
Towards Event-Based MCTS for Autonomous Cars
Nicola Catenacci Volpi∗, Yan Wu† and Dimitri Ognibene‡

∗ School of Computer Science, University of Hertfordshire, Hatfield, UK
E-mail: n.catenacci-volpi@herts.ac.uk

† Robotics Department, Institute for Infocomm Research, A*STAR, Singapore
E-mail: wuy@i2r.a-star.edu.sg

‡ ETIC, Universitat Pompeu Fabra, Barcelona, Spain
E-mail: dimitri.ognibene@upf.edu

ABSTRACT

Uncertainty in the behaviours of vehicles surrounding a self-
driving car introduces substantial computational complexity in
autonomous driving. In this study1, a data-driven approach
was used to extract probabilistic models of the behaviours
of other cars and exploit them to support a driving system
based on Monte Carlo Tree Search (MCTS). The model
selection component of the architecture infers which models
better explain the current behaviours of the other vehicles
using maximum likelihood estimation for Bayesian model
comparison. The inferred behaviours are then used for MCTS-
based control to prevent rollouts on models that are not
relevant in the current context. While the use of multiple
models allows improved efficiency and higher flexibility, it
also introduces identification-related issues, which were solved
here using Bayesian machine learning. The results obtained
from the performed simulations are presented comparing the
proposed MCTS architecture when employing multiple models
with a naive model of the other vehicles.

I. INTRODUCTION

In this study, we test a probabilistic model-based controller
in a dynamic environment where stochastic evolution depends
on a latent variable. This can be used to simplify multi-agent
planning in contexts where the agent intentions are constant
and correspond to the hidden variable values.

The task we used to test this model is autonomous driving,
which requires controlling the vehicle in various environments
and against different behaviours of the other agents. Multiple
model-based architectures [4] offer the necessary flexibility for
such variety of contexts.

To use a probabilistic approach in this context is important
because a precise and deterministic model of the controlled car
may not be available and, more importantly, because it allows
to take into account for the uncertainty related to the actions
of the surrounding vehicles. In this regard, a crucial challenge
is to employ non-trivial predictive models. This requires to
build or acquire these models, as well as managing them
during control. In the present study, the predicted models were

1This work was partially supported by EC Horizon 2020 programme under
the project WiMUST (Grant agreement no: 645141, Strategic objective: H2020
- ICT-23-2014 - Robotics). The authors thank Aldo Fanelli for the precious
support.

extracted from data using machine learning methods, or were
identified directly whenever possible. The question of how
to acquire models that enable safe and efficient interaction
is left for future work. Usually, algorithms to learn models
of behaviours of other agents are employed to directly train
model-free systems that replicate such behaviours [13], or to
indirectly train them to comply with other agents producing
the same behaviours.

The main contribution of this study is to investigate the
use of predictive models in a multiple model-based MCTS
architecture, which selects those that are more suitable for
prediction and control in the current context. This approach,
by focusing on more relevant and likely conditions, enables
more precise predictions and has computational advantages.

A mixture of linear Gaussian models is used to model the
behaviours of other vehicles, each one implemented with a
Kalman filters (KF) used to track online the corresponding
behaviour of the other cars. The Upper Confidence bounds
for Trees algorithm (UCT [11]) is then used to plan future
actions using the predictions produced by the Kalman filters.
A MCTS approach with limited horizon has been selected as
it provides good performance even when limited knowledge
of the system dynamics is available (e.g., only a black box
simulator is available). Note that in each experiment the
system was evaluated during a single event (i.e., only one
model explains the observed dynamics).

A. Related works

MOSAIC [20], [8], [19] was one of the first architectures
employing pairs of predictors-controllers for control. Each
predictor-controller pair is optimised for a specific latent
state of the environment. Then, the more precise a predictor
is the higher influence the corresponding controller should
have. However, the flexibility of this approach could be quite
limited because of the use of reactive controllers. Moreover,
the trivial combination of controllers outputs could result in
suboptimal behaviour, especially when ambiguity persists over
the predictors.

HAMMER [17], [3] is a hierarchical architecture of
controllers-predictors for robot control and learning by imita-
tion. It showed how such hierarchical structure could provide a
robot with flexible learning from different sources of learning
(social or autonomous exploration). It also introduces the idea

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017

of actively controlling perception to support model predictions.
Like MOSAIC, the effects of persistent ambiguity between the
predictors-controller pairs have not been deeply investigated
and were not considered in the employed active perception
approach.

The AERIG system proposed in [15] also uses a mixture of
Kalman filters to predict other agents’ actions. In addition, to
improve the identification of the model that better describes
the environment, this method provides an information theoretic
control of the robot cameras to gather relevant information
(e.g., switching between observed effectors or locating new
candidate action, target or obstacle).

In [2], a model-based approach was used to deal with
interaction in social environments. In this work, the intentions
of other agents are know or drawn from a uniform probability
distribution, hence no estimation was performed. A similar
method was reported in [1], where a discrete and static
environment was considered (i.e., grid-world).

Galceran et al. [6], focus on the urban driving context.
Similar to our approach, they use a Partially Observable
Markov Decision Process (POMPD) formulation where re-
cent observations are used to estimate the distribution of
current behaviours of the other cars, encoded as closed-loop
policies that react to the actions of the other vehicles. This
approach employs low-level precomputed closed-loop policies
to describe also the controlled car. The closed-loop policy to
execute is selected by sampling forward simulations of all the
nearby cars using the estimated distribution over their current
behaviours. While this leads to computational advantages, it
limits flexibility and may require a large number of low-level
policies to account for the different structures of the road, other
car states and the current goal.

II. METHODS

The event-based MCTS algorithm for Markov Decision
Processes (MDP) is based on the combination of a Mixture
of Kalman Filters and a continuous state MDP. These two
components are coupled in order to make MCTS plan for
the events currently detected by the KFs. In the following
sections, these components will be described. The overall
structure of the system with the interaction between the
different components is depicted in Figure 1.

A. Mixture of Kalman Filters

A mixture of KFs is composed of a set of Kalman filters
KF 1,KF 2, . . . ,KFN such that KF v = (Av, Qv, H,R) for
all v = 1, . . . , N . Each KF is specialized in recognition of one
event v characterised by a linear dynamic system (LDS). Each
LDS is described by the following equations. Its state evolves
according to xvt+1 = Avxvt + wvt+1 with wvt+1 ∼ N (0, Qv),
where Av is the transition matrix and Qv is the covariance
matrix of event v. The observations ovt+1 produced by each
LDS are: ovt+1 = Hxvt+1 + ηt+1 with ηt+1 ∼ N (0, R).
We assume that all the KFs of the mixture have the same
observation matrix H and observation noise covariance matrix
R. In other words, events represent possible Gaussian linear

KF1 2 ... p-1 p

MDP 1 2 ... p-1 p

ENVIRONMENT

AGENT

KF KF KF

MDP MDP MDP

2 p-1 p

2 p

o

P (1|o) P (2|o)
P (p|o)

↵

⇡↵

⇡↵

↵

 a

↵ = argmaxvP (v|o)

Fig. 1. Architecture overview.

transitions of the non-stationary elements of the state vector xt
(e.g. an object moving straight subjected to Gaussian noise).

Assuming that the event is constant 2for the whole observa-
tion time T , if we have o1:T , the posterior probability of each
event can be recursively obtained using Bayes’ Formula:

p(v|o1:t) =
p(ot|v)p(v|o1:t−1)

p(ot|o1:t−1)
. (1)

This provides a measure of current relevance of the event
v at a certain time t.

Note that in eq. (1), the denominator is independent of the
event and that p(ot|v) corresponds to the probability of the
observation for the KF specialized in the estimation of the
state of the event v

P (ot|v) ∼ N (ot; ô
v
t , Ĥ

v
t) (2)

where ôvt = Hvx̂vt is the predicted mean of the observation
distribution of the event v and Ĥv

t = HΣ̂vtH
T + R is the

expected covariance of the observation for event v, with Σ̂vt
the covariance of the state. Obtaining these quantities is not
an additional computational burden being computed as part of
the standard Kalman filter update step. The event-based MCTS
algorithm finds the index of the most probable event at time t,

2Here we focus only on the detection of the first event. When the event
can switch during the observation, the treatment becomes more complex. See
[16], [14], [5]

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017

αt = argmaxvP (v|o1:t), doing Bayesian recursive estimation
and Bayesian model comparison through maximum likelihood
estimation [15]. As we will see, this information can be used
to focus the online planning machinery on the most probable
event αt that is currently occurring in the environment.

B. Online Markov Decision Process Generation

To reduce the computational complexity of a real-time agent
embedded in a continuous dynamical system, it is often neces-
sary to decompose the decision-making process among several
micro-behaviors [18]. Usually, only a small subset of possible
future states and transitions are relevant in each context.
Hence, in this work we generate online a continuous MDP
using both the LDS and the estimated state corresponding to
the KF α with the highest posterior probability. The MDP does
not need to be represented explicitly. Only the states visited
during the online decision process are generated and stored.

The state of the generated Continuous MDP corresponds to
the tuple S = {S0, Si, i = 1 : M}, where M is the number of
cars, S0 is the state of the car controlled by the agent and Si
is the state of the i-th car.

The transition probability distributions T S′,S
a =

Pa(St+1 = S′|St = S) can be factored in
T S′,S
a = Pa(St+1

0 |St0)
∏N
i P

α(St+1
i |Sti) with Pa(St+1

0 |St0)
describing the controlled car dynamics and Pα(St+1

i |Sti)
corresponding to the transition matrix of the car i for the
winning KF α.

The reward function of the MDP is tuned to give punish-
ment when the controlled car collides with another one and
incentives when the vehicle is proceeding forward along the
track.

The combination of a mixture of KFs and MCTS yields an
online planner that computes only the control of the event α,
disregarding events that are not relevant in the current context.

III. EXPERIMENTAL SET-UP AND RESULTS

A. Task and Model Validation

The proposed model was tested on a simulated task that
concerns overtaking between two cars in a driving scenario.
For the sake of simplicity, in the following experiments we
assume that our self-driving car is interacting with only
another car. To conduct the experiments, the Open Racing
Car Simulator (TORCS) [21] 3 was used. TORCS is an
open-source car simulator written in C++ widely used by the
research community. It has a sophisticated physics engine that
allows realistic simulation of the cars’ dynamics with three-
dimensional body physics, aerodynamics effects taken into
account and noisy actuators deployed on the simulated cars.

In the following experiments, we show how the car con-
trolled by the event-based MCTS can overtake another car
through smooth trajectories and avoid going out of the track.
To underline the ability of the proposed method to perform
well in various contexts, two different behaviours of the other
car are considered in the following sections: in Scenario 1 the

3http://torcs.sourceforge.net/index.php

Fig. 2. A snapshot of the TORCS simulator.

other car is moving at constant speed towards a certain heading
direction; in Scenario 2 the other car is decelerating. The
number of successful overtakes over several trials is used as a
measure of performance. In addition, how this quantity varies
according to the number of rollouts used within the MCTS
algorithm is considered in order to evaluate the computational
complexity of the proposed method.

To validate our model, a comparison with a simple overtak-
ing car model is investigated. This model, instead of consid-
ering a mixture of Kalman filters, represents the dynamics of
the other car with a simple bi-dimensional transition function.
This function updates the car position Pt = (pxt , p

y
t) using a

kinematic equation with no acceleration, and assumes that the
other car keeps the last observed speed Vt = (vxt , v

y
t) plus a

Gaussian noise term η ∼ N (0,Σ):

Pt+1 = Pt + ∆Vt
Vt+1 = Vt + η

(3)

Where ∆ is the time step of the difference equation. In
order to perform a successful overtake with this model, the
variance of this Gaussian random variable has to be large
enough to capture all the possible dynamics of the other car
(e.g., unexpected change of acceleration). In the performed
simulations the covariance matrix of this distribution was set
as Σ = diag(0.1, 1.1).

Although the other car moves according to only one of the
aforementioned two behaviours during one experiment, it is
important to underline that the controlled car will have no
direct knowledge about which of these behaviours will be
chosen. Hence both the event-based MCTS controller and the
simple overtaking car model will have to perform well in
both scenarios.The event-based MCTS controller will do so
by picking up the proper Kalman filter from the mixture and
then plan according to the corresponding other car’s transition
model, whereas the simple overtaking car model has to be

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017

defined with a large enough speed variance to take into account
both dynamics.

B. Experimental Set-Up

1) Kalman Filters and LDS learning: In the present work
events are defined as given subsets of potential dynamics of
the other car. Considering the two different scenarios described
in the previous section, two different ways of obtaining the
corresponding Kalman filters’ noisy transition matrices Av

and Qv were considered. Then, all these families of Kalman
filters will be added to the mixture of the event-based MCTS
controller.

In Scenario 1, a simple behaviour of the other car is
considered, hence a proper set of matrices could be identified
directly. In this case, the other car moving at constant speed
towards a certain heading direction is modelled with several
Kalman filters, each one used to detect different combination
of time step ∆v (used to represent the current speed with
the proper time resolution) and heading direction T v . The
state vector of the Kalman filter v is Xv = [P v, V v, T v],
where P v = (P vx , P

v
y) represents the observed car’s position,

V v = (V vx , V
v
y) represents the latent variable of car’s velocity

and T v = (T vx , T
v
y) is the observed heading direction. To

this aim, the matrix Av is defined in order to represent the
following transition function:

P vt+1 = P vt + ∆vV vt
V vt+1 = ∆v(T vt − P vt)
T vt+1 = T vt + ∆vV vt

(4)

At the beginning of the simulation, the variables T v are
initialized with the coordinates of points that lie towards the
corresponding heading direction and the distance between
these coordinates and the car position is kept constant during
an event. In the experiments investigated in this work, 50
possible time steps ∆v and 32 possible heading directions
T v were considered for a total of 1600 events representing
the other car moving at a constant speed. The covariance
matrices used for all these events were chosen to be Qv =
diag(0.01, 0.01, 0.008, 0.008, 0.5, 0.5).

In addition, a Kalman filter used to recognize a stationary
car was added to the mixture. Hence, the transition ma-
trix used to model this car was defined as follows Av =
diag(P vx , P

v
y , 0, 0) (note that no heading direction is consid-

ered here). The covariance matrix adopted in this Kalman filter
is Qv = diag(0.001, 0.001, 0.001, 0.001).

Regarding Scenario 2, more complex dynamics of the other
car is considered. In this case, it would be more complicated
to identify directly what stochastic linear dynamical system
should be used in the Kalman filters to detect those dynamics.
Hence, in this case, a data-driven approach based on Bayesian
machine learning was adopted. The utilized methodology uses
the MATLAB toolbox of Kevin Murphy 4 to find the maxi-
mum likelihood parameters for the stochastic linear dynamical
systems of the Kalman filters of the mixture. Instead of

4https://www.cs.ubc.ca/ murphyk/Software/

representing the state variable as a deterministic value with
added normally distributed noise, the state and noise variables
are combined into a single Gaussian random variable. Such
linear Gaussian models can be used both for supervised and
unsupervised modelling of time series. In this work, since
input control variables are not considered, the problem can
be seen as an unsupervised one. The goal is to model the un-
conditional density of the observations. These estimates were
produced using the Expectation Maximization algorithm [7]
starting from a given data set of trajectories that were produced
using the TORCS simulator. It is important to note that Kalman
filters are the continuous state counterparts of Hidden Markov
models, which can be used to infer the posterior probabilities
of the state given the observation sequence (i.e., smoothing).
These posterior probabilities are the same as used within the
E-step of the adopted Expectation Maximization algorithm.

Kalman filters can deal only with linear dynamical systems,
but the trajectory of a car is usually non-linear. In this regard,
to simplify the the treatment of the events used in this work, we
decided to represent the positions of the cars using a coordinate
reference system that is moving along the center of the road
at constant velocity. In doing so the non-linearity given by the
curvature of the road was easily avoided. This is why in the
following section we will consider ”longitudinal” and ”lateral”
positions and velocities instead of the absolute ones.

2) Planning: The algorithm used to control the self-driving
car within the generated MDP is a continuous version of
the UCT algorithm. This algorithm was already applied to
real autonomous driving in [9]. UCT was chosen due to its
efficiency, its online and anytime nature. The UCT explo-
ration rate parameters used in the performed simulations was
Cp = 0.05 1√

2
, whereas the length of a rollout was set to 65.

The definition of the tuple (S,A, P,R) representing the
Markov Decision Process used to control the self-driving car
will be provided as follows. Note that the transition probability
distribution regarding the dynamics of the other car will be
generated online starting from the most probable stochastic
linear dynamical system α contained in the mixture of Kalman
filters.

• The state space is S = [x, y, vx, vy, dx, dy, dvx , dvy],
where x, y ∈ R are the longitudinal and lateral offsets
from the road center of our self-driving vehicle; vx, vy ∈
R are respectively the lateral and longitudinal velocity
of our self-driving car. dx, dy ∈ R are respectively the
lateral and longitudinal distances of the other car from
our self-driving vehicle; dvx , dvy ∈ R are respectively
the lateral and longitudinal velocities of the other car.

• The action space is A = [steer, brake accel, stay],
where steer ∈ Z represents the steering control of our
self-driving system and brake accel ∈ Z represents its
braking control when it assumes negative values and
its acceleration control when it assumes positive values.
Finally, stay represents an idle action, indicating null
steer and brake controls.

• The transitional probability distribution is

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017

Pα{steer,brake accel,stay}(s, s
′). On one side, we used

motor bobbling within the TORCS simulator to learn
the transition probabilities Pa(St+1

0 |St0) about the
control of our self-driving vehicle; on the other side,
we extracted the dynamics Pα(St+1

i |Sti) of the other
vehicle’s trajectory using the LDS of the most probable
event α.

• The reward function is R{steer,brake accel,stay}(s, s′) =
C1 + C2 + C3 + C4, where C1 is a positive reward
representing the will of our self-driving system to advance
towards the road; C2 is another negative reward used to
incentivise the car to maintain a straight trajectory; C3

is a reward used to maintain the autonomous car in the
center of the road as much as possible; C4 is a negative
reward representing the necessity to avoid collisions with
the other car. Note that the magnitudes of C3 and C4 have
to be larger than the magnitudes of C1 and C2 because
it is more important to avoid dangers than to continue
driving.
Let us see the definitions of these parameters in more
details:

C1 = c1v · v→ ∈ R+ (5)

is the scalar product between the velocity of our self-
driving vehicle v and the unit vector tangent to the road
direction v→.

C2 = −c2(|v · v↑|+ |v · v↓|) ∈ R− (6)

where the two scalar products here are computed between
the velocity of our self-driving vehicle v and the unit
vectors perpendicular to tangent to the road direction v↑
and v↓.

C3 = c3N (road center, δ)(y) ∈ R (7)

where N (road center, δ) is a normal distribution with
its mean equals to the longitudinal coordinate of the road
center, variance δ and argument equals to the longitudinal
position y of our car.

C4 =

{
c4 ∈ R− if dx < ε ∧ dy < ε

0 otherwise (8)

is used to penalize the self-driving car when its position
is at a distance less than ε with the other car. The value
chosen for this distance in the reported experiments is
ε = 6 m.

Since only a generative model of the MDP is needed, to
plan online using UCT we can simplify the representation of
the MDP as follows. To this aim, we assume that the control of
our car does not depend on its position. In other words, given
the same actions, the self-driving car behaves in the same way
in all the positions of the road. This makes possible to have a
compact generative model that does not consider the positions

as input. In addition, the generative model can output only
the displacements instead of the absolute positions, and only
the displaced velocity components instead of the velocity’s
absolute values . Although only these displacements are stored
in the generative model, when one step of the forward model is
executed, the actual position and velocity of the car (necessary
to compute the reward function) can be obtained simply by
adding the displacements to the previous original positions
and velocities.

Moreover, within the MDP we assume that the control of
our car does not depend on its heading direction of motion.
In other words, given the actions, the car behaves in the
same way in all the directions (e.g., north, south, west, east).
This makes possible to represent the coordinates stored in the
generative model using a local system of reference centred
in the car position instead of an absolute one. The advantage
of using this representation is to discard the two components
of the velocity vector as input of the generative model and
to substitute them with the magnitude of the velocity only,
hence leading to a more compact representation. When one
step of the forward model is executed, the original absolute
positions and velocities of the car can be reconstructed using
trigonometry and rotation matrices.

Finally, the generative model concerning the control of
our self-driving vehicle is defined as G : |vloc| × steer ×
brake accel 7→ δxloc × δyloc × δvxloc

× δvyloc × [0, 1]. That
is, for a given velocity magnitude and input controls the
generative model’s output is composed by the displacements
of position and velocity (in the local system or reference) with
the associated probability.

C. Results

In this section, the results obtained by the event-based
MTCS controller and the simple overtaking car model in the
two aforementioned scenarios are reported.

In the Scenario 1, we tested the performance of the two
models in overtaking the other car moving at constant speed
towards a given heading direction. In the experiment reported
here, the other car was approaching the controlled car at
a constant high speed against the flow. Both the simple
overtaking car model and the event-based MCTS controller
were able to successfully overtake the other car but, as it
is possible to see from Figure 3, each one with a different
computational cost.

In Figure 3, the ratios of successful collision avoidances
during a set of 20 overtaking manoeuvres are reported for
the event-based MCTS controller (blue line) and the simple
overtaking car model (red line). In addition, such ratios
are compared with the number of rollouts that UCT used
to achieve such performance. As it is possible to see in
this scenario, only 300 rollouts sufficed for the event-based
MCTS controller in order to avoid the other car for most
of the investigated trials, whereas a successful overtake was
performed 100% of the times when 600 rollouts are utilized by
the algorithm. Note that in this case the other car’s trajectories
were modelled using the Kalman filter defined in (4). In the

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017

Fig. 3. Success ratio of collision avoidance of the event-based MCTS
controller (blue line) and the simple overtaking car model (red line) in the
constant speed scenario.

Fig. 4. Success ratio of collision avoidance of the event-based MCTS
controller (blue line) and the simple overtaking car model (red line) in the
decelerating scenario.

case of the simple overtaking car model for most of the trials,
4800 rollouts were necessary to make UCT find the proper
sequence of controls that led to collision avoidance, whereas
with 6000 rollouts the algorithm always produced successful
overtaking manoeuvres.

In the following scenario, the other car followed trajectories
with a varying acceleration. In the experiment reported here,
the other car decelerated with a non-uniform acceleration in
front of the controlled car. In Figure 4, the results of this
experiment are reported. Also in this case, both the event-
based MCTS controller and the simple overtaking model
are able to perform successful overtaking manoeuvres. The

Fig. 5. Trajectory of the self-driving car controlled by the event-based MCTS
(red line) and the other car’s trajectory (green line) in the decelerating scenario.

first controller needed at least 600 rollouts to avoid most of
the possible collisions, whereas with 1200 rollouts collision
avoidance was attained for all the trials. In this setup, the used
Kalman filters were obtained using the data-driven approach
with maximum likelihood estimation of the linear dynamical
system parameters. For the simple overtaking car model, a
number of 4800 rollouts were necessary to achieve a similar
performance. To show the smoothness and the alignment of
the autonomous car’s trajectories relative to the center of the
road, we reported in Figure 5 the resulting trajectory of the
controls found by the event-based controller in the decelerating
scenario with 600 rollouts. Here the red line represents the
self-driving car trajectory and the green line represents the
trajectory of the other car, which decreases its speed until
stopped. It is possible to observe that the autonomous car
avoided the other car when it approached the other car and
then proceeded its route.

Comparing the success ratios of the event-based MCTS
controller and the simple overtaking car model reported in
Figures 3 and 4, we note that the first model requires a
considerably smaller number of rollouts to perform successful
collision avoidances. Indeed, with this simple model there
is no partition of the other car dynamics and so there is
no corresponding transition matrix factorization that can be
exploited. This implies that the represented trajectories of the
other car are less structured when compared with the event-
based MCTS model and consequently they can be predicted
less precisely. Hence, although this model is rich enough
to make the controlled car successfully overtake the other
car, this is attained with a larger computational cost given
by the smaller sparsity of the represented trajectories and
a corresponding larger areas of the road to avoid, when
compared with the event-based MCTS method.

A more concrete comparison between the event-based
MCTS algorithm and classic MCTS in the simple overtaking
approach can be made reporting the processing time of the

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017

two methods. The time spent by these two algorithms at
each simulation loop of the TORCS driving simulator can be
obtained from the duration of a rollout in MCTS (that includes
the update of all the counters and the computation of the
UCB1 function), which is on average 0.78 milliseconds 5. In
addition, at each simulation loop the time spent by the event-
based MCTS algorithm in updating the Kalman filters and the
estimates of the corresponding maximum likelihood estimation
is 0.2 milliseconds on average. Hence, in the constant speed
scenario the event-based algorithm took 0.47 seconds during
a simulation loop to be successful in all the investigated
overtaking trials, where the simple overtaking car took 4.68
seconds. In the decelerating scenario for each simulation loop
the event-based MCTS algorithm took 0.94 seconds to be
successful in all the performed overtaking tests, where the
simple overtaking car took 3.74 seconds. Let us underline that
the usage of the mixture of Kalman filters of the event-based
approach introduces only an overhead of 0.2 milliseconds in
order to spend a significant smaller number of rollouts, and
consequently less seconds, to perform successfully the task.

IV. CONCLUSIONS

The design of self-driving vehicles is a hot topic today in
Robotics and Artificial Intelligence. Although many progresses
have be done in the last years, this area of research still poses
big challenges to the scientific community. One of the main
difficulties comes from the large number of dynamic obstacles
that a vehicle is facing in a typical driving environment. One
example is represented by the dynamics of other cars whose
trajectories are usually difficult to predict.

One possible solution, that we proposed in this paper, is to
decompose the original problem in many simpler sub-tasks in
order to plan only according to the sub-tasks that are relevant
in the current context. Indeed, instead of computing the
vehicle’s control according to all the possible car’s dynamics,
usually only a subset of decisions are necessary in each
possible context.

In this work, a mixture of Kalman filters is used to represent
the dynamics of other cars in order to specialize the control
of an autonomous vehicle towards the trajectories that are
currently detected online. The performance of the proposed
approach was tested in simulated overtaking scenarios where
a MCTS controller was used to control the self-driving car. We
showed that, when compared with a simple overtaking model,
our event-based MCTS algorithm required less rollouts to
perform successful collision avoidances of another moving car.
In fact, the factored transition matrix resulting from our event-
based approach implied increased computational efficiency
and precision of control.

The proposed approach could be considered as a greedy
alternative to game-theory when strict real-time constraints
are imposed by the task [12]. It could be extended to tune
the system to match the correct control time-scale with the

5The reported simulations were performed on a computer equipped with a
2.5Ghz i5 processor.

available computational power and the necessary flexibility.
In future, we would like to propose the utilization of a ”safe
policy” to avoid unexpected costs when the uncertainty about
which event is going to occur is too high. In addition, although
in this paper we only used a probabilistic model based
controller, we aim to combine model-based and model-free
control as our next step. The integration of AERIG [15] with
the event-based MCTS could reduce sensor processing costs.
It appears relatively simple given the similarities between the
two frameworks. However, how the MCTS control system will
react to missing data [10] is an open problem that must be
addressed.

REFERENCES

[1] Tirthankar Bandyopadhyay, Kok Sung Won, Emilio Frazzoli, David Hsu,
Wee Sun Lee, and Daniela Rus. Intention-aware motion planning. In
Algorithmic Foundations of Robotics X, pages 475–491. Springer, 2013.

[2] Adrian Broadhurst, Simon Baker, and Takeo Kanade. Monte carlo road
safety reasoning. In Intelligent Vehicles Symposium, 2005. Proceedings.
IEEE, pages 319–324. IEEE, 2005.

[3] Y. Demiris and B. Khadhouri. Hierarchical attentive multiple models for
execution and recognition of actions. Robotics and Autonomous Systems,
54(5):361–369, 2006.

[4] Kenji Doya, Kazuyuki Samejima, Ken ichi Katagiri, and Mitsuo
Kawato. Multiple model-based reinforcement learning. Neural Comput,
14(6):1347–1369, Jun 2002.

[5] Emily B Fox, Erik B Sudderth, Michael I Jordan, and Alan S Willsky.
Nonparametric bayesian learning of switching linear dynamical systems.
In NIPS, pages 457–464, 2008.

[6] Enric Galceran, Alexander G Cunningham, Ryan M Eustice, and
Edwin Olson. Multipolicy decision-making for autonomous driving
via changepoint-based behavior prediction. In Robotics: Science and
Systems, 2015.

[7] Zoubin Ghahramani and Geoffrey E Hinton. Parameter estimation for
linear dynamical systems. Technical report, Technical Report CRG-TR-
96-2, University of Totronto, Dept. of Computer Science, 1996.

[8] M. Haruno, D.M. Wolpert, and M. Kawato. Mosaic model for senso-
rimotor learning and control. Neural Computation, 13(10):2201–2220,
2001.

[9] Todd Hester. TEXPLORE: Temporal Difference Reinforcement Learning
for Robots and Time-Constrained Domains, volume 503. Springer, 2013.

[10] Seliz G Karadogan, Letizia Marchegiani, Lars Kai Hansen, and Jan
Larsen. How efficient is estimation with missing data? In Acoustics,
Speech and Signal Processing (ICASSP), 2011 IEEE International
Conference on, pages 2260–2263. IEEE, 2011.

[11] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo
planning. In ECML, volume 6, pages 282–293. Springer, 2006.

[12] Nicolas Le Guillarme, Abdel-Illah Mouaddib, Sylvain Gatepaille, and
Amandine Bellenger. Adversarial intention recognition as inverse game-
theoretic planning for threat assessment. In Tools with Artificial Intel-
ligence (ICTAI), 2016 IEEE 28th International Conference on, pages
698–705. IEEE, 2016.

[13] Guilherme J Maeda, Gerhard Neumann, Marco Ewerton, Rudolf Li-
outikov, Oliver Kroemer, and Jan Peters. Probabilistic movement
primitives for coordination of multiple human–robot collaborative tasks.
Autonomous Robots, 41(3):593–612, 2017.

[14] Kevin P Murphy. Switching kalman filters. Technical report, Citeseer,
1998.

[15] Dimitri Ognibene and Yiannis Demiris. Towards active event recogni-
tion. In Proceedings of the Twenty-Third International Joint Conference
on Artificial Intelligence (IJCAI), pages 2495–2501. AAAI Press, 2013.

[16] Vladimir Pavlovic, James M Rehg, and John MacCormick. Learning
switching linear models of human motion. In NIPS, pages 981–987,
2000.

[17] Miguel Sarabia, Raquel Ros, and Yiannis Demiris. Towards an open-
source social middleware for humanoid robots. In Proceedings of the
IEEE/RAS International Conference on Humanoid Robotics, 2011.

[18] Nathan Sprague, Dana Ballard, and Al Robinson. Modeling embodied
visual behaviors. ACM Trans. Appl. Percept., 4(2):11, 2007.

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017

[19] D. Wolpert and M. Kawato. Multiple paired forward and inverse models
for motor control. Neural Netw, 11(7-8):1317–1329, Oct 1998.

[20] Daniel M. Wolpert, Kenji Doya, and Mitsuo Kawato. A unifying
computational framework for motor control and social interaction. Phil.
Trans. R. Soc. Lond. B, 358:593602, 2003.

[21] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimi-
trakakis, Rémi Coulom, and Andrew Sumner. Torcs, the open racing
car simulator. Software available at http://torcs. sourceforge. net, 2000.

Proceedings of APSIPA Annual Summit and Conference 2017 12 - 15 December 2017, Malaysia

978-1-5386-1542-3@2017 APSIPA APSIPA ASC 2017

