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Abstract—Fast and accurate digital computation of the frac-
tional Fourier transform (FRT) and linear canonical transforms
(LCT) are of utmost importance in order to deploy them in real
world applications and systems. The algorithms in O(NlogN) to
obtain the samples of the transform from the samples of the
input function are presented for several different types of FRTs
and LCTs, both in 1D and 2D forms. To apply them in image
processing we consider the problem of obtaining sparse transform
domains for images. Sparse recovery tries to reconstruct images
that are sparse in a linear transform domain, from an underdeter-
mined measurement set. The success of sparse recovery relies on
the knowledge of domains in which compressible representations
of the image can be obtained. In this work, we consider two-
and three-dimensional images, and investigate the effects of the
fractional Fourier (FRT) and linear canonical transforms (LCT)
in obtaining sparser transform domains. For 2D images, we
investigate direct transforming versus several patching strategies.
For the 3D case, we consider biomedical images, and compare
several different strategies such as taking 2D slices and optimizing
for each slice and direct 3D transforming.

I. INTRODUCTION

The fractional Fourier transform (FRT), [17], [14], [18],

[19], is the generalization to the ordinary Fourier transform

(FT). Linear canonical transforms (LCT), [24], [6], are linear

integral transforms that generalizes the FRTs and several other

transforms. Both are very important transforms in both optics

and signal/image processing fields as well as quantum physics,

[6]. As analogous to the fact that the fast Fourier transform

(FFT) algorithm is very instrumental to use and make the well-

known Fourier transform widespread, discretization and devel-

opment of fast digital computation algorithms to deploy FRT

and LCTs in real world applications effectively are needed.

These fast algorithms begin with samples of the continuous

input signal and compute samples of the continuous FRT or

LCT output signal such that the continuous output can be

interpolated from the computed output samples, [9], [7]. This

is accomplished by decomposing the FRT or LCT operations

into basic building blocks that already have fast algorithms. An

application of FRT and LCTs in image processing is sparse

image representation and compression. Sparse image represen-

tation and recovery needs the knowledge of transform domains

in which an image can be sparsely represented, [4]. This

enables better compression of images. FRTs and LCTs can

sparsify images to make them sparsely represented in FRT and

LCT domains. Having fast digital algorithms is a requirement

to use FRT and LCTs in sparse image representation since the

procedure requires several computations of transforms. Both

regular images and three dimensional complex-valued medical

images are considered in presenting the use of FRT and LCTs

in sparse image representation.

In this paper, first the preliminaries will be given, then fast

digital computation of algorithms for FRTs, 1D LCTs and

2D LCTs will be presented. After presenting the application

of these algorithms to the sparse image representation and

compression, the paper will conclude.

II. PRELIMINARIES

A. The fractional Fourier transform

FRT is a generalization to the ordinary Fourier transform.

The ath order fractional Fourier transform {Faf}(u) of the

function f(u) is defined for 0 < |a| < 2 as

Fa[f(u)] ≡ {Faf}(u) ≡
∫ ∞

−∞
Ka(u, u

′)f(u′) du′,

Ka(u, u
′) ≡ Aφ exp

[
iπ(u2 cotφ− 2uu′ cscφ+ u′2 cotφ)

]
,

Aφ ≡ exp(−iπsgn(sinφ)/4 + iφ/2)

| sinφ|1/2 , (1)

where φ ≡ aπ/2 and i is the imaginary unit. The kernel

approaches K0(u, u
′) ≡ δ(u−u′) and K±2(u, u

′) ≡ δ(u+u′)
for a = 0 and a = ±2, respectively.

B. The linear canonical transform

The LCT of f(u) with parameter matrix M is given by

fM(u) = (CMf)(u):

(CMf)(u) =
√

βe−iπ/4×∫ ∞

−∞
exp

[
iπ(αu2 − 2βuu′ + γu′2)

]
f(u′) du′,

(2)
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where α, β, γ are real parameters independent of u and u′

and where CM is the LCT operator and M is given by:

M =

[
A B
C D

]
=

[
γ/β 1/β

−β + αγ/β α/β

]
. (3)

III. DIGITAL COMPUTATION OF FRACTIONAL FOURIER

TRANSFORM

The fractional Fourier transform can be decomposed into a

cascade of chirp multiplication, chirp convolution, scaling, and

ordinary Fourier transformation. The algorithm for efficient

and accurate digital computation of FRTs depend on decom-

posing FRT into these simple building blocks, compute each

of them in O(NlogN) time and obtain the result, [15].

To obtain the digital computation algorithm, Eqn. 1 is put

in the form:

{Faf}(u) = Aφe
iπαu2

∫ ∞

−∞
e−i2πβuu′ [

eiπαu
′2
f(u′)

]
du′,

(4)

where α = cotφ and β = cscφ. By using Shannon’s

interpolation formula and after some algebraic manipulations,

from Eqn.4, the following form can be obtained, [15]:

{Faf}
( m

2Δu

)
=

Aφ

2Δu
eiπ(α−β)( m

2Δu )2×
N∑

n=−N

eiπβ(
m−n
2Δu )2eiπ(α−β)( n

2Δu )2f
( n

2Δu

) (5)

Observing Eqn.5, it can be recognized that the summation is

the convolution of eiπβ(n/2Δu)2 and the chirp multiplied func-

tion f(·). The convolution can be computed in O(N logN)
time by using the standard FFT algorithm. The final output

samples can then be obtained by a final chirp multiplication,

resulting in the overall complexity of O(N logN).

IV. DIGITAL COMPUTATION OF LINEAR CANONICAL

TRANSFORMS

A. 1D Transforms

As in the case of FRT, we again employ the same ap-

proach for the digital computation of LCTs. The following

decomposition involving the FRT, scaling operation, and chirp

multiplication [16], [10]:

M =

[
1 0
−q 1

] [
M 0
0 1/M

] [
cos aπ/2 sin aπ/2
− sin aπ/2 cos aπ/2

]
.

(6)

where a is the order of the FRT, q is the chirp multiplication

parameter, and M is the scaling parameter. Since the fast

method proposed in [15] can be used for fast computation of

the FRT, this decomposition directly leads to a fast algorithm

for an arbitrary LCTs if one recalls that scaling and chirp

multiplication operations take only O(N) time.

However, it needs to be shown that the three parameters

(a, q, and M ) are sufficient to satisfy the decomposition

equality for an arbitrary ABCD matrix in order to have this

decomposition is capable of representing an arbitrary LCT. To

do that, the right hand side of Eqn. 6 and the M matrix entries

in terms of α, β, γ should be equal, which means:[
γ/β 1/β

−β + αγ/β α/β

]
=

[
M cos θ M sin θ

−qM cos θ − sin θ/M −qM sin θ + cos θ/M

]
.

(7)

After some algebra, a, q,M can be solved as:

a = (2/π)cot−1γ, (8)

M =

{ √
1 + γ2/β, γ ≥ 0,

−
√
1 + γ2/β, γ < 0,

(9)

q = γβ2/(1 + γ2)− α. (10)

In this algorithm, the first operation is a FRT. The presently

discussed fast LCT algorithm employs that fast FRT algorithm

as a subroutine. The second operation in this method is scaling,

which only involves a reinterpretation of the same samples

with a scaled sampling interval. The last operation is CM

which takes O(N) time, leading to an overall complexity of

O(N logN).

B. 2D Transforms
The fast computation of 2D FRTs is straightforward since

the separability of 2D FRT kernels. Given a fast algorithm

for 1D FRT, one can easily obtain a 2D fast algorithm by first

taking 1D FRTs along horizontal direction and then taking 1D

FRTs along vertical direction over the result of the horizontal

pass. On the case of LCTs, the above procedure can still

be used if the 2D LCT is of separable form. However, the

non-separable case needs special attention and deriving a fast

algorithm for its digital computation is rather involved, [11].

Two-dimensional non-separable LCTs (2D-NS-LCT) with pa-

rameter matrix M, of an input function f(u), can be expressed

as [5], [2]

fM(u) = (CMf)(u) =
1√

det iB

∫ ∞

−∞

∫ ∞

−∞
exp[iπ(u′TB−1Au′ − 2u′TB−1u+ uTDB−1u)]f(u′) du′,

where u = [ux uy]
T, u′ = [u′

x u′
y]

T with T denoting the

transpose operation. A,B,C,D are 2×2 submatrices defining

the transformation matrix M of the system that represents the

2D-LCT. The matrix M = [AB; CD] is real and symplectic.

Further details on the definition can be found in [11], [9].
Derivation of a fast algorithm for digital computation of

2D-NS-LCTs starts with an alternative representation of LCTs

based on Iwasawa decomposition,[2], [24]. In [2], the first ma-

trix of the Iwasawa decomposition is decomposed further into

a 2D separable fractional Fourier transform that is sandwiched

between two coordinate rotators. By using the 2D Iwasawa-

type decomposition of [2], it is possible to derive an efficient

algorithm for the computation of 2D NS LCTs [11].
An arbitrary transformation matrix M can be decomposed

in the following Iwasawa form [24], [2]:

M =

[
A B
C D

]
=

[
I 0

−G I

] [
S 0
0 S−1

] [
X Y
−Y X

]
,

(11)
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where

G = −(CAT +DBT)(AAT +BBT)−1, (12)

S = (AAT +BBT)1/2, (13)

X = (AAT +BBT)−1/2A, (14)

Y = (AAT +BBT)−1/2B. (15)

In this decomposition, the first operation is an orthosymplec-

tic system, the second one is a scaling (magnification) system,

and finally the last one is a two-dimensional chirp multiplica-

tion (2D CM). The first stage can be further decomposed into a

two-dimensional separable fractional Fourier transform (2D-

S-FRT) that is sandwiched between two coordinate rotators

[2]: [
X Y
−Y X

]
= Rr2Fax,ayRr1 , (16)

where the 4 × 4 matrices Rr1 and Rr1 are rotation matrices

of angles r1 and r2, respectively. Fax,ay is a 2D seperable

FRT matrix. Since 2D FRT operation is separable, it corre-

sponds to two 1D FRT operations performed over each of the

dimensions. This amounts to first performing 1D FRTs with

the fractional order ax for each of the rows (or columns) and

then performing 1D FRTs with the fractional order ay for each

of the columns (or rows) of the sampling grid. In summary,

the first stage of the algorithm involves determining the angle

parameters for the first coordinate rotation, followed by two

1D FRTs over each of the dimensions, and then followed by

the second coordinate rotation. These angles can be computed

by equating the LCT matrix with the decomposition matrix

and solving for the angles. All these steps can be calculated

in O(N logN) time.

The second stage is the scaling operation. The analogue of

the 1D scalar scaling parameter in the 2D case is the matrix

S. The matrix S can be used to determine the output samples

by using the input-output relation of the scaling operation:

fsc(u) =
1√
detS

f(S−1u) (17)

where f is the function to be scaled and fsc is the scaled

function.

Computationally, such a scaling operation amounts to mod-

ifying the information that tells us which coordinates the

samples belong to. Nevertheless, since it requires only the

reinterpretation of the coordinates of the samples, it does not

impose a computational load bigger than O(N logN).
The last stage is the 2D CM operation whose parameters are

given by the matrix G as defined in Eqn. 12. The input-output

relation of this 2D-CM is given as:

fch(u) = e−iπ(G11u
2
x+(G12+G21)uxuy+G22u

2
y)f(u) (18)

where fch stands for the chirp-multiplied function. This CM

operation can be non-separable or separable for the 2D-NS-

LCTs under consideration. In both cases, it only requires one

multiplication for each sample, resulting in O(N) computa-

tional complexity.

FRT/LCT Thresholding
Input Image

����

���	 �
	� Output Image
����

Inverse
FRT/LCT

Fig. 1. The following stages are performed sequentially during the sparse
recovery: FRT or LCT transformations, thresholding of varying percentages
of transform-domain coefficients, inverse tranformation, [8].

Since all the stages can be computed in O(N logN) time,

the overall transform can also be computed in O(N logN)
time where N stands for the total number of samples (pixel

values) in a 2D image.

V. APPLICATION TO SPARSE IMAGE REPRESENTATION

Digital image representation and compression receive

tremendous attention due to storage and bandwidth concerns,

use of which have been drastically increasing. Image com-

pression, in a general context, is a very involved area with an

enormous academic and industrial literature and a full-scale

compression framework includes representation, quantization,

encoding and decoding parts [20], [25], [22], [21], [1], [13].

The scope of this work does not cover quantization and

coding of the compressed data, which usually exists in image

compression standards. Here, we focus on representing the

image signal in several FRT/LCT transform domains that

would lead to sparser image representations. A transformation

of the image does not by itself compress it. Rather it sparsifies

the image, i.e., concentrates its energy in a more compact

support in the transformed domain. This, in return, becomes

a crucial preprocessing part since sparser representations lead

to higher quality decompressed images at given compression

ratios. It is, therefore, of great interest to study the transform

that gives the sparsest representation of an image in some

domain. Wavelet and Fourier related transforms are well-

established in In [3] and [12], FRTs have been utilized to

some extent for sparsification. However, these works have not

systematically elaborated the effects of these transforms in

sparsifying and increasing compression performance and are

far from a thorough and complete analysis.

To study the sparsifying properties of FRTs and LCTs, the

designed experiment is depicted in Figure 1. As shown in

Figure 1, original images are first transformed by FRT or

LCT. In the second stage, the subset of the transform-domain

coefficients that are smaller then a predetermined threshold

is set to zero. The inverse transform is performed on the

thresholded coefficients to recover the image as a final step.

The threshold selection reflects a desired rate of undersampling

denoted here as CR:

CR =
‖Vbef‖0
‖Vaft‖0

, (19)

where ‖x‖0 denotes the l0-norm of vector x, de-

fined as the number of nonzero elements in x. Note

that Vbef = [AT
bef,1A

T
bef,2 . . . A

T
bef,N ]T and Vaft =

[AT
aft,1A

T
aft,2 . . . A

T
aft,N ]T , where Abef,i and Aaft,i are the

ith columns of Abef and Aaft, which correspond to the

transform of the ideal reference image Iori ∈ IRM×N before
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and after the thresholding, respectively. So, A = T {Iori},

where T is the transform that we are using. CR corresponds

to the ratio of nonzero elements in the transformed data before

and after the thresholding.
To study the behaviour of the proposed method and to

compare it with other methods, a range of values for compres-

sion ratio (between 1 and 100) is spanned. Standard Discrete

Cosine transform (DCT) and Wavelet based methods with

9/7 and 5/3 filters are used as baseline reference methods

to compare against. Two comparative image quality metrics,

the mean squared error (MSE) and structural similarity index

(SSIM), are used. MSE is defined as:

MSE =

M∑
j=1

N∑
i=1

(Irec(i, j)− Iori(i, j))
2

M∑
j=1

N∑
i=1

(Iori(i, j))2
× 100, (20)

where Iori ∈ IRM×N is the ideal reference image, Irec ∈
IRM×N is the recovered image, and Iori(i, j), Irec(i, j) are the

image pixels. An average SSIM metric was calculated across

the whole image as follows [23]:

SSIM =
1

XY

X∑
x=1

Y∑
y=1

(2μxμy + c1) (2σxy + c2)(
μ2
x + μ2

y + c1
) (

σ2
x + σ2

y + c2
)
(21)

where x and y are image patches extracted from the recovered

and ideal images, respectively. μ and σ are the mean and

covariance of pixel intensity within the given patches. The

remaining parameters were selected as c1 = 10−4, c2 =
9 × 10−4, a Guassian kernel of width 10, and a standard

deviation of 5. The visual results of decompressed output

images for compression ratio of 40 can also be seen in

Figure 2 for the lake image. Figure 3 demonstrates how the

SSIM index and the MSE change with respect to different

compression ratios for our proposed transforms and for the

baseline methods.
For fractional transforms and linear canonical transform, the

optimal transform parameters (order a for FRT; α, β, and γ for

LCTs) are determined by using simple parameter sweeping.

The results for the parameter with the best output quality

determined by using SSIM indices are shown in the plots.

Here, the aim is to study the performance of the transforms

in sparsifying the data without causing much distortion to

the image. The parameter range is divided in 10 equal parts,

the best performing parameter is found and then a finer

sweep in the neighborhood of this quasi-optimal value with

10 more sub-steps is performed. Finally the optimal transform

parameter is obtained. For the baseline methods of Haar

wavelet transform, the block size is altered with the values

of 8, 16, and 32 and the best one is used. For the baseline

method of wavelet transforms with different levels, the level

at which the transform reaches its maximum SSIM index is

used.
Wavelet transform with filter 5/3 leads to higher SSIM

indices for CR values up to 50. For CR values larger than

Fig. 4. Three-dimensional image of lower-leg along different cross sections,
[8]

50, we see that the performances of FRT and LCT catch up

with the wavelet transform with filter 5/3. Moreover, these

three transforms seem to overperform DCT, in the sense of

SSIM index, for a wide range of CRs when all of them are

applied to the whole image.

A comparison between FRT and LCT shows that their

performances are almost the same. Due to this reason, it

would be preferable to use FRT instead of LCT since one

needs to optimize three parameters for LCTs whereas only

one parameter needs to be optimized for the FRT.

As another application, FRT and LCTs are applied as

sparsifying transforms to three-dimensional (3D) medical data.

The 3D images are frequently used in medical imaging and

the one used in these experiments is shown in Figure 4. It is an

image of the lower leg section of human body. The image is of

dimension 128x128x192. The image is complex (pixel values

are complex numbers), so it can be shown that the FRT and

LCTs can also be used as sparsifying transforms for complex

signals.

Two methods are used to study the three dimensional sample

image. In the first method, the three-dimensional image is

regarded as a concatenated set of two-dimensional images. Its

each layers are considered separately in finding the optimal

fractional order and compressed/reconstructed independently.

The second method takes the three-dimensional image as a

whole and treats it by taking a three-dimensional transform.

In both of these methods, the fast algorithms for 2D FRTs

and 2D LCTs as well as 1D versions, which are explained in

the previous Sections are used. The performances of these two

methods when FRT or LCT is deployed are shown in Figure

5. In Figure 5, FRT (A) and LCT (A) correspond to the cases
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Decompressed images after being compressed with CR = 40 using (a) Haar transform (16x16 blocks), (b) FRT (to whole image), (c) LCT (to whole
image), (d) DCT (to whole image), (e) Wavelet 9/7 (to whole image), (f) Wavelet 5/3 (to whole image), [8]
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Fig. 3. SSIM index and MSE vs CR for lake image, [8]
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Fig. 5. MSE vs CR for the three-dimensional lower-leg image, [8]

where Method 1 is used. Likewise, FRT (B) and LCT (B)

means that these transforms are applied to the image using

the Method 2. Figure 5 presents that LCT and FRT perform

with similar performance. However, Method 2 produces better

quality outputs for three-dimensional images with considerable

superiority to Method 1.

VI. CONCLUSIONS

This work focuses on experimenting with FRTs and LCTs

to achieve the sparsest representation of image data. To do this,

one needs to have accurate and efficient digital computation

algorithms for their computation. FRTs and LCTs have been

shown to be useful in obtaining sparser representations for

images. Simulations have shown that for higher compres-

sion ratios, the difference between the performances of the

transforms becomes more noticeable. Fractional Fourier and

linear canonical transforms are shown to yield better results.

Regarding three-dimensional images, we found that it is much

better to treat all dimensions uniformly and work with three-

dimensional transforms, as opposed to treating them as mul-

tiple two-dimensional layers. This was far from an obvious

conclusion since the layered method allows the optimization

of the parameters for each layer independently.
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