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Abstract—This paper presents a localization method for a 

harmonic source using a single moving sensor in a piecewise-

linear trajectory with a known velocity. Through the movement 

of the sensor, spatial information is embedded in the recorded 

signal. An approach is proposed to extract that spatial 

information by reformulating the single-channel signal into 

multi-channel waveforms. A temporal correction factor is then 

derived and applied to approximate the multi-channel waveforms 

as the signals from multiple synthetic sensors to model a virtual 

static array. The proposed approach enables the construction of 

the array covariance matrix and applies a beamforming-based 

technique for source localization. Numerical results demonstrate 

that its statistical performance follows closely with the 

conventional sensor array approach. Finally, the paper also 

shows the experimental verification of the approach in a practical 

context of sound source localization using a single microphone.  

Keywords—sensor array, localization, single sensor, linear 

motion, synthetic aperture. 

I.  INTRODUCTION  

Source localization is one of the key research subjects in 
array signal processing. Numerous approaches for a static 
array, such as the conventional delay and sum [1], correlation-
based Capon [2], and subspace-based approaches, including 
MUSIC [3] and ESPRIT [4], have been derived based on the 
various signal and noise assumptions to obtain an optimal 
solution [5]. Although each of these algorithms has different 
strengths and weaknesses, all of them require multiple sensors 
to form an array for processing. The localization performance 
of the algorithms is directly proportional to the number of 
sensors used. 

In recent years, a great deal of research has been conducted 
on extending the array apertures using moving sensor arrays 
[6]. These methods include the extended towed array 
measurement approach (ETAM) [7-9], which uses the 
correlation between the overlapping positions of each sensor to 
correct the mismatch attributable to its movement to form a 
larger synthetic array aperture. The moving circular array 
approach [10] has also been used, which requires a static sensor 
working in tandem with a rotating array. Still, few have 
considered the possibility of extending the array aperture with 
only a single sensor. Previously, Hioka and Kishida [11, 12] 
proposed the CAROUSEL architecture, which demonstrated 
that the directions of arrival (DOA) estimate could be achieved 
by using a single sensor moving along the circumference of a 
circle. 

This paper shows that, if the trajectory of the sensor is 
either known or deduced from its known initial position and 
velocity, the piecewise-linear trajectory can be exploited to 
form a linear synthetic array aperture to localize a stationary 
source. The approach presented in this paper attempts to extend 
that of Hioka and Kishida by formulating the problem 
differently, such that it is not limited to the circular trajectory.  

Section II first presents an introduction to the proposed 
method that considers only an acoustic monopole signal and 
the approach to reformulating the single channel into the multi-
channel waveform. Next, the temporal correction factor is then 
derived from the multi-channel waveforms to extract the 
embedded spatial information and applied to approximate the 
recording as a virtual static array, the one sensor array (OSA). 
After the OSA is formed, localization can be achieved by 
solving it as a modified beamforming problem. Finally, the 
section ends with the extension of the OSA approach for 
monopole to a general harmonic source model. Section III 
includes numerical analyses conducted for monopole and 
harmonic sources. Section IV presents the experimental 
analysis to validate the proposed OSA approach on a set of 
experimental data collected with sensors mounted on an 
electric vehicle (EV). Section V presents the conclusions of the 
paper.  

II. PROBLEM FORMULATION 

A. Signal Model for Single Acoustic Monopole 

Without loss of generality, consider a stationary point 
source signal captured by a single moving sensor as shown in 
Fig. 1. The source located at the spatial position 𝒓𝑠 = (𝑥𝑠 , 𝑦𝑠) 
is denoted as:  

 𝑠(𝑡) = 𝐴𝑠𝑒
𝑗(𝜔𝑡+𝜓),  (1) 

where 𝐴𝑠, 𝜔, and 𝜓 are the amplitude, angular frequency, and 
phase of the monopole, respectively. Because of the stationary 
assumption, 𝐴𝑠 and 𝜓 are assumed time-invariant.  

This signal is recorded by the moving sensor 𝑝(𝑡), initially 
located at the origin (𝑥, 𝑦) = (0,0), and is expressed as:  

 𝑝(𝑡) = 𝑠(𝑡)𝑒−𝑗
𝜔

𝑐
𝑟(𝑡) + 𝑞(𝑡),   0 ≤ 𝑡 ≤ 𝑇, (2) 

where 𝑟(𝑡) = ‖𝒓𝑠 + 𝒗𝑡‖2 is the Euclidean distance between 
the source and sensor at time 𝑡 moving with velocity 𝒗;  𝑞(𝑡) is 
the additive white Gaussian noise used to model the spatial and  
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Fig. 1: Moving sensor configuration. 

temporal noise inherent in the moving sensor. 𝜔/𝑐 is the 
wavenumber of the source signal as the sensor moves within 
the recording window of 𝑇 second. In addition, 
𝑒−𝑗𝜔𝑟(𝑡)/𝑐 constitutes the phase shift because of the propagation 
of the signal toward the moving sensor. The collected samples 
can now be decomposed into 𝑁 frames, such that each frame is 
quasi-stationary [13]. The 𝑛th frame can be expressed as: 

 𝑝𝑛(𝑡) = 𝑝(𝑡 + (𝑛 − 1)∆𝑇), 0 ≤ 𝑡 ≤ ∆𝑇 , (3)     

where ∆𝑇 = 𝑇/𝑁 is the duration of each 𝑛th frame. The 𝑁 
frames can now be expressed in the vector form as:  

 𝒑(𝑡) = [𝑝1(𝑡) ⋯ 𝑝𝑁(𝑡)]𝑇 , 0 ≤ 𝑡 ≤ ∆𝑇 , (4)     

where (. )𝑇 denotes the transpose operation. 

B. Design of Temporal Correction Factor 

For brevity, 𝑞(𝑡) will be dropped from the signal model in 
(4), arriving at:  

 𝒑(𝑡) = [
𝑠(𝑡 + 0 ∆𝑇)𝑒−𝑗

𝜔
𝑐
𝑟(𝑡+ 0 ∆𝑇)

⋮

𝑠(𝑡 + (𝑁 − 1) ∆𝑇)𝑒−𝑗
𝜔
𝑐
𝑟(𝑡+ (𝑁−1) ∆𝑇)

]. (5)     

Rearranging (5) yields: 

𝒑(𝑡) = 𝐴𝑠𝑒
𝑗(𝜔𝑡+𝜓) [

𝑒𝑗𝜔 0 ∆𝑇 0 0
0 ⋱ 0

0 0 𝑒𝑗𝜔 (𝑁−1) ∆𝑇
] [

𝑒−𝑗
𝜔

𝑐
𝑟(𝑡+ 0 ∆𝑇)

⋮

𝑒−𝑗
𝜔

𝑐
𝑟(𝑡+ (𝑁−1) ∆𝑇)

], (6) 

 

     Source Component  ,     Temporal Delay,            Source Propagation   

From (6), it is now clear that 𝒑(𝑡) consists of a temporal-

delay component, 𝑒𝑗𝜔( (𝑛−1)∆𝑇), and its source with propagation 

component, 𝐴𝑠𝑒
𝑗(𝜔𝑡+𝜓)−𝑗

𝜔

𝑐
𝑟(𝑡+ (𝑛−1) ∆𝑇)

. Here, two observations can 
be noted. First, if the 𝑛th 𝑟(𝑡 + (𝑛 − 1) ∆𝑇) in the source with 
propagation component is approximately constant, it is similar 
to the 𝑛th sensor of a static array response. Second, the 
observed temporal-delay component in (6) is correctable with 
𝑨𝑐 = 𝑑𝑖𝑎𝑔([𝑒−𝑗𝜔 0 ∆𝑇 ⋯ 𝑒−𝑗𝜔 (𝑁−1) ∆𝑇]), a temporal correction 
factor. Applying the first observation and the temporal 
correction factor 𝑨𝑐  arrives at following OSA expression:  

 𝒑𝑂𝑆𝐴(𝑡) = 𝑨𝑐𝒑(𝑡) = 𝐴𝑠𝑒
𝑗(𝜔𝑡+𝜓) [

𝑒−𝑗
𝜔

𝑐
𝑟(𝑡+ 0 ∆𝑇)

⋮

𝑒−𝑗
𝜔

𝑐
𝑟(𝑡+ (𝑁−1) ∆𝑇)

], (7) 

which has a similar response to a static array. 

C. Localization through Beamforming 

The localization problem can now be solved in the 
beamforming formulation in three steps. First, the search 
space immediately in front of the OSA is constructed using 
grid points. Next, for each of the grid points in the search 
space, the spatial spectrum energy is computed. Finally, the 
energy of the grid space is analyzed, and the point with the 
highest energy is interpreted as the highest likelihood of the 
source location. 

Concretely, let ℛ = {𝒓1 ⋯ 𝒓𝐿} denote the set that 
contains the search space pointing to the discrete grid points 

within the OSA search area in a free field, and 𝒗 = (𝑣𝑥 , 𝑣𝑦) 

denote the estimated velocity of the sensor moving along a 
trajectory. The position of each 𝑛th synthetic sensor of the 
OSA can be approximated by the position of the moving 
sensor when it is at the middle of each 𝑛th frame, i.e., at 

𝒗∆𝑇 (𝑛 − 0.5). Now, the steering vector can be constructed as: 

𝒂(𝒓𝑗) =

[
 
 
 
 𝑒

−𝑗
𝜔

𝑐
√(𝑥𝑗−𝑣𝑥 0.5 ∆𝑇)

2
+(𝑦𝑗−𝑣𝑦 0.5 ∆𝑇 )

2

⋮

𝑒
−𝑗

𝜔

𝑐
√(𝑥𝑗−𝑣𝑥 (𝑁−0.5) ∆𝑇)

2
+(𝑦𝑗−𝑣𝑦 (𝑁−0.5) ∆𝑇 )

2

]
 
 
 
 

, (8) 

where 𝒓𝑗 = (𝑥𝑗 , 𝑦𝑗)  ∈ ℛ is the vector pointing to a discrete 

point within the OSA immediate vector space, 𝜔 is the angular 
frequency of the source, and 𝑐 is the speed of propagation in 
the medium.  

Next, to compute the beamformer energy of each grid 
point, the 𝑁 × 𝑁 covariance matrix of the OSA signal must be 
constructed. Each element of the covariance matrix represents 
the correlation of two synthetic sensor signals; it is defined as: 

 𝑹𝑂𝑆𝐴 = 𝐸{𝒑𝑂𝑆𝐴(𝑡)𝒑𝑂𝑆𝐴
𝐻 (𝑡)} = 𝑨𝑐𝑹𝑝𝑝𝑨𝑐

𝐻 , (9) 

where 𝐸{. } and (. )𝐻 correspond to the expectation and the 

Hermitian operation, respectively. 𝑹𝑝𝑝 = 𝐸{𝒑(𝑡)𝒑𝐻(𝑡)} is the 

covariance matrix of the OSA before correction. In practical 

application, this covariance matrix is unavailable and is 

estimated with its sample covariance matrix [14]: 

𝑹̂𝑂𝑆𝐴 = 𝑨𝑐 {
1

τ
∑ 𝒑(𝑡)𝒑𝐻(𝑡)τ

𝑡=1 } 𝑨𝑐
𝐻  = 𝑨𝑐𝑹̂𝑝𝑝𝑨𝑐

𝐻 , (10) 

where 𝜏 is the total number of samples. Finally, the source is 
localized through finding the argument that maximizes the 
MUSIC spatial spectrum [2, 3, 15, 16]: 

𝒓̂𝑠 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝒓𝑗∈ℛ
1

𝒂𝐻(𝒓𝑗)𝑮̂𝑂𝑆𝐴𝑮̂𝑂𝑆𝐴
𝐻 𝒂(𝒓𝑗)

, (11) 

where 𝑮̂𝑂𝑆𝐴𝑮̂𝑂𝑆𝐴
𝐻  in (11) is the noise subspace of the sample 

covariance matrix of the OSA. It is computed after performing 

the following eigen-decomposing operation on (10), 𝑹̂𝑂𝑆𝐴 = 
{𝑺̂𝑂𝑆𝐴𝚲𝑂𝑆𝐴𝑺̂𝑂𝑆𝐴

𝐻 + 𝑮̂𝑂𝑆𝐴𝚪𝑂𝑆𝐴𝑮̂𝑂𝑆𝐴
𝐻 } with 𝑺̂𝑂𝑆𝐴 and 𝚲𝑂𝑆𝐴 being 

the signal subspace eigenvectors and eigenvalues, 
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respectively, and 𝑮̂𝑂𝑆𝐴  and 𝚪𝑂𝑆𝐴 being the noise subspace 
eigenvectors and eigenvalues, respectively.  

However, because the noise subspace of 𝑹̂𝑂𝑆𝐴  is a 

translated noise subspace of 𝑹̂𝑝𝑝 with the temporal correction 

factor 𝑨𝑐, i.e., 𝑮̂𝑂𝑆𝐴 = 𝑨𝑐𝑮̂𝑃𝑃, where 𝑮̂𝑃𝑃 is computed from 

the eigen-decomposition of 𝑹̂𝑝𝑝 = 𝑺̂𝑃𝑃𝚲𝑃𝑃𝑺̂𝑃𝑃
H + 𝑮̂𝑃𝑃𝚪𝑃𝑃𝑮̂𝑃𝑃

H  . 
Therefore, (11) can also be interpreted as:  

𝒓̂𝑠 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝒓𝑗∈ℛ
1

𝒘𝐻(𝒓𝑗)𝑮̂𝑃𝑃𝑮̂𝑃𝑃
𝐻 𝒘(𝒓𝑗)

, (12) 

where 𝒘(𝒓𝑗) = 𝜜𝑐
−1𝒂(𝒓𝑗) = 𝑨𝑐

𝐻𝒂(𝒓𝑗), is the weights for OSA 

localization. 

D. Harmonic Signal using Beamformer in Frequency Domain 

The monopole model in (1) can naturally be extended to the 
harmonic signal model by the superposition of the pitch and its 
𝐼 − 1 harmonic component with an unknown phase shift at 
each 𝑖th pitch to capture the random superposition [12]. Now 
𝑠(𝑡) can be extended to arrive at:  

𝑠(𝑡) = ∑ 𝐴𝑠𝑖
𝑒𝑗(𝜔𝑡𝑖+𝜓𝑖)𝐼

𝑖=1 ,  (13) 

where 𝐴𝑠𝑖
 and 𝜓𝑖  are the amplitude and phase of the 𝑖th order 

harmonic components. Substituting (13) into (2) arrives at the 
following expression for the moving sensor recording: 

 𝑝(𝑡) = ∑ 𝐴𝑠𝑖
𝑒𝑗(𝜔𝑡𝑖+𝜓𝑖)𝐼

𝑖=1 𝑒−𝑗
𝜔

𝑐
𝑟(𝑡)𝑖 + 𝑞(𝑡). (14) 

Now, the OSA recording for (13) before correction can be 
constructed by substituting (14) into (4).  

Coincidentally, to extend the proposed algorithm to solve 
for a harmonic signal, it is prudent to transform the OSA in (7) 
to the frequency domain [17] representation. This is necessary 
to construct the sample covariance matrix of the OSA to 
capture all harmonic components. The OSA in the frequency 
domain can now be denoted as: 

   𝒑̃(𝑘) = ℱ{𝒑(𝑡)} = [𝑝1(𝑘) ⋯ 𝑝𝑁(𝑘)]𝑇 , (15) 

where ℱ{. } is the Fourier transform operator along the row of 
(4). The correlation matrix of each frequency bin in (15) can 
be defined as: 

𝑹̃𝑝𝑝(𝑘) = 𝐸{𝒑̃(𝑘)𝒑̃H(𝑘)}. (16) 

The temporal correction factor is also extendable to the 
frequency representation by means of a similar process with:  

𝑨̃𝑐(𝑘) = 𝑑𝑖𝑎𝑔 ([
𝑒−𝑗ωk 0 ∆𝑇

⋮
𝑒−𝑗ωk(𝑁−1) ∆𝑇

]), (17) 

where 𝜔𝑘 =
2𝜋

𝐾
𝑘, with 𝐾 being the total number of frequency 

bins. Applying (17) onto (15) arrives at the following 
corrected OSA recording for each frequency bin:  

𝒑̃𝑂𝑆𝐴(𝑘) = 𝑨̃𝑐(𝑘)𝒑̃(𝑘). (18) 

Similar to (9), the 𝑁 × 𝑁 covariance matrix of the corrected 
frequency domain OSA at the 𝑘th bin is constructed using: 

𝑹̃𝑂𝑆𝐴(𝑘) = 𝐸{𝒑̃𝑂𝑆𝐴(𝑘)𝒑̃𝑂𝑆𝐴
H (𝑘)} 

𝑹̃𝑂𝑆𝐴(𝑘) = 𝑨̃𝑐(𝑘)𝑹̃𝑝𝑝(𝑘)𝑨𝑐
𝐻(𝑘). (19) 

Finally, the localization of the harmonic source can be 
achieved by substituting (19) into (12) to arrive at: 

𝒓̂𝑠 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝒓𝑗∈ℛ ∑ 𝛽(𝒓𝑗, 𝑘)𝐼
𝑘=1 , (20) 

where  

𝛽(𝒓𝑗, 𝑘) =
1

𝒘̃H(𝒓𝑗 , 𝑘)𝑮̃𝑃𝑃(𝑘)𝑮̃𝑃𝑃
𝐻 (𝑘)𝒘̃(𝒓𝑗 , 𝑘)

, 

with the 𝑛th element of 𝒘̃(𝒓𝑗 , 𝑘):  

[𝒘̃(𝒓𝑗 , 𝑘)]
𝑛

= [𝑨̃𝑐(𝑘)]
𝑛
[𝒂̃(𝒓𝑗 , 𝑘)]

𝑛
. 

Here, [𝑨̃𝑐(𝑘)]
𝑛
 is the 𝑛th diagonal value of (17) and [𝒂̃(𝒓𝑗, 𝑘)]

𝑛
=

𝑒
−𝑗

𝜔𝑘
𝑐

√(𝑥𝑗−𝑣𝑥 (𝑛−0.5) ∆𝑇)
2
+(𝑦𝑗−𝑣𝑦 (𝑛−0.5) ∆𝑇)

2

 is the 𝑛th steering vector of the 

𝑘th bin. Similar to (12), 𝑮̃𝑃𝑃(𝑘)𝑮̃𝑃𝑃
𝐻 (𝑘) is the noise subspace 

at 𝜔𝑘 , computed through the eigen-decomposing operation.  

Practically, in the localization problem, the frequency 𝜔𝑘 
of the source signal is usually unknown. Nonetheless, this is 
easily overcome by performing a power spectrum analysis of 
the recorded signal in (14) to estimate the principal frequency 
content of the harmonic source. The frequency estimation of 
the source can be further refined using standard numerical 
optimization to find the frequency that maximizes (20).   

III. NUMERICAL ANALYSIS 

This section presents numerical simulations to illustrate the 
validity of the OSA approach established in section II. In the 
simulation, a moving sensor initially located at the origin of the 
Cartesian coordinate system is made to move with a velocity of 

𝒗 = (𝑣𝑥 , 𝑣𝑦) = [1,0] m/s in the +𝑥 direction and a sampling 

rate of 25.6 kHz. The acoustic propagation medium is assumed 
to be air with 𝑐 = 343 m/s. First, the OSA localization 
performance of (12) to a monopole of 𝑓 = 250 Hz was 
compared with the Cramer-Rao bound (CRB) of the static 
array (SA) response [18, 19]. In terms of comparison, both 
OSA and SA were made to have the same number of sensors 
and available snapshot for the covariance matrix. The CRB is a 
theoretical statistical bound of a SA covariance matrix at its 
given signal-to-noise ratio (SNR). Next, the performance of the 
OSA to a harmonic source of the same frequency of 250 Hz 
was evaluated. 

Fig. 2 depicts the standard deviation of 500 localization 
trials of the OSA using (12). Here, the standard deviation is 

compared with the √CRB for a source in SA at SNR -20 to 10 
dB. The OSA is constructed with ∆𝑇 = 60 sec, 𝑁 =
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384 synthetic sensors, with each sensor having an inter-sensor 
spacing of 0.15625 m, and the source located at 𝒓0 =
(30,15) 𝑚. Here, perfect knowledge of the signal’s frequency 
is assumed to evaluate only the localization performance. 

 
Fig. 2:  A comparison plot of the OSA standard deviation to the √𝐶𝑅𝐵 of the 
static array for (left) 𝑥𝑙 estimation and (right) 𝑦̂𝑙 estimation. 

The estimation performance of 𝑥̂𝑙  and 𝑦̂𝑙 of the OSA 
closely follows the CRB of the SA over a wide range of SNR. 
The convergence of 𝑦̂𝑙  begins at SNR of +8 dB. Nonetheless, 
poorer performance at higher SNR is expected because of the 
model approximation error. Finally, the estimation 
performance of OSA will degrade if the 𝑛th synthetic sensor is 

not modeled at 𝒗̂∆𝑇 (𝑛 − 0.5) because of poorer model 
approximation. 

Fig. 3 depicts the evaluation of (21) using 500 Monte 
Carlo trials. A harmonic source with 𝐼 = 3 and fundamental 
frequency of 250 Hz is prepared, each with a variance of one 
and random phase of 𝜓 = [−𝜋,+𝜋]. The recording duration of 
the OSA is constructed with ∆𝑇 = 10 sec, 𝑁 = 20 synthetic 
sensor, with each sensor having an inter-sensor spacing of 0.5 
m. The signal is located at 𝒓0 = (4,15) m with its SNR varied 
based on the ratio of signal energy and noise, i.e., 𝑆𝑁𝑅 =
𝐸{𝑠(𝑡)}/𝐸{𝑞(𝑡)}. The only information assumed about the 
signal is that it is a harmonic source. Therefore, to acquire 
information, such as the frequencies of the signal, we propose 
to use the Welch power spectral density (PSD) [20]. The 
signal frequencies are first estimated using the PSD before 
applying (20). Because the PSD approach only provides an 
estimate of the frequencies, numerical optimization is required 
to determine the true signal frequencies.  

The performance of the OSA is compared with the results 
when the true frequency information is available and the 
estimation performance when a SA is used. When the 
estimated frequency is accurate, the performance of the OSA 
is comparable to that of the SA. In addition, when the signal 
frequency of the OSA is estimated and optimized, the 
performance approaches that of an SA at high SNR. This 
result illustrates that the localization of a harmonic source is 
robust when a good estimate of the frequency is available. 

   
Fig. 3: A comparison between the OSA standard deviation of source-location 

estimation error, ‖ 𝒓̂𝑙 − 𝒓0‖, when the frequencies are known and estimated 

to the SA standard deviation of source-location estimation error. 

IV. EXPERIMENTAL RESULTS 

After the simulation, the OSA algorithm was applied to a 
set of data collected from a driving experiment from [21] as 
depicted in Fig. 4. The microphone is mounted on top of an 
electric vehicle (EV) located at (𝑥, 𝑦) = (+6.605, −0.25) m. 
The EV traverses along a linear path at approximately 
𝑣 = 5.08 km/hr with a speaker located at 𝒓0 =
(30, 15) broadcasting a composite square wave of 250 Hz, 
750 Hz, and 1250 Hz. The recording was performed for ∆𝑇 = 
27 sec at a sampling rate of 𝐹𝑠 = 25.6 kHz. Using (21), 
𝑁 = 60 synthetic sensor was created. As in the harmonic 
signal simulation, no knowledge of the frequency was 
assumed. Consequently, the Welch PSD and numerical 
optimization are used to identify the spectral response before 
applying (20). 

 
Fig. 4:  Experimental setup of the OSA recording using the electric vehicle 

(EV) with the microphone mounted on top. 

Fig. 5 shows the recorded signal and MUSIC spatial 
spectrum of the OSA model with a beamformer resolution of 
0.25 m at the combined spatial spectrum. Although the source 
was localized with a source-location estimation error, it is 
attributable to the difficulty of maintaining a constant velocity 
along the drive-by trajectory [21]. Nonetheless, the results 
demonstrated that OSA localization of a harmonic source is 
achievable using a single moving sensor with an 
approximately known velocity. 
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Fig. 5:  Recorded signal (top) and MUSIC spatial spectrum (bottom) of the 

OSA on the drive-by experimental, Combined: 𝒓̂𝑙 = (30.55, 15.8). 

V. CONCLUSION 

This paper addresses the problems of performing 
localization when there is insufficient space for sensor 
placement and demonstrates that harmonic source localization 
is achievable using the OSA approach based on a single 
moving sensor of a known piecewise-linear trajectory. The 
proposed approach consists of three steps. (1) The data are 
acquired from a single sensor moving along a trajectory with a 
known velocity 𝒗 while observing the signal. (2) The data are 
then preprocessed to decompose the signal into frames before 
synchronizing the frames through the application of a temporal 
correction factor. (3) Finally, conventional beamforming is 
applied for source localization. The numerical simulation 
conducted and experimental verification shows that the 
proposed technique can be applied to localize a harmonic 
source using a single moving sensor. Essentially, this work 
advances the framework of using one sensor for DOA 
estimation beyond a circular trajectory. 

ACKNOWLEDGMENT 

The authors would like to thank C. Tuna, S. Zhao, T. N. T. 
Nguyen, and D. L. Jones with Advanced Digital Sciences 
Center Illinois at Singapore Pte Ltd, 1 Fusionopolis Way, 
Singapore 138632, for providing the experimental data. The 
authors would also wish to thank Freeman Hill, Yinghui Lu, 
Srinivasan Jagannathan, and the management of Halliburton 
for their help and permission to publish this paper. 

REFERENCES 

[1] D. H. Johnson and D. E. Dudgeon, Array Signal Processing: Concepts 
and Techniques: Prentice Hall, 1993. 

[2] J. Capon, "High-resolution frequency-wavenumber spectrum analysis," 
Proceedings of the IEEE, vol. 57, pp. 1408-1418, 1969. 

[3] R. O. Schmidt, "Multiple emitter location and signal parameter 
estimation," Antennas and Propagation, IEEE Transactions on, vol. 34, 
pp. 276-280, 1986. 

[4] F. Gao and A. B. Gershman, "A generalized ESPRIT approach to 
direction-of-arrival estimation," IEEE Signal Processing Letters, vol. 12, 
pp. 254-257, 2005. 

[5] K. Harmanci, J. Tabrikian, and J. L. Krolik, "Relationships between 
adaptive minimum variance beamforming and optimal source 
localization," IEEE Transactions on Signal Processing, vol. 48, pp. 1-12, 
2000. 

[6] M. P. Hayes and P. T. Gough, "Synthetic aperture sonar: a review of 
current status," IEEE Journal of Oceanic Engineering, vol. 34, pp. 207-
224, 2009. 

[7] S. Stergiopoulos and E. J. Sullivan, "Extended towed array processing 
by an overlap correlator," The Journal of the Acoustical Society of 
America, vol. 86, pp. 158-171, 1989. 

[8] Z. Lei, K. Yang, R. Duan, and P. Xiao, "Localization of low-frequency 
coherent sound sources with compressive beamforming-based passive 
synthetic aperture," The Journal of the Acoustical Society of America, 
vol. 137, pp. EL255-EL260, 2015. 

[9] X. Da, N. Tingting, H. Jianguo, and G. Hongya, "Source localization in 
near-field using a moving array," in Military Communications 
Conference, 2009. MILCOM 2009. IEEE, 2009, pp. 1-5. 

[10] A. Cigada, M. Lurati, F. Ripamonti, and M. Vanali, "Moving 
microphone arrays to reduce spatial aliasing in the beamforming 
technique: theoretical background and numerical investigation," The 
Journal of the Acoustical Society of America, vol. 124, pp. 3648-3658, 
2008. 

[11] M. Kishida and Y. Hioka, "Circularly moving sensor for use of 
modulation effect," in Sensing Technology (ICST), 2013 Seventh 
International Conference on, 2013, pp. 242-246. 

[12] Y. Hioka and M. Kishida, "Direction of arrival estimation of harmonic 
signal using single moving sensor," in 2014 IEEE 8th Sensor Array and 
Multichannel Signal Processing Workshop (SAM), 2014, pp. 1-4. 

[13] W. K. Ma, T. H. Hsieh, and C. Y. Chi, "DOA Estimation of Quasi-
Stationary Signals With Less Sensors Than Sources and Unknown 
Spatial Noise Covariance: A Khatri-Rao Subspace Approach," IEEE 
Transactions on Signal Processing, vol. 58, pp. 2168-2180, 2010. 

[14] I. S. Reed, J. D. Mallett, and L. E. Brennan, "Rapid Convergence Rate in 
Adaptive Arrays," Aerospace and Electronic Systems, IEEE 
Transactions on Aerospace and Electronic Systems, vol. AES-10, pp. 
853-863, 1974. 

[15] P. Stoica and R. L. Moses, Spectral Analysis of Signals: Pearson 
Prentice Hall, 2005. 

[16] P. Stoica and R. L. Moses, Introduction to Spectral Analysis vol. 1: 
Prentice-Hall Upper Saddle River, New Jersey,1997. 

[17] H. L. Van Trees, Detection, Estimation, and Modulation Theory, 
Optimum Array Processing: John Wiley & Sons, 2004. 

[18] E. Grosicki, K. Abed-Meraim, and H. Yingbo, "A weighted linear 
prediction method for near-field source localization," IEEE Transactions 
on Signal Processing, vol. 53, pp. 3651-3660, 2005. 

[19] P. Stoica, E. G. Larsson, and A. B. Gershman, "The stochastic CRB for 
array processing: a textbook derivation," Signal Processing Letters, 
IEEE, vol. 8, pp. 148-150, 2001. 

[20] J. G. Proakis and D. G. Manolakis, Digital Signal Processing: Pearson 
Prentice Hall, 2007. 

[21] C. Tuna, S. Zhao, T. N. T. Nguyen, and D. L. Jones, "Drive-by large-
region acoustic noise-source mapping via sparse beamforming 
tomography," The Journal of the Acoustical Society of America, vol. 
140, pp. 2530-2541, 2016. 

 

 

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017




