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Abstract—We proposed a method for the detection of mean-
ingful line segment configurations, based on the a contrario
framework. The method can detect complete or incomplete
regular polygons from a set of line segments. We define the
strength of a configuration based on its resemblance to regular
polygons. A configuration is meaningful if the expectation of
such occurrence would be very small in an image of random line
segments. The method is tested on both synthetic images and
real images and detects 92.8% of the polygon edges.

I. INTRODUCTION

In all kinds of image analysis tasks, edge detection and ob-
ject recognition are among the most fundamental and essential
ones. Commonly, these tasks involve the minimizing of an
energy functional such as the Mumford-Shah model [1], or
decision making which maximizes a probability function such
as the Bayesian model [2]. While these methods can always
find a segmentation of the image, they do not check whether
the segmentation is meaningful or not [3]. Another drawback
of all variational frameworks is that their performance is very
sensitive to the parameter setting.

Desolneux et al. proposed an a contrario method for de-
tecting geometric structures in an image without any prior
information [3]. The main idea is that an observed geometric
event, be it an alignment of points or a spot, is “meaningful”
if the expectation of its occurrences would be very small
in a random image. A mathematical framework was built to
quantify the Helmholtz principle that if the expectation of an
observed configuration in an image is very small, then it makes
sense to group these objects to form a ‘Gestalt’ (German:
shape, form). Therefore, this method is proposed to make
decision on the meaningfulness of a configuration of points,
rather than proposing a new segmentation methods [3].

The original method is applied to the detection of align-
ments of points. Since then, the a contrario framework has
been applied successfully to many other image analysis tasks.
For instance, von Gioi et al. developed a popular line segment
detector (LSD) [4] which works efficiently without the need of
any parameter tuning. LSD finds line segments in an image by
measuring the number of aligned pixels in a rectangle. Xia et
al. also used a contrario method for validation during junction
detection in natural images [5]. In our previous work [6], we
proposed a hole crack detection method for defect inspection
based on the a contrario method.

In this work, we proposed a method for the detection of
meaningful line segment configurations, based on the a con-
trario framework. The method detects regular polygons from

a set of line segments found by the LSD method [4]. Firstly,
we define the strength of a line segment configuration based
on their respective centroids and their lengths. A configuration
is said to be ε-meaningful if and only if the number of false
alarms (in an image containing line segments with random
starting and ending points) associated to its strength is less
than a constant ε. According to this definition, we developed
an efficient algorithm for the search of such meaningful
configurations starting from a minimum side number. Existing
methods which detect polygons from line segments [7] or from
point sets [8], depend on the availability of all polygonal sides
or all vertices. In contrast, the strength of this work lies on the
capability of detecting polygons with missing/corrupted sides
in the images.

II. METHODOLOGY

A. Line segment detection and merging

First of all, line segments are detected from the original
image using the LSD algorithm [4]. However, these line
segments are often incomplete or overlapped each other.
Therefore, to extract useful line segments which representing
object boundaries, it is necessary to merge those who are
collinear or overlapped.

The distance between two line segments l and l′ is measured
by [9]

D(l, l′) =
√

(∆θ/θδ)2 + (∆d/dδ)2 (1)

where ∆θ and ∆d are the angle and the midpoint perpen-
dicular distance between the two line segments, respectively.
θδ and dδ are thresholds for the angle and the perpendicular
distance, respectively. Two line segments will be merged if
D ≤ 1, which requires ∆θ ≤ θδ and ∆d ≤ dδ .

B. Line segment configuration

A regular polygon has all sides equal and all angles equal.
Let Li and θi be the length and the angle of line segment
li. If li belongs to one of the M sides of a regular polygon,
the centroid ci(xi, yi) of the polygon can be recovered by
trigonometric functions as follows:

xi = x0i ±Hi cos(θi + π/2) = x0i + ziHi cos(θi + π/2)

yi = y0i ±Hi sin(θi + π/2)

= y0i + ziHi sin(θi + π/2) (2)

where (x0i , y
0
i ) is the midpoint of li, z1, ..., zn ∈ {−1, 1} are

binary variables, and Hi = Li/(2 tan(π/M)) is the apothem
of the polygon. See Fig. 1 for illustration.
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Fig. 1. Calculate the centroid of a pentagon from one of its side.

A set of n line segments {li|i = 1, 2, ...n} comprises
a configuration c(l1, l2, ..., ln). We define the strength of a
configuration c as the expectation of line length E(L) divided
by the sum of the variance of centroid locations and the
variance of line segment lengths:

tM (c) =
E(L)

Σni=1‖ci − µ‖2/n+ V ar(Li)

=
E(L)

V ar(Xi) + V ar(Yi) + V ar(Li)
(3)

where µ is the center of all n centroids and V ar(Xi) and
V ar(Yi) are the variance of xi and yi, i = 1, 2, .., n, respec-
tively. The definition is based on the fact that if these line
segments forms a regular polygon, they should be very close
in both of their respective centroid locations and their lengths.
E(L) is a normalization coefficient estimated from the image.
For a synthetic image with its width and its height being
1 respectively, the expectation of the length of a randomly
generated line segment within the image is 0.25. For real
images, E(L) is estimated by the median of line segment
lengths in the image.

However, since each line segment has two corresponding
centroids on different sides ((x+, y+) and (x−, y−) in Fig.1),
the computation of t(c) is not so straightforward. It is an
integer programming problem in which all n variables are
restricted to be binary integers

tM (c) =

min
z1,...,zn∈{−1,1}

E(L)

V ar(Xi) + V ar(Yi) + V ar(Li)
. (4)

C. Meaningful configuration detection

Now that the configuration strength is defined, we consider
the event that a random configuration C of line segments in
the a contrario model has larger strength than the observed
configuration c. The expected number of such events or the
number of false alarms (NFA) of c is defined as

NFAM (c) = #C · PH0 [tM (C) > tM (c)] (5)
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Fig. 2. (a) Histogram of tM when M = 6 calculated from 10000 randomly
generated line segments within an image with width and height of 1. (b)
Cumulative distribution function calculated from (a).

where #C is the total number of possible configurations being
considered, PH0

is the probability under a null hypothesis H0.
A configuration is said to be ε-meaningful if and only if it
satisfies NFA(c) ≤ ε. The null hypothesis H0 is defined as
• tM (c) for all possible c in an image is made of indepen-

dent random variables
• tM (c) follows a distribution which can be estimated from

its histogram.
Let N be the total number of line segments detected by LSD

algorithm. We compute #C with respect to n line segments
by

#C(M,N, n) =

(
N

M

)(
M

n

)
, n < M < N. (6)

The distribution of tM (c) is estimated from its histogram
computed from random generated line segments in an image.
An example of the cumulative distribution function of tM (c)
is shown in Fig. 2.

The maximal-meaningful side number for a configuration c
is defined as

M∗(c) = arg min
Mmin≤M≤Mmax

NFAM (c). (7)

For example, M∗(c) = 4 means c is more likely to be a square
than any other shapes. The overall meaningful configuration
detection procedure is described in Algorithm 1.

III. EXPERIMENTAL RESULT

In our experiments, the parameter settings are as follows:
θδ = 3◦, dδ = 5, ε = 1, Mmin = 3, Mmax = 6. In other
words, the regular polygons to be detected from the image
are triangles, squares, pentagons, and hexagons. To reduce the
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Algorithm 1 Meaningful configuration detection
Require: A set of line segments L = {li|i = 1, 2, ...N}, and

parameters ε, Mmin, Mmax

Ensure: A set of maximal ε-meaningful configurations C (if
any).

1: Let C be an empty set of configuration candidates;
2: for each possible configuration c consisting of Mmin line

segments from L do
3: Compute NFAM (c),Mmin ≤ M ≤ Mmax by using

Eqn. (5);
4: find the maximal-meaningful size number m = M∗(c);
5: if NFAm(c) ≤ ε then
6: if m = Mmin then {forms a complete polygon}
7: C = C ∪ c
8: L = L \ c
9: else if m > Mmin then {find the remaining sides of

the polygon}
10: for k = 1 to m−Mmin do
11: Find the one maximal-meaningful additional

line segment l∗ = arg minli∈L NFAm(c ∪ li);
12: if NFAm(c ∪ l∗) ≤ ε then
13: c = c ∪ l∗
14: L = L \ l∗
15: else
16: break;
17: end if
18: end for{found all the remaining sides of the poly-

gon}
19: C = C ∪ c
20: L = L \ c
21: end if
22: end if
23: end for

computational time of Algorithm 1, we leave a configuration
out of account if the width or the height of its bounding box
exceeds 3*E(L).

A synthetic image containing these four shapes is manually
drawn (Fig. 3(a)). In addition to the 18 line segments detected
from the image (Fig. 3(b)), 10 or 30 randomly generated line
segments are added as well. Our algorithm successfully detects
the four polygons from all three scenarios without any false
alarm.

Our next experiment consists of 15 real images of various
polygon objects such as bolts, traffic signs, and architectures.
Six example images are shown in Fig.4. For most of the bolts,
only 3 to 5 sides are among these line segments found by LSD
followed by merging (Fig. 4(a)). The rest are missed due to
similar intensities between the bolt and the background. The
false positives are mainly caused by the edges detected at the
bottom of the bolts. From the soccer ball image shown in Fig.
4(c), the black patch in the middle is detected as a pentagon;
the surrounding white patches are not perfect hexagons due to
perspective transform and are therefore not recognized. From
the photo of an impossible triangle shown in Fig. 4(i), all five

(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 3. (a) Original hand-drawn image. (b) Line segments after applying
LSD and merging. (c) Meaningful line segment configurations found from
(b). (d) Line segments in (b) plus 10 randomly generated line segments. (e)
Meaningful line segment configurations found from (d). (f) Line segments in
(b) plus 30 randomly generated line segments. (g) Meaningful line segment
configurations found from (f).
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Fig. 4. First column: line segments after applying LSD and merging on a real
image. Second column: meaningful line segment configurations found from
the line segments which forms a regular polygon.

TABLE I
CONFUSION MATRIX FOR MEANINGFUL LINE SEGMENT DETECTION.

Predicted: Predicted:
meaningful non-meaningful

Actual: meaningful TP = 128 FN = 10 138
Actual: non-meaningful FP = 46 TN = 498 544

174 508 91.8%

line segments belonging to the triangle are detected, while
there are three false positives on the steps because of their
similar length and orientation.

Out of the total 682 line segments found after applying LSD
and the merging operation, 138 are sides in regular polygons,
i.e., belonging to regular polygons. The proposed method
detected 92.8% of sides of regular polygons, even when they
don’t form a complete polygon. The overall accuracy is 91.8%
and the confusion matrix is given in Table I.

IV. CONCLUSION

We have proposed a method for the detection of meaningful
line segment configurations, based on the a contrario frame-
work. The strength of a configuration is formulated to measure
its resemblance to regular polygons. Those configurations
forming regular polygons are detected based on their mean-
ingfulness. Specifically, the threshold on the configuration
strength is determined automatically by requiring that the
number of false alarms under a hypothesis for the image is
less than 1. The experimental results tested on synthetic images
and real images show that the proposed method performs well
in detecting both complete and incomplete regular polygons.
Our future work is to extend this method to other line segment
configurations such as grids.
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