depth data. With 10 bits to
represent the value, the IR sensor has 1024 levels of sensitivity
to store the disparity measurements. After converting to the real
world distance in millimeters – the depth image has 13 bits of
data for each pixel with the low-order 3 bits for player index.
The depth image resolution is 640 x 480 pixels. The spatial
(x/y) resolution is 3mm and the depth resolution is 3 mm at 2m
distance from the camera plane [5].

978-616-361-823-8 © 2014 APSIPA APSIPA 2014

An example of RGB and depth images captured by a Kinect
camera is shown in Figure 1. We can see that the depth image
has holes, where data are not available, and is relatively noisy.
The errors of the depth measurements of a Kinect camera
increase quadratically with increasing distance from the sensor
[5]. In general, for 3D scanning applications the data should be
acquired within 1–3 m distance to the sensor. At larger
distances, the quality of the data is degraded by the noise and
low resolution of the depth value measurements.
 Kinect v2 is available for preorder in the summer of 2014
and its SDK will be officially released by the end of 2014. The
new Kinect uses time of flight technology to obtain depth
images. It has 60% wider field of vision. The RGB frame has
1920 × 1080 pixel resolution and depth frame has 512 × 424
pixel resolution. This makes the quality of the frames much
superior to that of Kinect v1. It will be our future work to
investigate the results using Kinect v2.

III. A 3D OBJECT MODELING FRAMEWORK

Figure 2 shows a flowchart for our 3D object modeling
process. In the framework, first, the synchronized RGB and
depth images of an object are captured with a Kinect. The
foreground object is then segmented out from the background
and represented in a 3D point cloud using the corresponding
RGB and depth data. The partial 3D point clouds from different
views are then registered together to form a complete 3D point
cloud for the object.

In order to handle the situation in which the neighboring
views may have relatively small overlaps, we add RANSAC in
the registration process to perform an initial registration before
using ICP for the fine registration. After a complete cycle, due
to the error propagation, the last view of the object may not
align well with the 3D point cloud of the first view. We perform
a global alignment to adjust the model to minimize the
misalignment due to the error propagation. After that, the
combined 3D point cloud model is further de-noised to result
in the 3D object model. The model can be transformed to other
3D representations such as polygon mesh, volumetric
representations [6], or Surfels [7] for different applications. In
the following sub-sections, we provide details for each sub-
process.

(a) (b)

Figure 1: (a) and (b) show the RGB and depth images,
respectively, captured by a Kinect camera, with their object
boundary, obtained from the highlighted segmentation mask.

Figure 2: A flowchart of the Kinect based 3D object modeling
process.

A. Forming partial 3D point clouds from individual views

General object segmentation is an ill-posed problem. Since
the 3D object modeling can be conducted in a controlled
environment, we place the object on a green surface and in
front of a green screen and use a simple color-based
segmentation which has a low complexity to segment out the
object from the RGB image. This foreground object mask is
then applied to the depth image. Figure 1 illustrates an example
of the segmentation result. With the cropped RGB and depth
images, the 3D point cloud of one view can be generated.

B. Registration

In KinectFusion and related methods, initial alignment is
not performed [1] [2] [3]. These methods use a video stream of
RGB and depth data at 30 fps. Hence two adjacent frames have
no significant changes in viewpoints. This eliminates the need
for an initial alignment before the data is fed to the ICP
algorithm to align the two point clouds. However, in our case
we have frames with limited overlapping regions. ICP could
perform poorly, if these frames are directly fed to it. For this
reason, we employ a coarse to fine registration procedure as
described below.

With the RGB and depth information, we first use the
RANSAC algorithm to perform a coarse alignment. In the
coarse alignment procedure, point clouds from two
neighboring views are roughly registered based on the SIFT
features in the RGB images.

The second phase of registration is the ICP based fine
registration. The standard ICP algorithm aligns two point
clouds by iteratively associating points through a nearest-
neighbor search and estimating the transformation parameters
using a mean square cost function [8].

While the ICP algorithm has been widely used for dense
point cloud matching, it is limited in its ability to produce
accurate results when objects lack structural features or
undergo significant changes in camera view. To address this
problem, we used a fine registration algorithm we proposed [9].
In this algorithm a SIFT based term is added into the cost
function to overcome the case when objects lack structural
features. To utilize the texture information of the 3D points
without intensive computation of the SIFT descriptor for every
3D point, a constraint involving the spatial distances of the

SIFT feature corresponding pairs is added. In addition to this
constraint, a dynamic weight is used to properly balance the
significance of structural and photometric terms. It is referred
to [9] for the details.

C. Global Alignment

In the registration process, registration errors could
accumulate as more point clouds are added to the model. Figure
3(a) illustrates the effects of this error accumulation. Slight
inaccuracy at each registration step leads to significant
misalignment between the last and first frame. This error could
be eliminated by a global alignment which is to detect the last
frame of a loop closure, register this frame with its previous
frame and the first frame, and distribute the error evenly
amongst other frames [10].

Loop Closure Detection

Previous techniques have used the Euclidean distance
between each frame and all previous frames along with a
threshold of minimal number of intermediate scans [10] [11] to
detect loop closures. Our loop closure detection algorithm is
based on the assumption that the camera captures the views of
the object in either clockwise or counter-clockwise direction.
When we capture data we make sure that the last frame has a
large overlap with the first frame so that the loop is properly
closed and we could detect the loop closure relatively easily.

Global Alignment Procedure

When a loop closure is detected, we formulate a loop graph
with each vertex representing one frame of the 3D point cloud.
The edge between the successive frames is the pose
transformation between successive frames. We first use ICP to
align the first and last frame with loop closure and get the
transformation	∆ܻ. Then, T1T2 …TN =∆ܻ, where ௜ܶ is the pose
transformation found in the registration process. If the
registration does not have any errors, ∆ܻ	should be an identity
matrix. The non-identity ∆ܻ is due to the errors of registration.
Denote the inverse of ∆ܻ as ∆ܺ, then ∆ܺ T1T2 …TN =ܫ, where I
is the identity matrix. ∆ܺ can be distributed among all poses in
the loop to minimize the loop closure mismatch. In order to
achieve a consistent map, we need to calculate the weights for
the vertices that specify the fraction of ∆ܺ by which the
transformation needs to be changed. The weights are computed
as follows:

݅ݓ												 ൌ 	
݀ሺ݅ݒ	݅ݒ,െ1ሻ
݀ሺݏݒ	݁ݒ,ሻ

 (1)

where ݒ௦ is the first vertex in the loop and ݒ௘ is the last one.
݀ሺݒ௟, ௟ toݒ on the path from	௞ሻ is the sum of the edge weightsݒ
௜ݓ	 ௞. The weightingݒ 	∈ ሾ0, 1ሿ is such that:

 															∆ܺ ൌ 	∑ ሺݓ௜		 ∗ 	∆ܺሻ௜ (2)

The final modified transformation for each frame i after the
optimization is:

 ௜ܶ
ᇱ ൌ ௜ݓ	 	∗ 	∆ܺ	 ∗ 	 ௜ܶ (3)

where ௜ܶ ′ is the modified transformation [11]. The whole
process is repeated several times until the convergence is
achieved.

Figure 3 shows the 3D modeling result before and after the
global alignment. The global alignment has eliminated the
discrepancy between the first and the last frames used to create
the 3D model.

(a) (b)

Figure 3: Modeling result after the global alignment. (a)
Before the global alignment (after registration) (b) After the

global alignment procedure.

IV. MODEL DENOISING AND TEXTURING

A. 3D Object Model De-Noising
After the registration and the global alignment, the 3D model
is well registered. However it is still very noisy due to the
inaccurate depth acquisition from the depth camera. Therefore
3D point cloud de-noising is needed to refine the 3D object
model.

In this work, we use the Moving Least Square (MLS) 3D
model denoising method [12]. MLS uses the assumption that
on a 3D surface, the 3D point set defines a manifold. The
purpose of MLS is to find the manifold that the input 3D point
set defines. Based on the manifold assumption, we can
approximate the MLS surface by a function.

Let ݏ௜ ∈ ܴଷ, ݅ ∈ ሼ1, ሽ be points in the noisy 3D pointܯ…
cloud. The goal is to project the points onto a two-dimensional
surface that approximates	ݏ௜. For each small local
neighborhood in the point cloud, we fit the points by a local
tangent plane H. Denote the height of ݏ௜ over H as ݎ௜, and h the
origin of the reference domain define by H, we can estimate a
polynomial approximation g so that the weighted squares error:

∑ ሺ݃ሺݔ௜, ௜ሻݕ െ ௜ݏ‖ሺߠ௜ሻଶݎ െ ݄‖ሻெ
௜ୀଵ (4)

is minimized, where ߠ is a smooth monotonically decreasing
function, which is positive on the whole space (e.g., Gaussian
approximation in our implementation). ሺݔ௜, ௜ሻ is theݕ
coordinate of the ݏ௜’s projection on H. After minimizing the
above function, coefficients of the polynomial function g can
be computed. The projection approximation process is run for
every point in the 3D point set and it has been proved that it
can nicely preserve the manifold property [12].

Figure 4 shows the result of 3D model before and after
MLS. From the result, we can see that the surface of the 3D

box model is much smoothed and the outlier noises have been
significantly removed.

 (a) (b)

Figure 4. (a) Before 3D de-noising (after registration). (b)
After MLS de-noising.

B. Meshing and Texturing

The initial 3D model is represented in point clouds.
Performing meshing and texture mapping makes the model
resemble the real-life object with texture. For this purpose we
triangulate the point clouds to build a mesh surface and then
map the RGB color from the RGB image to the mesh.

For our 3D modeling application, we use the Delaunay
triangulation method [13] to convert the 3D point clouds into
meshes. A Delaunay triangulation for a set P of points in a
plane is defined as a triangulation DT(P) such that no point
in P is inside the circumcircle of any triangle in DT(P). We can
interpolate space inside the triangles to get a locally smoothed
surface.

After meshing, we assign the color to each vertex and
simply interpolate the color in each triangle faces. This texture
mapping requires that the resolution of triangulation should be
high enough so that interpolation will not introduce many
artifacts. The built 3D point cloud based model can be
converted to other 3D representations.

V. EVALUATION OF 3D KINECT MODELS

A. Error Evaluation

To investigate the error in a 3D model obtained using the
above outlined procedure, a comparison was made with a point
cloud obtained by a laser scanner. The laser scanner point cloud
was obtained from the same object by a calibrated Roland Picza
LPX-600 laser scanner. This laser scanner produces high-
resolution point cloud of objects using a non-contact red laser
and high quality optics to capture parts. The nominal range
accuracy of the laser scanner is +/-0.05 mm [14]. It is therefore
assumed that the laser scanner point cloud is sufficiently
accurate to serve as a reference for the accuracy evaluation of
the Kinect point cloud. In the absence of any systematic errors
the mean square of discrepancies between the two point clouds
is expected to be close to zero.

We propose the following methodology to calculate the
error between the 3D model constructed and the 3D point cloud
obtained from the laser scanner which is used as the ground
truth. Assume the 3D object model contains R points, and the
ground truth 3D point cloud contains R’ points (usually

R’>>R). We first randomly sample R points from the ground
truth 3D point cloud. Random sampling is done to ensure that
the R points are located in random locations in the ground truth
point cloud and not concentrated in a particular location or part
of the ground truth point cloud. Before the evaluation of the
model errors, both point clouds need to be registered
accurately, because any registration error may be
misinterpreted as error in the Kinect model. We use the coarse
to fine registration methodology described before to align the
two point clouds. First, RANSAC is applied to the point clouds
of the two 3D models to coarsely align the two point clouds.
Then we use our improved ICP registration as described before
to achieve a fine registration. After this registration, the 3D
object model error is then quantified using the Root Mean
Square Error (RMSE) of the closest distances in the fine
registration. The RMSE is calculated as:

ܧܵܯܴ ൌ ට	
ଵ

ோ
	∑ ݀ሺݎሻଶ௥ (5)

where ݀ሺݎሻ is the closest distance between the point r in the
ground truth point cloud points and its closest point in the
Kinect model point cloud. We repeat the RMSE calculation N
times and calculate the average RMSE. Average of N RMSE
readings reduce possible errors due to the random sampling. In
our experiments we used N = 5.

In order to verify this error calculation methodology, the
laser point cloud is randomly sampled twice to get two point
clouds of p points each. The average RMSE between these
point clouds is calculated and tabulated in Table 1. Since these
two point clouds are subsets of the same initial point cloud the
error between these point clouds should be close to zero. This
error, as expected, is close to zero, thus validating the proposed
error calculation method.

TABLE 1

THE AVERAGE ROOT MEAN SQUARE ERROR BETWEEN TWO
RANDOMLY SUBSAMPLED POINT CLOUDS FROM THE SAME

LASER POINT CLOUD.

Object Average RMSE (mm)

Biscuit box 0.347

Mug 0.661

House model 0.545

Nut container 0.398

B. Results

The algorithm was implemented in C++ using the Point
Cloud Library (PCL) and tested on a computer with Intel Xeon
64 bit processor with 16GB of RAM. The GPU was a Quadro
K600 with 1 GB memory and 192 cores. Our algorithm took
around 45 – 60 seconds to create 3D models.

TABLE 2
 TABULATES THE AVERAGE RMSE OF THE OBJECT MODELS OBTAINED FROM KINFU AND OUR 3D MODELLING ALGORITHM. THE

AVERAGE RMSE IS TABULATED FOR DIFFERENT NUMBER OF INPUT FRAMES.

This process runs only on a CPU. It could be considerably

speed up using a GPU. We compared our method with
KinectFusion. We used the open source implementation, KinFu,
which is available in the PCL library. KinFu was capable of
creating 3D models in under 10 seconds. However KinFu takes
advantage of the parallel processing capabilities of a GPU.

We used data from the RGB-D dataset [15] for our initial
experiments. We then collected RGB and depth data by scanning
360 degree view of the objects in Figure 5. We then created
subsets of the data consisting of 15, 25, 35, 45, 55 and 65 frames.
Next we created 3D models by running KinFu and our algorithm
with the datasets. These models are compared with the ground
truth, and their average RMSEs are calculated and tabulated in
Table 2. KinFu failed to create 3D models with small numbers
of views, whereas our algorithm created 3D models with
acceptable average RMSE.

Figure 5: The objects that we used to create 3D models

VI. CONCLUSION

In this report, we present our work on 3D object modeling
using a Kinect camera. We investigate the use of such cameras
for acquiring RGB and depth images of small objects from
limited number of viewpoints and building a complete 3D model
of the object. We address some problems such as fine
registration, global alignment, texture mapping, denoising, and
objective error measurement of the 3D object models. For future
works, we will investigate various denoise and other techniques
to further improve the 3D models.

REFERENCES

[1] R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J.
Shotton, D. Molyneaux, S. Hodges, D. Kim and A. Fitzgibbon,
"KinectFustion: real-time 3D reconstructin and interaction using a

moving depth camera," IEEE International Symposium on Mixed
and Augmented Reality, pp. 127-136, 201.

[2] H. Roth and M. Vona, "Moving Volumne KinectFusion," in
Proceedings of the British Machine Vision Conference, 2012.

[3] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard and J.
McDonald, "Kintinuous: Spatially extended KinectFusion," in RSS
Workshop on RGB-D: Advanced Reasoning with Depth Cameras,
Sydney, 2012.

[4] J. Sturm, E. Bylow, F. Kahl and D. Cremers, "CopyMe3D:
Scanning and Printing Persons in 3D," in German Conference on
Pattern Recognition (GCPR), 2013.

[5] K. Khoshelham, "Accuracy Analysis of Kinect Depth Data,"
Internationsl Archives of the Photogrammetry, Remote Sensing
and Spatial Infomation Sciences, Vols. XXXVIII-5, 2011.

[6] B. Curless and M. Levoy, "A volumetric method for building
complex models for range images," in Proc. SIGGRAPH 96, 1996.

[7] H. Pfister, M. Zwicker, J. van Baar and M. Gross, "Surfels: Surface
Elements as Rendering Primitives," in Proc. SIGGRAPH 2000,
2000.

[8] P. Besl and N. McKay, "A method for registration of 3D shapes,"
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 14, pp. 239-256, 1992.

[9] J. Xie, Y. F. Hsu, R. Feris and M. T. Sun, "Fine Registration of 3D
Point Clouds with ICP Using an RGB-D Camera," in IEEE
International Symposium on Circuits adn Systems(ISCAS), 2013.

[10] F. Lu and E. Milios, "Global Consistent Range Scan Alignment for
Environment Mapping," Autonomous Robots, vol. 4, pp. 333-349,
1997.

[11] J. Sprickerhof, A. Nuchter, K. Lingemann and J. Hertzberg, "A
Heuristic Loop Closing Technique for Large-Scale 6D SLAM,"
Journal for Control, Measurement, Electronics, Computing and
Communications, Special Issue with selected papers from the
European Conference on Mobile Robots 2009., 2011.

[12] H. Avron, A. Sharf, C. Greif and D. Cohen, "L1-sparse
Reconstruction of Sharpe Point Set Surfaces," ACM Transactions
on Graphics, vol. 29, 2010.

[13] M. Isenburg, Y. Liu, J. Shewchuk and J. Snoeyink, "Streaming
Computation of Delaunay Triangulations," in SIGGRAPH, 2006.

[14] "http://www.rolanddg.co.uk," [Online]. Available:
http://www.rolanddg.co.uk/files/>PX_DS_brochure.pdf.
[Accessed 25/3/2014].

[15] K. Lai, L. Bo, X. Ren and D. Fox, "A Large-Scale Hierarchical
Multi-View RGB-D Object Dataset," in IEEE International
Conference on Robotics and Automation (ICRA), 2011.

