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Maximum A Posteriori Adjustment of Adaptive
Transversal Filters in Active Noise Control
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Abstract—This paper develops a novel approach to adaptive
active noise control based on the theory of Bayesian estimation.
Control system parameters are considered as statistical variables
and a formulation for the joint probability density function of
them is derived. An optimal solution for the system parameters
is then calculated through maximizing the density function.
An efficient adaptive algorithm for iterative calculation of the
optimal parameters is proposed. It is shown that the well-
known FxLMS algorithm can be derived as a special case of
the proposed algorithm, where the noise to be canceled is a
white Gaussian process. Simulation results verify the preference
of the proposed system to the traditional active noise control
systems in terms of steady-state performance and convergence
rate. It is also shown that the preference of the proposed system
is much more evident when the noise to be canceled is not white.
Finally, a successful implementation of the proposed system in
an experimental acoustic duct is reported.

I. INTRODUCTION

Active Noise Control (ANC) relies on the destructive su-

perposition of sound fields [1]. In a generic adaptive ANC

system, an adaptive controller (or filter), called ANC filter,

is responsible for driving a canceling source that produces

an optimal cancelling sound field. ANC filter parameters are

estimated in such a way that the superposition of the canceling

sound field and the unwanted sound field (noise) at the

location of a desired Zone of Silence (ZOS) becomes minimal.

Unfortunately, standard adaptive control algorithms [2] cannot

estimate ANC filter parameters due to the existence of an

unknown signal channel between the canceling source and the

desired ZOS. For solving this problem, several ANC specific

adaptive algorithms (usually calledadaptive ANC algorithms)

such as Filtered-reference Least Mean Square (FxLMS) or

Filtered-reference Recursive Lease Square (RLS) algorithms

have been derived [3]. The main motivation of this paper is to

derive a novel adaptive ANC algorithm based on the theory

of Bayesian estimation and more particularly the theory of

Bayesian inverse problems [4].

Fig 1 shows the block diagram of a generic ANC system

[5], [6]. In this figure, ξ (n), y (n) and r (n) represent noise,

cancelling sound and residual noise at ZOS. Considering that

the noise source(s) is placed at an arbitrary location, noise

waves must travel across an acoustic system (or channel),

called the primary path, to reach ZOS. ξ (n) which is the

received noise signal at the ZOS cannot be measured as it
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intends to be combined by the cancelling sound. However, a

microphone, called the reference microphone, is placed close

to the noise source to measure a reference signal x (n). The

control signal u (n) is the response of the ANC filter W to

x (n). This signal is converted to sound by a loudspeaker

(canceling source) and propagates through an electro-acoustic

signal channel, called the secondary path to reach ZOS. The

secondary path is shown by S in the block diagram shown in

Figure 1. In fact, the cancelling signal y (n) is the response of

the secondary path S to the control signal u (n). Acoustic

signals ξ (n) and y (n) combine with each other at ZOS,

resulting in residual noise signal r (n). A microphone, called

the error microphone, is placed at ZOS to measure r (n).
Adaptive ANC algorithms such as Filtered-x Least Mean

Square (FxLMS) algorithm [7], [8] are responsible for the

adaptive adjustment of the ANC filter W subject to the min-

imization of the residual noise r (n). Like FxLMS algorithm,

most of adaptive ANC algorithms require an estimate model

for the secondary path S. This model is obtained by using

secondary path modeling techniques [9]–[12], which is an es-

sential part of ANC systems. FxLMS is a very computationally

efficient algorithm but it suffers from slow convergence rate.

Furthermore, its stability is very sensitive to the parameters of

the noise, media and control system [13]–[15].
In this paper, a novel algorithm for adaptive adjustment of

the ANC filter based on the theory of Bayesian estimation

[4] is developed. This method was previously used by the

authors to develop a novel solution for on-line secondary path

modeling [12]. However, it has not been used for solving the

main ANC problem that is the adaptive adjustment of the ANC

filter. The rest of the paper is organized as follows. Section

2 develops a novel approach to adaptive ANC based on the

theory of Bayesian estimation, resulting in a formulation for an

optimal ANC filter. Section 3 proposes a novel algorithm for

the iterative estimation of the proposed optimal ANC filter.

Section 4 discusses computer simulation results. Section 5

reports a successful implementation of the proposed algorithm

and finally section 6 gives concluding remarks.

II. BAYESIAN APPROACH TO ADAPTIVE ANC

A. Mathematical modeling of a generic ANC system
In a generic ANC system, residual noise r (n) can be

formulated as the superposition of the original noise ξ (n) and

cancelling sound y (n):

r (n) = ξ (n) + y (n) (1)

Referring to Figure 1, y (n) is the response of the secondary

path S to the control signal u (n). The adaptive filter W
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is responsible for producing the control signal u (n) from a

reference signal x (n). Usually, the adaptive filter used in ANC

has a transversal structure of length L and the secondary path

is a linear system with a finite-duration impulse response of

length Q. In this case, the impulse response coefficients of

the ANC filter and secondary path can be represented by the

following vectors.

w =
[
w0 w1 . . . wL−1

]T
(2)

s =
[
s0 s1 . . . sQ−1

]T
(3)

From the block diagram given in Figure 1, y (n) can be

expressed by

y (n) =

Q−1∑
q=0

squ (n− q) (4)

Similarly, u (n) can be expressed by

u (n) =
L−1∑
l=0

wlx (n− l) (5)

Combining Eqs. (4) and (5) results in

y (n) =

Q−1∑
q=0

L−1∑
l=0

sqwlx (n− l − q) (6)

Eq. (6) can be re-expressed by

y (n) =

L−1∑
l=0

wlxs (n− l) (7)

where xs (n), called the filtered-reference signal is given by

xs (n) =

Q−1∑
q=0

sqx (n− q) (8)

Substituting Eq. (7) into (1) results in the following formula-

tion for the residual noise.

r (n) = ξ (n) +
L−1∑
l=0

wlxs (n− l) (9)

The optimization problem of adaptive ANC is to find the

coefficients wl subject to the minimization of an appropriate

cost function of r (n).

B. Proposed optimization method

Let us form a measurement vector r by using the most

recent samples of the residual noise r (n):

r =
[
r (n) r (n− 1) ... r (n−M + 1)

]T
(10)

where M is the length of the measurement vector. From

Eq.(1), r can be formulated by

r = ξ + y (11)

where the noise vector ξ and the cancelling sound vector y are

formed by samples of the noise and cancelling sound signals:

ξ =
[
ξ (n) ξ (n− 1) ... ξ (n−M + 1)

]T
(12)

u y rx

Figure 1: Block diagram of a generic ADAPTIVE ANC system

y =
[
y (n) y (n− 1) ... y (n−M + 1)

]T
(13)

From Eq. (7), y can be formulated by

y = FTw (14)

where F is a L×M matrix given by

Fij = xs (n− i− j − 2) , i ∈ N≤L, j ∈ N≤M (15)

Combining Eqs. (11) and (14) results in

r = ξ + FTw (16)

Let us assume that noise is a zero-mean Gaussian variable;

thus,

π (ξ) ∝ exp
(
− 1

2σ2
ξ
‖ξ‖2

)
(17)

where π (ξ) is the probability density function of ξ, σ2
ξ is the

variance of noise samples and ‖.‖ denotes the Euclidean norm.

For a given w, the assumption of mutual independence of w
and ξ ensure that probability density of ξ remains unaltered

when conditioned on w. Therefore,

π (r | w) =

∫
π (r | w, ξ)π (ξ) dξ

=

∫
δ
(
r− ξ − FTw

)
π (ξ) dξ

= πξ
(
r− FTw

)
(18)

Combining Eq. (17) and (18) results in

π (r | w) ∝ exp
(
− 1

2σ2
ξ

∥∥r− FTw
∥∥2) (19)

The conditional probability density π (w | r) is considered as

the posterior density of w. This density expresses what is

known about w after the realized observation r. According

to the Bayes formula,

πpost (w) = π (w | r) = π (r | w)πpr (w)

π (r)
(20)

where πpr (w) is the prior density of w, describing what is

known about w prior to the measurement. Here, a Gaussian

prior density is assumed.

πpr (w) ∝ exp
(
− 1

2σ2
s
‖w − w̄‖2

)
(21)

where w̄ and σ2
w are the mean and variance of the prior

density. Substituting Eqs. (19) and (21) into (20) results in

πpost (w) ∝ exp
(
− 1

2σ2
ξ

∥∥r− FTw
∥∥2 − 1

2σ2
w
‖w − w̄‖2

)
(22)
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By maximizing πpost (w), a Maximum A Posteriori (MAP)

estimation for w can be calculated:

wMAP = argmax
w

π (w | r) (23)

Combining Eqs. (22) and (23) would lead to

wMAP = argmax
w

{
1

2σ2
ξ

∥∥r− FTw
∥∥2 + 1

2σ2
w
‖w − w̄‖2

}
(24)

Thus, wMAP would be the solution of

∇
{

1
2σ2

ξ

∥∥r− FTw
∥∥2 + 1

2σ2
w
‖w − w̄‖2

}
= 0 (25)

which is in the form of

wMAP =
(
I+ μFFT

)−1
(w̄ − μFr) (26)

where I is the identity matrix of order M and

μ =
σ2
w

σ2
ξ

Eq. (26) gives an optimal solution for the ANC filter; however,

its realization is not computationally efficient. An adaptive

algorithm for the realization of Eq. (26) is derived in the next

section.

III. AN ADAPTIVE ALGORITHM FOR ITERATIVE

CALCULATION OF wMAP

Given that wMAP (n − 1) is the best guess for w at time

index n − 1, we would estimate wMAP (n) as a maximum

a posteriori estimate when conditioned on the most recent

sample of the residual noise, r (n):

w (n) = wMAP (n) = argmax
w

π (w | r (n)) , (27)

which is a very especial case of Eq. (23) with M = 1. In this

situation, matrix F is simplified to a row vector in R
L. We

represent this vector by

f =
[
xs (n) xs (n− 1) . . . xs (n− L+ 1)

]T
(28)

Now, w (n) can be formulated by substituting w̄ = w (n− 1),
r = r (n) and F = f into Eq. (26):

w (n) =
(
I+ μffT

)−1 {w (n− 1)− μfr (n)} (29)

The recursive algorithm given in Eq. (29) involves in a matrix

inversion, which is not appropriate for implementation by us-

ing commercial real-time embedded systems. In the following,

an alternative formulation which avoid matrix inversion is

derived.

Infinite summation of geometric series of a matrix M
converges to (I−M)

−1
provided that all the eigenvalues of

M are between −1 and 1. Thus, by setting M = −μffT , one

can deduce that

(
I+ μffT

)−1
=

∞∑
k=0

(−μf fT
)k

(30)

provided that all the eigenvalues of μffT are located between

−1 and 1. Matrix ffT is a positive definite symmetric matrix

that has L−1 zero eigenvalues and one non-zero eigenvalue of

‖f‖2. Accordingly, μffT has L− 1 zero eigenvalues and one

non-zero eigenvalue of μ ‖f‖2. Therefore, the identity given

in Eq. (30) only requires

μ ‖f‖2 < 1 ⇒ μ <
1

‖f‖2 (31)

For large L, ‖f‖2 can be approximated by

‖f‖2 = LPxs (32)

where Pxs
is the power of xs (n). Substituting this solution

into Eq. (31) results in the following condition for the conver-

gence of
(
I+ μffT

)−1
.

μ <
1

LPxs

. (33)

It is now desired to derive a closed-form expression for the

right side of the identity given in Eq. (30). It can be initiated

by calculating
(
ffT

)2
as follows.

(
ffT

)2
=

(
ffT

) (
ffT

)
= f

(
fT f

)
fT (34)

Since f is a vector, fT f is a scalar and equal to the norm of

f , which can be estimated by ffT = ‖f‖2 . Substituting this

result into Eq. (34) and using Eq. (32) results in

(
ffT

)2 ≈ LPxs
ffT (35)

Multiplying both sides of this identity by ffT and replacing(
ffT

)2
with LPxs

ffT results in

(
ffT

)3 ≈ L2P 2
xs
ffT (36)

By repeating this process, the following general expression for

the powers of ffT can be derived.

(
f fT

)k
= (LPxs)

k−1
f fT, k ≥ 1 (37)

Substituting Eq. (37) into the right side of the Eq. (30) gives

(
I+ μffT

)−1
= I+

1

LPxs

∞∑
k=1

(−μLPxs)
k
ffT (38)

which can be simplified by

(
I+ σ2

w/ξff
T
)−1

= I− μ

1 + μLPxs

ffT

= I− μffT (39)

where μ is defined by

ρ =
μ

1 + μLPxs

(40)

Now, substituting Eq. (39) into (29) results in

w (n) =
(
I− ρffT

)
(w (n− 1)− μfr (n)) (41)

which is the proposed iterative algorithm for the maximum a

posteriori estimation of ANC filters.

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017



4

n

a) primary path impulse response

n

b) secondary path impulse response

Figure 2: Impulse responses of the primary and secondary

paths used in computer simulation

Derivation of the FxLMS algorithm as a special case of the
proposed algorithm

For a large L and a Gaussian white noise, one can conclude

ffT ≈ PxsI (42)

In this case, I− ρffT is simplified to

I− ρffT = I− μ

1 + μLPxs

ffT

=

(
1− μPxs

1 + μLPxs

)
I

=

(
1 + μ (L− 1)Pxs

1 + μLPxs

)
I (43)

For large L (high order adaptive filters),

1 + μ (L− 1)Pxs

1 + μLPxs

≈ 1 (44)

Thus,

I− ρffT ≈ I (45)

Substituting this result into Eq. (41) results in

w (n) = w (n− 1)− μfr (n) (46)

which is identical to the well-known FxLMS algorithm. In fact,

the FxLMS algorithm is a very special case of the proposed

algorithm, where the noise to be canceled is a Gaussian white

process and the adaptive filter length is high.

IV. COMPUTER SIMULATION

This section demonstrates the validity of the theoretical

results by using computer simulation. The impulse responses

of the primary and secondary paths used in the computer

simulations are shown in Figure 2. The impulse responses

are measured in an experimental ANC setup installed in an

acoustic duct [12]. The acoustic duct and experimental setup

is discussed in the next section. For simulating the system

n

a) FxLMS-based ANC with optimal step-size

n

b) proposed system - maximum a posteriori ANC

Figure 3: Residual noise signal obtained by using FxLMS

algorithm and the proposed algorithm for white noise

time index

A
m
p
li
tu
d
e
(d
B
)

Mean square of residual noise

Figure 4: Mean square of the residual noise obtained by using

FxLMS algorithm and the proposed algorithm for white noise

operation, two MATLAB codes are developed: one for an

FxLMS-based ANC system and one for the proposed ANC

system.

In the first computer simulation experiment, a white signal

with the power of 1 is used as the original noise. In this

case, both the FxLMS-based and proposed ANC systems can

successfully attenuate the noise. Figure 3 shows the variation

of the residual noise obtained by using the two ANC systems.

The step-size of the FxLMS algorithm is set to its optimal

level as proposed in [16]. It can be seen visually, that the

convergence rate of the proposed ANC system is higher than

that of the FxLMS-based ANC system. This experiment is

repeated for 500 times with independent random noise signals.

The residual noise signal for each experiment run is recorded

and the mean square of the residual noise is calculated by

averaging over the square of the residual noise signals. This

measure is usually called Mean Square Error (MSE) in ANC
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n

a) FxLMS-based ANC with optimal step-size

n

b) proposed system - maximum a posteriori ANC

Figure 5: Residual noise signal obtained by using FxLMS

algorithm and the proposed algorithm for pink noise

time index

A
m
p
li
tu
d
e
(d
B
)

Mean square of residual noise

Figure 6: Mean square of the residual noise obtained by using

FxLMS algorithm and the proposed algorithm for pink noise

literature, representing the performance of the adaptation pro-

cess. The convergence rate of the MSE signal shows the speed

of the adaptation process performed by the adaptive algorithm

and the steady-state level of it shows the residual noise level

in steady-state conditions. The MSE curves obtained by using

the FxLMS-based and proposed ANC systems are shown in

Figure 4. As seen, the performance of the proposed ANC

system is higher than that of the FxLMS-based ANC in terms

of convergence rate and steady-state level.

In the second experiment, a pink noise with the power 1 is

used as the original noise and the same procedure discussed

above is performed. The variation of the residual noise is

shown in Figure 5 and the MSE function is shown in Figure

6. As seen, the proposed system has a higher performance in

terms of the convergence rate and steady-state performance,

similar to the previous experiment. It can be also concluded

from the above experiments that the preference of the proposed

ANC system to the traditional FxLMS-based ANC system is

more evident when the noise to be canceled is not a white

process.

V. EXPERIMENTAL RESULTS

This section reports a successful implementation of the

proposed ANC system. The key hardware component used for

the implementation of the system is a Single Board RIO 9627

(sbRIO-9627) manufactured by National Instruments. This

processor has a 667MHz dual-core ARM Cortex-A9 based

microprocessor and a reconfigurable FPGA chip (Xilinx Zynq-

7000 XC7Z020 All Programmable SoC) on which the code

of the proposed algorithm is executed. C series modules NI

9234E and NI 9263 are used for acoustic signal acquisition. NI

9234E module is a compact analogue input module which fea-

tures 4 channel 24-bit resolution ADC and whose input range

is -5V to 5V. It can accept either differential input or single-end

input signal. NI 9263 module is a powerful analogue output

featuring 16-bit resolution DAC and whose output range is

-10V to 10V. The microphones used for picking up residual

noise signal (error microphone) and reference signal (reference

microphone) are dynamic cardioid microphones (AKG 770D)

with the sensitivity of -52dB (2.5mV/Pa). The microphones

have a flat frequency response at low frequency range. The

loudspeaker used as the anti-noise source is CW2190 with the

rated output power of 27 watts and impedance of 8 ohms; the

self-designed power amplifier producing 15 watts at 8 ohms

is used to drive the loudspeaker.

The control system is installed in an acoustic duct with the

dimensions of 1600 cm × 22 cm × 33 cm. A random noise

(band-limited white noise with the power of 20 dB and

frequency range of 300−1000 Hz) is generated by a computer

and injected into the opening of the duct as shown in Figure 7.

The location of the canceling loudspeaker and microphones are

also shown in Figure 7. The sampling frequency of the control

system is set to 6 KHz. A secondary path model is measured

by using off-line secondary path modeling technique prior to

the operation of the ANC system [15]. The two parameters of

the adaptive algorithm are set to μ = 0.002 and ρ = 2e − 5.

Figure 8 shows the results obtained from the experiment.

Figure 8a shows the variation of the residual noise. As seen,

the residual noise power converges to its steady-state level

of −3 dB after about 0.5 Seconds. Figure 8a compares the

spectra of the original noise and residual noise. As seen, the

proposed ANC system can efficiently attenuate the noise over

its frequency range.

VI. CONCLUSION

Bayesian statistics provide a very reliable platform for the

derivation of real-time signal processing algorithms. A real-

time adaptive algorithm for the adjustment of transversal

adaptive controllers (filters) used in active noise control is

proposed in this paper. The joint probability desnity dis-

tribution of the ANC filter parameters are formulated and

its maximum a posteriori solution is calculated to be used

as the optimal solution for the ANC filter parameters. This

optimal solution for the parameters of the adaptive controller

is given in terms of available signals, i.e. reference signal and
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Figure 7: Schematic diagram of the experimental setup

time(s)

Experimental results - residual noise

(a) Variation of the residual noise

Frequency(Hz)

experimental results - power spectrum

(b) Spectra of the original and residual noise

Figure 8: Experimental results

residual noise. Real-time implementation of this solution is not

computationally efficient. Hence, a simple iterative algorithm

is developed to reach an estimate of the optimal solution.

The proposed algorithm is found efficient in both computer

simulation and practical experiments.
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