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Abstract— RGB-D (Kinect-style) cameras are novel low-cost 

sensing systems that capture RGB images along with per-pixel 
depth information. In this paper we investigate the use of such 
cameras for acquiring multiple images of an object from multiple 
viewpoints and building complete 3D models of objects. Such 
models have applications in a wide range of industries. We 
implemented a complete 3D object model construction process 
with object segmentation, registration, global alignment, model 
denoising, and texturing, and studied the effects of these functions 
on the constructed 3D object models. We also developed a process 
for objective performance evaluation of the constructed 3D object 
models. We collected laser scan data as the ground truth using a 
Roland Picza LPX-600 Laser Scanner to compare to the 3D 
models created by our process.  
 

I. INTRODUCTION 
 

3D object modelling is the process of developing a 
mathematical representation of the three 
dimensional surface of an object. A 3D model can represent a 
3D object using a collection of points in the 3D space known 
as a 3D point cloud. These points can also be connected by 
various geometric entities such as triangles, lines, and curved 
surfaces. There is a plethora of 3D modelling applications in 
the media, movie, video game, and industries. 

Laser scanners and stereo cameras can be used for 3D model 
constructions. Laser scanners are precise but are slow to 
compute a full scan, and are expensive. Stereo cameras can be 
cheap but require complex processing to compute depth 
estimations, and have poor depth estimations in homogeneous 
areas. The Kinect camera is capable of delivering real-time, 
good accuracy, and dense 3D scans at an economical cost. 
However, one of the limitations of Kinect is that the depth map 
is noisy and may contain regions without data (holes) due to 
the surface property of the object and the occlusions. This 
makes the construction of high quality 3D object models using 
Kinect a challenging task.  

A notable system KinectFusion [1] and its variants [2] [3] 
create 3D reconstructions of indoor scenes using only the depth 
data captured by Kinect in real time. This system relies on slow 
motion of the Kinect camera and high cluttered environment to 
maintain its tracking. KinectFusion uses spatial and temporal 
averaging to reduce the noise. In the registration of the 3D 
partial point clouds from different views, KinectFusion uses 
the ICP (Iterative Closest Point) algorithm which requires the 
3D point clouds to be close to each other. Thus, the scene has 
to be scanned slowly in order to make sure the neighboring 
views have significant overlaps so that the denoising and the 
registration can work well. Another potential problem is that in 
the registration KinectFusion relies on salient structural 

features in the registration, thus, it may have difficulty in 
handling objects lacking salient structural features, such as 
round objects. CopyMe3D [4] proposes an approach to create 
3D model of a person sitting on a swivel chair who is rotated 
while being scanned by a Kinect. ReconstructMe and KScan 
are two commercial products which use a Kinect to create 3D 
models of objects. 

In this paper, we investigate a scenario where only a limited 
views from Kinect are available for constructing the 3D object 
models. Since only a relatively small number of frames are 
available, the overlapped areas between frames from different 
views are rather limited, and thus, the denoising and 
registration methods used in KinectFusion may not be as 
effective. Also, the algorithm needs to be able to take care of 
objects lacking salient structural features and provide good 
texture for the constructed 3D object models. We propose a 
framework to overcome these problems. Specifically, in the 
registration process, we add an initial registration step using 
Random Sample Consensus (RANSAC) before the ICP fine 
registration. We also modify the ICP algorithm to include 
texture features so that it can handle objects without salient 
structural features. We detect the loop closure and perform 
global alignment to overcome the error-propagation problem. 
We also perform model denoising and texturing to remove the 
noise and give texture to the 3D object models.  

The rest of this paper is organized as follows. In Section 2, a 
brief overview of Kinect is given. In Section 3, we describe our 
detailed 3D object modelling framework. In Section 4, we 
discuss the denoising and the texturing for the 3D object 
models. In Section 5, we discuss the evaluation of the 3D object 
models. The paper is concluded in Section 6.   

 
II. OVERVIEW OF KINECT 

 

We will focus our discussions based on Kinect v1 which is 
used in our current implementation. RGB image has a 640 x 
480 pixel resolution. Each pixel has 8 bits. The depth image is 
acquired using an Infrared laser projector and a Monochrome 
CMOS sensor using structured light imaging. The data from 
the IR sensor are represented in 11 bits, which includes 1 bit 
allocated to mark the validity of the depth data. With 10 bits to 
represent the value, the IR sensor has 1024 levels of sensitivity 
to store the disparity measurements. After converting to the real 
world distance in millimeters – the depth image has 13 bits of 
data for each pixel with the low-order 3 bits for player index. 
The depth image resolution is 640 x 480 pixels. The spatial 
(x/y) resolution is 3mm and the depth resolution is 3 mm at 2m 
distance from the camera plane [5].  
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An example of RGB and depth images captured by a Kinect 
camera is shown in Figure 1. We can see that the depth image 
has holes, where data are not available, and is relatively noisy. 
The errors of the depth measurements of a Kinect camera 
increase quadratically with increasing distance from the sensor 
[5]. In general, for 3D scanning applications the data should be 
acquired within 1–3 m distance to the sensor. At larger 
distances, the quality of the data is degraded by the noise and 
low resolution of the depth value measurements. 
     Kinect v2 is available for preorder in the summer of 2014 
and its SDK will be officially released by the end of 2014. The 
new Kinect uses time of flight technology to obtain depth 
images. It has 60% wider field of vision. The RGB frame has 
1920 × 1080 pixel resolution and depth frame has 512 × 424 
pixel resolution. This makes the quality of the frames much 
superior to that of Kinect v1. It will be our future work to 
investigate the results using Kinect v2. 
 

III. A 3D OBJECT MODELING FRAMEWORK 
 

Figure 2 shows a flowchart for our 3D object modeling 
process. In the framework, first, the synchronized RGB and 
depth images of an object are captured with a Kinect. The 
foreground object is then segmented out from the background 
and represented in a 3D point cloud using the corresponding 
RGB and depth data. The partial 3D point clouds from different 
views are then registered together to form a complete 3D point 
cloud for the object.  

In order to handle the situation in which the neighboring 
views may have relatively small overlaps, we add RANSAC in 
the registration process to perform an initial registration before 
using ICP for the fine registration. After a complete cycle, due 
to the error propagation, the last view of the object may not 
align well with the 3D point cloud of the first view. We perform 
a global alignment to adjust the model to minimize the 
misalignment due to the error propagation. After that, the 
combined 3D point cloud model is further de-noised to result 
in the 3D object model. The model can be transformed to other 
3D representations such as polygon mesh, volumetric 
representations [6], or Surfels [7] for different applications. In 
the following sub-sections, we provide details for each sub-
process. 
 

 
(a)   (b) 

 

Figure 1: (a) and (b) show the RGB and depth images, 
respectively, captured by a Kinect camera, with their object 
boundary, obtained from the highlighted segmentation mask.  

 
 

Figure 2: A flowchart of the Kinect based 3D object modeling 
process.  

 
A. Forming partial 3D point clouds from individual views 

General object segmentation is an ill-posed problem. Since 
the 3D object modeling can be conducted in a controlled 
environment, we place the object on a green surface and in 
front of a green screen and use a simple color-based 
segmentation which has a low complexity to segment out the 
object from the RGB image. This foreground object mask is 
then applied to the depth image. Figure 1 illustrates an example 
of the segmentation result. With the cropped RGB and depth 
images, the 3D point cloud of one view can be generated.  
 
B. Registration 

In KinectFusion and related methods, initial alignment is 
not performed [1] [2] [3]. These methods use a video stream of 
RGB and depth data at 30 fps. Hence two adjacent frames have 
no significant changes in viewpoints. This eliminates the need 
for an initial alignment before the data is fed to the ICP 
algorithm to align the two point clouds. However, in our case 
we have frames with limited overlapping regions. ICP could 
perform poorly, if these frames are directly fed to it. For this 
reason, we employ a coarse to fine registration procedure as 
described below.  

With the RGB and depth information, we first use the 
RANSAC algorithm to perform a coarse alignment. In the 
coarse alignment procedure, point clouds from two 
neighboring views are roughly registered based on the SIFT 
features in the RGB images. 

The second phase of registration is the ICP based fine 
registration. The standard ICP algorithm aligns two point 
clouds by iteratively associating points through a nearest-
neighbor search and estimating the transformation parameters 
using a mean square cost function [8].  

While the ICP algorithm has been widely used for dense 
point cloud matching, it is limited in its ability to produce 
accurate results when objects lack structural features or 
undergo significant changes in camera view. To address this 
problem, we used a fine registration algorithm we proposed [9]. 
In this algorithm a SIFT based term is added into the cost 
function to overcome the case when objects lack structural 
features. To utilize the texture information of the 3D points 
without intensive computation of the SIFT descriptor for every 
3D point, a constraint involving the spatial distances of the 



 

SIFT feature corresponding pairs is added. In addition to this 
constraint, a dynamic weight is used to properly balance the 
significance of structural and photometric terms. It is referred 
to [9] for the details. 
 
C. Global Alignment 

In the registration process, registration errors could 
accumulate as more point clouds are added to the model. Figure 
3(a) illustrates the effects of this error accumulation. Slight 
inaccuracy at each registration step leads to significant 
misalignment between the last and first frame. This error could 
be eliminated by a global alignment which is to detect the last 
frame of a loop closure, register this frame with its previous 
frame and the first frame, and distribute the error evenly 
amongst other frames [10].  

 
Loop Closure Detection 

Previous techniques have used the Euclidean distance 
between each frame and all previous frames along with a 
threshold of minimal number of intermediate scans [10] [11] to 
detect loop closures. Our loop closure detection algorithm is 
based on the assumption that the camera captures the views of 
the object in either clockwise or counter-clockwise direction. 
When we capture data we make sure that the last frame has a 
large overlap with the first frame so that the loop is properly 
closed and we could detect the loop closure relatively easily. 

 
Global Alignment Procedure  

When a loop closure is detected, we formulate a loop graph 
with each vertex representing one frame of the 3D point cloud. 
The edge between the successive frames is the pose 
transformation between successive frames. We first use ICP to 
align the first and last frame with loop closure and get the 
transformation	∆ܻ. Then, T1T2 …TN =∆ܻ, where ௜ܶ is the pose 
transformation found in the registration process. If the 
registration does not have any errors, ∆ܻ	should be an identity 
matrix. The non-identity ∆ܻ is due to the errors of registration. 
Denote the inverse of ∆ܻ as ∆ܺ, then ∆ܺ T1T2 …TN =ܫ, where I 
is the identity matrix. ∆ܺ can be distributed among all poses in 
the loop to minimize the loop closure mismatch. In order to 
achieve a consistent map, we need to calculate the weights for 
the vertices that specify the fraction of  ∆ܺ by which the 
transformation needs to be changed. The weights are computed 
as follows: 

 

݅ݓ												          ൌ 	
݀ሺ݅ݒ	݅ݒ,െ1ሻ
݀ሺݏݒ	݁ݒ,ሻ

                                     (1) 

 
where ݒ௦ is the first vertex in the loop and  ݒ௘ is the last one. 
݀ሺݒ௟,  ௟ toݒ on the path from	௞ሻ is the sum of the edge weightsݒ
௜ݓ	 ௞. The weightingݒ 	∈ ሾ0, 1ሿ is such that: 
 
           															∆ܺ ൌ 	∑ ሺݓ௜		 ∗ 	∆ܺሻ௜              (2) 
 
The final modified transformation for each frame i after the 
optimization is:  
 

 ௜ܶ
ᇱ ൌ ௜ݓ	 	∗ 	∆ܺ	 ∗ 	 ௜ܶ           (3)               

 
where ௜ܶ ′ is the modified transformation [11]. The whole 
process is repeated several times until the convergence is 
achieved.  

Figure 3 shows the 3D modeling result before and after the 
global alignment. The global alignment has eliminated the 
discrepancy between the first and the last frames used to create 
the 3D model. 
 

 
(a)                                      (b) 

Figure 3: Modeling result after the global alignment. (a) 
Before the global alignment (after registration) (b) After the 

global alignment procedure. 
 

IV. MODEL DENOISING AND TEXTURING 

 
A. 3D Object Model De-Noising 
After the registration and the global alignment, the 3D model 
is well registered. However it is still very noisy due to the 
inaccurate depth acquisition from the depth camera. Therefore 
3D point cloud de-noising is needed to refine the 3D object 
model.  

In this work, we use the Moving Least Square (MLS) 3D 
model denoising method [12]. MLS uses the assumption that 
on a 3D surface, the 3D point set defines a manifold. The 
purpose of MLS is to find the manifold that the input 3D point 
set defines. Based on the manifold assumption, we can 
approximate the MLS surface by a function.  

Let ݏ௜ ∈ ܴଷ, ݅ ∈ ሼ1,  ሽ be points in the noisy 3D pointܯ…
cloud. The goal is to project the points onto a two-dimensional 
surface that approximates	ݏ௜. For each small local 
neighborhood in the point cloud, we fit the points by a local 
tangent plane H. Denote the height of ݏ௜ over H as ݎ௜, and h the 
origin of the reference domain define by H, we can estimate a 
polynomial approximation g so that the weighted squares error: 

 
∑ ሺ݃ሺݔ௜, ௜ሻݕ െ ௜ݏ‖ሺߠ௜ሻଶݎ െ ݄‖ሻெ
௜ୀଵ                  (4)    

              
is minimized, where ߠ is a smooth monotonically decreasing 
function, which is positive on the whole space (e.g., Gaussian 
approximation in our implementation).  ሺݔ௜,  ௜ሻ is theݕ
coordinate of the ݏ௜’s projection on H. After minimizing the 
above function, coefficients of the polynomial function g can 
be computed. The projection approximation process is run for 
every point in the 3D point set and it has been proved that it 
can nicely preserve the manifold property [12].  

Figure 4 shows the result of 3D model before and after 
MLS. From the result, we can see that the surface of the 3D 



 

box model is much smoothed and the outlier noises have been 
significantly removed.  

 

 
                       (a)                                          (b) 

Figure 4. (a) Before 3D de-noising (after registration). (b) 
After MLS de-noising. 

 
B. Meshing and Texturing 

The initial 3D model is represented in point clouds. 
Performing meshing and texture mapping makes the model 
resemble the real-life object with texture. For this purpose we 
triangulate the point clouds to build a mesh surface and then 
map the RGB color from the RGB image to the mesh. 

For our 3D modeling application, we use the Delaunay 
triangulation method [13] to convert the 3D point clouds into 
meshes. A Delaunay triangulation for a set P of points in a 
plane is defined as a triangulation DT(P) such that no point 
in P is inside the circumcircle of any triangle in DT(P). We can 
interpolate space inside the triangles to get a locally smoothed 
surface.  

After meshing, we assign the color to each vertex and 
simply interpolate the color in each triangle faces. This texture 
mapping requires that the resolution of triangulation should be 
high enough so that interpolation will not introduce many 
artifacts. The built 3D point cloud based model can be 
converted to other 3D representations. 
 

V. EVALUATION OF 3D KINECT MODELS 

 
A. Error Evaluation 

To investigate the error in a 3D model obtained using the 
above outlined procedure, a comparison was made with a point 
cloud obtained by a laser scanner. The laser scanner point cloud 
was obtained from the same object by a calibrated Roland Picza 
LPX-600 laser scanner. This laser scanner produces high-
resolution point cloud of objects using a non-contact red laser 
and high quality optics to capture parts. The nominal range 
accuracy of the laser scanner is +/-0.05 mm [14]. It is therefore 
assumed that the laser scanner point cloud is sufficiently 
accurate to serve as a reference for the accuracy evaluation of 
the Kinect point cloud. In the absence of any systematic errors 
the mean square of discrepancies between the two point clouds 
is expected to be close to zero. 

We propose the following methodology to calculate the 
error between the 3D model constructed and the 3D point cloud 
obtained from the laser scanner which is used as the ground 
truth. Assume the 3D object model contains R points, and the 
ground truth 3D point cloud contains R’ points (usually 

R’>>R). We first randomly sample R points from the ground 
truth 3D point cloud. Random sampling is done to ensure that 
the R points are located in random locations in the ground truth 
point cloud and not concentrated in a particular location or part 
of the ground truth point cloud. Before the evaluation of the 
model errors, both point clouds need to be registered 
accurately, because any registration error may be 
misinterpreted as error in the Kinect model. We use the coarse 
to fine registration methodology described before to align the 
two point clouds. First, RANSAC is applied to the point clouds 
of the two 3D models to coarsely align the two point clouds. 
Then we use our improved ICP registration as described before 
to achieve a fine registration. After this registration, the 3D 
object model error is then quantified using the Root Mean 
Square Error (RMSE) of the closest distances in the fine 
registration. The RMSE is calculated as:  

 

ܧܵܯܴ ൌ ට	
ଵ

ோ
	∑ ݀ሺݎሻଶ௥                 (5)              

 
where ݀ሺݎሻ is the closest distance between the point r in the 
ground truth point cloud points and its closest point in the 
Kinect model point cloud. We repeat the RMSE calculation N 
times and calculate the average RMSE. Average of N RMSE 
readings reduce possible errors due to the random sampling. In 
our experiments we used N = 5.  

In order to verify this error calculation methodology, the 
laser point cloud is randomly sampled twice to get two point 
clouds of p points each. The average RMSE between these 
point clouds is calculated and tabulated in Table 1. Since these 
two point clouds are subsets of the same initial point cloud the 
error between these point clouds should be close to zero. This 
error, as expected, is close to zero, thus validating the proposed 
error calculation method. 

  
TABLE 1 

THE AVERAGE ROOT MEAN SQUARE ERROR BETWEEN TWO 
RANDOMLY SUBSAMPLED POINT CLOUDS FROM THE SAME 

LASER POINT CLOUD. 

Object Average RMSE (mm) 

Biscuit box 0.347 

Mug 0.661 

House model 0.545 

Nut container 0.398 

 
B. Results 

The algorithm was implemented in C++ using the Point 
Cloud Library (PCL) and tested on a computer with Intel Xeon 
64 bit processor with 16GB of RAM. The GPU was a Quadro 
K600 with 1 GB memory and 192 cores. Our algorithm took 
around 45 – 60 seconds to create 3D models.  

 
 



 

TABLE 2 
 TABULATES THE AVERAGE RMSE OF THE OBJECT MODELS OBTAINED FROM KINFU AND OUR 3D MODELLING ALGORITHM. THE 

AVERAGE RMSE IS TABULATED FOR DIFFERENT NUMBER OF INPUT FRAMES. 

 
This process runs only on a CPU. It could be considerably 

speed up using a GPU. We compared our method with 
KinectFusion. We used the open source implementation, KinFu, 
which is available in the PCL library. KinFu was capable of 
creating 3D models in under 10 seconds. However KinFu takes 
advantage of the parallel processing capabilities of a GPU. 

We used data from the RGB-D dataset [15] for our initial 
experiments. We then collected RGB and depth data by scanning 
360 degree view of the objects in Figure 5. We then created 
subsets of the data consisting of 15, 25, 35, 45, 55 and 65 frames. 
Next we created 3D models by running KinFu and our algorithm 
with the datasets. These models are compared with the ground 
truth, and their average RMSEs are calculated and tabulated in 
Table 2. KinFu failed to create 3D models with small numbers 
of views, whereas our algorithm created 3D models with 
acceptable average RMSE.  

 

Figure 5: The objects that we used to create 3D models 

VI. CONCLUSION 
 

In this report, we present our work on 3D object modeling 
using a Kinect camera. We investigate the use of such cameras 
for acquiring RGB and depth images of small objects from 
limited number of viewpoints and building a complete 3D model 
of the object. We address some problems such as fine 
registration, global alignment, texture mapping, denoising, and 
objective error measurement of the 3D object models. For future 
works, we will investigate various denoise and other techniques 
to further improve the 3D models. 
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