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Abstract—In this paper, we focus on utilizing a throat mi-
crophone as noise robust device because its signal is much
less affected by surrounding noise than a conventional acoustic
microphone signal. However, it can only record narrow frequency
bands, and the microphone characteristics are also different
from characteristics of acoustic microphone. Therefore, speech
recognition performance is greatly degraded when a throat
microphone is used as it is instead of a conventional acoustic
microphone. To overcome this problem, we propose using a
deep neural network (DNN)-based feature transformation method
while also using model adaptation. We conducted a continuous
digit recognition experiment. The result revealed that the pro-
posed method improved the word error rate (WER) of using the
throat microphone from 41.4% to 17.6%.

I. Introduction

Speech recognition technology has become more and more
widespread, but speech recognition performance needs to be
further improved. One factor that degrades speech recognition
performance is external noise, which causes problems such as
failure of voice activity detection (VAD) and misrecognition.
We focused on the throat microphone as a device that is barely
affected by these external noises. In this application, a close-
talk microphone and an array microphone are often used,
but these have some problems. The close-talk microphone
easily becomes worn out when worn for a long time, and the
array microphone needs a wide installation place. Also, these
microphones cannot prevent the mixing of noise completely.
We therefore focus on a throat microphone, which can alleviate
this problem. A throat microphone is a contact microphone
that senses vibrations directly from the wearer’s throat by way
of sensors worn on the neck. It is robust against external noise
because it barely picks up vibrations in the air.

There have been many studies [1]–[3] to improve the
performance of speech recognition using throat microphones.
One previous study [1] improved recognition accuracy by
performing highly accurate VAD by using the signal of a
throat microphone and performing speech recognition with an
acoustic microphone signal. The reason the throat microphone
is not directly used for speech recognition is that the acoustic
mismatch degrades the accuracy of speech recognition in
a general acoustic model assuming a usual microphone. A
throat microphone’s frequency characteristics are very different
from those of the conventional acoustic microphones, so
their acoustic mismatch leads to mis-recognition. Performance

degradation due to mismatch must be prevented, as in the
work of the [2]. However, it is not easy to prepare an enough
training data for use in an acoustic model for large vocabulary
speech recognition. Therefore, we try to reduce the mismatch
with an existing acoustic model by mapping features of a
throat microphone to features of an acoustic microphone in the
feature space. Various methods [4]–[9] have been developed
to expand bandwidth, and Gaussian mixture models (GMM)
and artificial neutral networks (ANN) are often used. Kubota
et al. [10] reported that a method combining k-means and a
feedforward neural network (FFNN) [10] is very effective.

In contrast [10], we propose using long short-term mem-
ory (LSTM) that can handle time series data instead of an
FFNN for feature transformation. We improved the recognition
performance when using a throat microphone by training
and transforming an independent deep neural network (DNN)
in each feature dimension, because each dimension of mel-
frequency cepstral coefficients (MFCCs) used as a feature has
independent characteristics. Furthermore, we improve recog-
nition performance without extra cost by adapting the acoustic
model by using the transformed features as training data.

The remainder of the paper is as follows. Section 2
describes the basic layout of the system, the used corpus,
feature transformation using DNN, feature transformation
using k-means and DNN, and acoustic model adaptation.
Section 3 describes the conditions and results of recognition
performance experiments. Section 4 discusses conclusions
and future prospects.

II. Method
A. Basic Layout of System

Fig. 1 shows the block diagram of our system. In the
basic speech recognition process, VAD is performed on input
speech, the features of an estimated speech section is extracted,
and the speech is converted into text by inputting the extracted
features to automatic speech recognition (ASR) software.
In this paper, we improve recognition performance by first
reducing the mismatch with the acoustic model by feature
transformation using a DNN and then inputting the features
extracted from the throat microphone to the ASR software.
At this time, we try to improve recognition performance by
classifying features of the input throat microphone by k-means
and transforming with a DNN trained for each cluster. Also,
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we improve the recognition performance by adapting the
acoustic model by using transformed features as adaptive data.

Fig. 1. DNN-based Feature Transformation

B. Corpus
We recorded parallel data of a throat microphone and an

acoustic microphone for use in training of feature transfor-
mation. We use the same setup as Dupont et al. [11]. A
recorder (ZOOM R24), throat microphone (Nanzu SH-12iK),
and acoustic microphone (Sony ECM - CS3) were used. The
audio sampling rate was 16,000 Hz.

We recorded 3600 (220 min.) phoneme-balancing sentences
of Japanese by 14 male speakers as training data and 1000
sentences of 11 consecutive digits by 10 male speakers as
test data in soundproof room.

C. Feature Transformation using DNN
Fig.2 shows the network configuration of the DNN used

for the transformation. For comparison, we also show the
composition of FFNN with reference to a previous study [4].

Fig. 2. Network structures of LSTM and FFNN

A 13-dimensional MFCC is used for input data and training
data of LSTM. The input data are time series data of 11
frames combined with the preceding 10 frames. In total, 39
dimensions of a feature, which combines MFCC and ∆ and
∆∆ parameters, are used as input data in FFNN to consider
the temporal change of speech at the transformation. The
supervised data are a 13-dimensional MFCC.

We examine three training and transformation methods,
considering that the low frequency of a low order MFCC
signal and high frequency of a high order signal affect training
and transformation of a DNN. Method 1 is a general method
of training and transforming the network shown in Fig.3

by preparing n-dimensional input data and m-dimensional
reference data as shown in Fig.2. Method 2 is to train and
transform by preparing an internal network for each dimension
with respect to the m-dimensional feature to be obtained as
an output as shown in Fig. 4. The entire network is shown
in Fig.2, in which the size of the output layer is changed
to 1. We merge the internal networks with the merge layer
and train with n-dimensional input data and m-dimensional
reference data. Method 3 has the same network structure as
method 2 but a different training method. It does not train
the entire network but trains the internal network individually
and restores trained parameters into the network in Fig.4.
Training is performed by inputting the same n-dimensional
input features and 1-dimensional reference data to each
internal network.

Fig. 3. Network structure of Method 1

Fig. 4. Network structure of Methods 2 and 3
Training methods differ between 2 and 3.

D. Feature transformation using k-means and DNN
A method was previously developed to transform the fea-

tures of the throat microphone by combining k-means and
FFNN [5]. However, in this paper, we evaluate and compare
the case of combining k-means and LSTM proposed in II-C.
The bandwidth expansion consists of training and transforma-
tion, and the process is shown in Fig. 5 .

During training, all training data are used at the beginning
to train one NN. Then, training data clusters are trained
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and classified by k-means. Next, as many NNs as k-
means clusters are prepared and fine-tuned by using the
training data classifying NN trained at the beginning. During
transformation, input features are classified by k-means trained
with training data, and each corresponding NN is transformed.

Fig. 5. Training and transformation method when k-means and DNN are
combined

In the case of a combination of k-means and FFNN, the
features use MFCC + ∆ + ∆∆. However, in the case
of a combination of k-means and LSTM, k-means uses
MFCC + ∆ + ∆∆ as features, but LSTM uses time series
data of MFCC without the ∆ parameter. The flow of training
is shown in Fig. 6. The 13-dimensional MFCC feature
sequence is x, and the n-th frame of the feature sequence is
xn. k-means trains x + ∆x + ∆∆x as features, and LSTM
trains (xn, xn−1, xn−2, · · · , xn−10) as one piece of data.
x + ∆x + ∆∆x is calculated from xn and classified with
k-means. After classification, each LSTM is fine-tuned with
data of (xn, xn−1, xn−2, · · · , xn−10).

Fig. 6. Feature flow when k-means and LSTM are combined

E. Acoustic Model Adaptation
Fig. 7 shows the 1st and 9th dimensions of the MFCC

features transformed by LSTM. As shown in the upper part
of Fig. 7 , the 1st to 5th order features of the transformed
MFCC are considerably close to the features of the acoustic
microphone, and the transformation worked well. On the
other hand, as shown in the lower part of Fig. 7 , the output
features tended to smooth along the time scale at the 6th or
higher orders, and features slightly different from those of the
acoustic microphone were observed.

Fig. 7. Feature transformed by LSTM

For this reason, acoustic mismatch with a general acoustic
model was less than before transformation, but it still
existed. Therefore, the acoustic model was adapted using the
transformed features as adaptation data. The mean vector of
acoustic model was adapted only using maximum likelihood
linear regression (MLLR). First, after global MLLR adaptation
with clustering number 1, the clustering number was changed
to 32 and further adaptation was done with MLLR.

III. Experiments
In this section, we describe the experimental conditions

and the results of the recognition performance comparative
experiment conducted using the continuous digit recognition
task.

A. Experimental condition
Consecutive digit recognition was performed on Julius, and

a large vocabulary acoustic model was created from the ASJ-
JNAS corpus. The language model is a digit recognition gram-
mar with an indefinite number of digits. However, to eliminate
the effect of speaker adaptation, the test data and training data
contained some identical speakers, and cross validation was
performed excluding the same speaker. Therefore, on average,
the training data is 3000 sentences (200 minutes). The MFCC
features were extracted with a frame length of 25 ms and a
shift length of 10 ms, and cepstral mean normalization (CMN)
was applied.

The optimization algorithm of the DNN is AdaDelta, and
the activation function uses identity mapping. The mini batch
size at training was 4096, the initial learning rate was 0.01,
and the number of iterations was 100. The number of clusters
of k-means is set to 10 as in the previous study [5]. Also,
although the feature transformed by the DNN is 13 dimensions,
the features of the acoustic model is 25 dimensions of 12th
order MFCC and its ∆ parameter and power. Therefore, the
∆ parameter was newly extracted for the features after the
transformation, and the adaptation of the acoustic model and
speech recognition were performed. Only the mean vector of
acoustic model was adapted with supervised MLLR.
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TensorFlow is used for a training of DNN, scikit-learn is
used for a training of k-means, and features are extracted and
the acoustic model is adapted by using the Hidden Markov
Model Toolkit (HTK).

B. Experimental results
Table I shows the results of executing the continuous digit

recognition task for each DNN training method mentioned
in II-C. As shown in the Table I , Method 2 has a superior
performance to Method 1. It is speculated that preparing
an internal network and separating the network parameters
for each dimension may enable the feature of the dimension
to be captured successfully. Moreover, Method 3 performs
superiorly to Method 2. Since these two network structures
are identical, it is presumed that propagation of training
works well by training networks in feature dimensions
individually. In this paper, we adopt Method 3, which
performs the best, and the results for Method 3 are shown
in the feature transformation by DNNs unless otherwise stated.

TABLE I
Results of continuous digit recognition task for each

training method.

Training Method LSTM WER FFNN WER
Method 1 30.3% 43.9%
Method 2 25.1% 41.4%
Method 3 24.0% 41.3%

Table II shows the results of adapting the acoustic model by
using MLLR. The recognition performance was better when
LSTM and MLLR were combined than when only MLLR is
applied to the throat microphone. Although the performance
is further improved by combining the k-means, the training
method based on the LSTM is better for suppressing the
calculation cost because k-means requires a high calculation
cost.

TABLE II
Result of continuous digit recognition task for each bandwidth

expansion method
Microphone.

( transformation method)
WER

(not adapted)
WER

(MLLR adapted)
AMa (BASELINE) 4.4% None
TMb (BASELINE) 41.4% 23.9%

TMb (FFNN) 41.3% 33.6%
TMb (k-means + FFNN) 29.0% 24.5%

TMb (LSTM) 24.0% 20.5%
TMb (k-means + LSTM) 21.9% 17.6%

a Acoustic Microphone
b Throat Microphone

IV. Conclusions
We presented a method to transform features of a throat

microphone into features of an acoustic microphone with a

deep neural network (DNN) using long short-term memory
(LSTM). We found that recognition accuracy was improved
by using an internal network for each feature dimension
and individually these networks rather than using a network
trained by using all the features collectively. Experimental
results showed that the proposed method can achieve a higher
recognition accuracy than a simpler method of adapting an
acoustic model. For future work, we will conduct experiments
in noisy environments and attempt to improve the feature
transformation performance.
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