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Abstract—Scene classification is more challenging than object
classification due to higher ambiguity in scene labels. In this
work, we propose to use the filter weights at the last stage of a
CNN model trained by the Places dataset, which is also known
as the “scene anchor vector (SAV)”, to explain the source of
confusions. An SAV points to a cluster of images. If two anchor
vectors have a smaller angle, we see overlapping image clusters,
leading to a set of confusing classes. To overcome it, we propose
to merge images associated with confusing anchor vectors into a
confusion set and split the set in an unsupervised fashion to create
multiple subsets. It is called the “automatic subset clustering
(ASC)” process. Each of these subsets contains scene images
of strong visual similarity. After the ASC process, we train a
random forest (RF) classifier for each confusion subset to allow
better scene classification. The ASC/RF scheme can be added on
top of any existing scene-classification CNN as a post-processing
module with little extra training effort. It is shown by extensive
experimental results that, for a given baseline CNN, the ASC/RF
scheme can offer a significant performance gain.

I. INTRODUCTION

The Convolutional Neural Network (CNN) has been wildly
applied to large-scale visual recognition problems such as
object and scene image classification in recent years. Its
popularity grows rapidly with the emergence of large-scale
labeled image datasets; e.g., ImageNet [40], Places[54],
Places2 [53] and COCO [30]. Traditional pattern recognition
methods [1], [3], [5], [4], [51], [55], [48], [35], [26], [34],
[23], [21], [28], [18], [6], [7], [8], [9], [10], [11], [37],
[39], [38], [29] fail to provide feasible solutions to these
large-scale datasets. In contrast, the CNN approach is more
scalable and offers the state-of-the-art performance. Generally
speaking, scene classification is more challenging than object
classification due to higher ambiguity in scene labels. To
boost the performance of scene classification, it is essential to
have a deeper understanding on confusing classes and offer
a solution to address this inherent ambiguity. We will use
the Places scene image dataset as our main application focus
throughout the paper.

This work has several major contributions. First, we
develop a simple yet systematic way to identify confusing
classes. Being inspired by the RECOS model for CNNs in
[25], we call the filter weights at the last stage of the trained
CNN the “scene anchor vector (SAV)”. An SAV points to
a cluster of images as shown in Fig. 1. If two SAVs have
a smaller angle, we see overlapping image clusters which

Fig. 1. Illustration of the scene anchor vectors (SAVs), which are the filter
weights at the last stage of a CNN associated with certain scene labels trained
by the Places dataset. One image cluster is associated with an SAV. The four
blue SAVs (pasture, field wild, field cultivated and marsh) are close to each
other in their angles and, as a result, they form one confusion set. Three other
confusion sets are also shown in the figure.

lead to a set of confusing classes and call it a confusion
set. To the best of our knowledge, this is the first work that
uses the SAV concept for confusing class identification in
the Places dataset. Second, we propose a method to enhance
the scene classification performance among confusing classes
automatically. We merge images in a confusion set and,
then, split them in an unsupervised manner to create multiple
subsets. This is called the “automatic subset clustering (ASC)”
process since it is done without supervision. Each of these
subsets contains scene images of strong visual similarity.
Then, we can zoom into each subset, select proper features
and train another classifier. Here, we train a random forest
(RF) classifier within each subset. The ASC/RF scheme can
be added on top of any existing scene-classification CNN
(called a baseline method) as a post-processing module to
allow better scene classification with little additional training
effort. Finally, we show by extensive experimental results that
the ASC/RF module can offer a significant performance gain
over the baseline method.

The rest of this paper is organized as follows. Related
previous work is reviewed in Sec. II. The SAV concept is
introduced and used to determine the confusing scene classes
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for the Places Dataset in Sec. III. Afterwards, the ASC
process to create multiple scene subsets from a confusion set
is presented and the integrated ASC/RF solution is described
in Sec. IV. Extensive experimental results are shown to
support our proposed solution in Sec. V. Finally, concluding
remarks are given in Sec. VI.

II. RELATED WORK

One trend in CNNs is to increase the number of
convolutional layers as evidenced by the evolution from the
LeNet [27], AlexNet [24], VGG [43] to the ResidueNet [20].
However, this is accompanied by the growing model
complexity which in turn creates a challenging optimization
problem in training a network. In the scene classification
field, there is a great amount of work focusing on solving the
optimization problem. The state-of-the-art approach [41] is
one of the leaders in this group. It gets the first place in the
Places2 [53] challenge using Relay Backpropagation (Relay
BP). It encourages the propagation of effective information
through the network in the training stage. However, this
approach demands a large amount of time and engineering
effort during the training process.

Another research effort, e.g. [15], [12], [32], exploit trained
CNN models for better scene classification performance by
enhance feature representations. Dixit et al. [15] obtained
fisher embeddings from local predictions in an image to
improve the learned features from the trained VGG network.
Cheng et al. [12] learned multi-level sparselets to explore
the discriminative information hidden in the learned network
neurons. Liu et al. [32] defined cross-layer pooling schemes
to consider image patterns in different scales. Although these
methods claim lower complexity as compared with networks
of growing layers, they usually provide little gain over the
performance of the referenced network.

As a combination of these two approaches, researchers
also considered hybrid models by extracting features from
a trained CNN and conduct another minor deep neural
network trainings to boost the performance. For example,
Perronnin and Larlus [36] cascaded the learned fisher vector
representation from a trained CNN and new fully connected
layers to form a hybrid network.

Despite the aforementioned efforts, the scene classification
field encounters a major problem of class ambiguity nowadays.
That is, the large intra-class variation and inter-class confusion
are the main causes that prevent further improvement of
scene classification performance. This challenge is not well
addressed by any of the previous work. This observation
motivates us to explore confusing scene classes in the Places
dataset to gain insights and develop a solution.

In the object classification field, several methods were
proposed to use object class relationships to boost object

classification performance through confusion analysis. Early
work in [22], [33], [46] defined hierarchies to enhance the
object classification performance using shallow models.
Zweig and Weinshall [56] adopted an ensemble of object
classifiers for different class hierarchies to improve the
performance. With the WordNet-based distance, Fergus et al.
[17] defined shared labels of object categories. In [52], an
object hierarchy is used to define loss functions. Researchers
also tried to generate the hierarchy adaptively to divide
a general classification problem to more specific ones to
improve the overall performance. Examples include [2], [14],
[19], [44], [31], [16].

More recently, with the CNN-based classifier, attention has
been shifted to hierarchical analysis for CNN performance
enhancement. A tree-structured transfer learning approach
was proposed in [45] to boost the CNN performance. In [13],
images were relabeled and a modified CNN with hierarchical
and exclusive graphical models were used to improve the
performance. Xiao et al. [47] used a CNN-based incremental
learning method to leverage the category hierarchy and keep
improving the model when new image data are available. In
[49], coarse and fine categories were first defined by analyzing
the confusing matrix, which was obtained from the CNN
classification results, and a modified hierarchical CNN model
was trained to improve the overall object classification. These
efforts show the importance of incorporating scene class
confusions and hierarchies. However, none of these solutions
have been extended to a large-scale scene classification
problem such as Places.

Being inspired by the work in resolving confusion of
classifying object classes and the RECOS model for a CNN
in [25], we propose to use the inherent information in a
trained CNN to determine sets of confusing scene classes.
Furthermore, we propose a solution to enhance the scene
classification performance within each confusion set. These
two topics are detailed in the next two sections.

III. CONFUSION SET ANALYSIS

A. Insights into SAVs

Anchor vectors are filter weights in the intermediate layers
of a CNN. This term was coined by Kuo in [25] due to
their unique role in a CNN. This role was explained using
the “REctified COrrelations on a Sphere (RECOS)” model
in [25]. In a trained CNN, an anchor vector behaves like a
centroid of a cluster of input vectors in the corresponding
layer.

Here, we pay special attention to the last stage filters of a
trained CNN model, which take the the last fully connected
(FC) layer as the filter input and the output layer as the filter
output. In the current context, the decision is a scene label.
We plot several representative final-stage anchor vectors in
Fig. 1. Being different from the anchor vectors in previous
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layers, anchor vectors of the last stage provide the ultimate
feature representation of the input image, and the CNN has
to make decision based on these feature vectors. Because
of this special physical meaning, they are called the scene
anchor vectors (SAVs).

Each SAV behaves like a centroid of scene images, and
a great majority of them around an SAV share the same
scene label. That is, through the convolution (or projection)
operation, they can provide the largest projection value with
respect to their target SAV and, as a result, they are classified
to the desired scene accurately. In the Places dataset, we
have 205 classes. Thus, a CNN model trained by the Places
dataset should have 205 SAVs and each of them corresponds
to a scene class.

As explained earlier, there is one image cluster associated
with each SAV. By zooming into each cluster, we find that
it contains multiple sub-clusters. It is interesting to show
images from sub-clusters to gain further insights. Examples
are given in Fig. 2, which contains 4 sub-clusters (or blocks)
partitioned by thick black lines. All of them are pointed
by the SAV corresponding to the “aqueduct” class. Each
block contains 4 sample images. We observe strong visual
similarities of images in the same block.

The top two blocks have images only from the “aqueduct”
class. They look different from each other due to the opposite
(left versus right) directions of their vanishing lines. This
shows intra-class variations in the “aqueduct” class. On the
other hand, images in the bottom two blocks are from different
classes. They also share similar visual appearance within each
block. For example, the two “boardwalk” images and one
“bridge” image in the bottom-left corner all have a bridge grid
pattern which also appears in the “aqueduct” image of the
same block. Besides, the “viaduct” and the “bridge” images
in the bottom-right corner have the arch-like supporting
structure which are visually similar to the two “aqueduct”
images of the same block. These two representative subsets
provide excellent examples for inter-class ambiguity in the
set of images pointed by the “aqueduct” SAV. Apparently,
identifying the confusing image set and the corresponding
subsets is critical to the understanding of the source of
confusion.

B. Confusion Set Identification

We can build a graph to represent the relationship between
scene classes in the Places dataset. Each node in the graph
corresponds to a scene class. Every two nodes have an edge
whose weight is determined by the cosine function of the angle
between their corresponding SAVs:

cos[θ(ai,aj)] =
ai

Taj
|ai||aj|

(1)

Fig. 2. Illustration of images in four subsets pointed by the “aqueduct” SAV.

where ai and aj are two SAVs. The above process generates
a fully connected graph. We can simplify the graph by a
thresholding step:

Eai,aj
=

{
cos[θ(ai,aj)] if θ(ai,aj) ≥ T
0 otherwise

(2)

where 0 < T < 1 is a preselected threshold value. As
shown in the above equations, the two nodes are more
correlated and thus connected by an edge in the graph
if their angle is smaller or their correlation is stronger.
Otherwise, they are disconnected. Note that we can convert
a densely-connected graph to a sparsely-connected graph by
using a larger value of T . Fixing a value of T , we can use a
Normalized-Cut algorithm [42], [51] to further simplify the
graph and find cliques in the graph. Each resulting clique
is called a confusion set that consists of several confusing
classes that are challenging to separate for the trained network.

Although it is possible to derive confusion sets directly
from the classification confusion matrix, the SAV-based
confusion set identification method has two major advantages
over the alternative method. First, we need a sufficiently large
number of image samples to obtain the confusion matrix to
avoid data bias. In contrast, this is not a problem for SAV
since SAVs are directly derived from the trained network.
They are actually statistical results of a large number of
training images, and no further classification process is
needed. We will show this advantage in Sec. V. Second, the
confusion matrix method mainly offers the top-1 confusion
errors between classes. It would be too complicated to track
the top-n (n > 1) classfication errors. On the other hand, we
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Fig. 3. Confusion set identification results comparison using the confusion
matrix (CM) method and the SAV-based method.

can determine the top-n error rates easily by measuring the
distance between an image sample to different SAVs.

Fig. 3 gives an excellent proof of the superiority of the
SAV-based method. In the figure, we show two confusion
sets for the Places dataset based on the AlexNet CNN. They
are obtained by the confusion matrix (CM) method and the
SAV-based method, respectively. For the CM method, the
confusion set contains five confusing classes (from top left to
top right: apartment building, building facade, hospital, court
house and inn.) Most images in the last two classes, which
are highlighted by a red box, are not visually similar. In
contrast, the confusion set derived by the SAV-based method
contains four confusing classes (from bottom left to bottom
right: apartment building, building facade, hospital and office
building.) We see that the first three confusing sets in these
two methods are identical. However, the confusion set of the
SAV-based method does not have the court house and inn
classes but the office building class. Clearly, images in the
office building class are more visually similar to images in
the other three classes. This demonstrates the power of the
proposed SAV-based method in confusion set identification.

IV. BOOSTING PERFORMANCE IN CONFUSION SETS

A. Automatic Subset Clustering (ASC)

We show how to identify sets of confusing classes using
SAV correlations in Sec. III-B. To further resolve confusions
within a confusion set, we propose to use an “automatic
subset clustering (ASC)” algorithm to cluster images into
subsets as shown in Fig. 2, where the number of subsets is
automatically decided in the clustering process. The ASC
algorithm is an unsupervised splitting process based on the
k-means clustering idea with k = 2. The binary clustering
algorithm in [51] is adopted in our implementation. The ASC
algorithm is also a recursive clustering process, where each
node is split into two child nodes until one of the stopping
criteria is met.

The stopping criteria are used to decide whether to split a
set of images in one node into two child nodes. We propose
two criteria and consider them in a sequential order. First, we
check whether the images in a node are from the same scene

Fig. 4. Illustration of the ASC process, where the border color of each image
represents its class type (Red: “field wild”; Purple: “field cultivated”; Green:
“pasture”; Blue: “marsh”) and the border color of each image block indicates
its subset property (Pink: “the subset needs a further split.”; Light green: “the
subset is pure and does not need a further split.”; Yellow: “the subset has a
sufficiently small variance value and does not need a further split.”)

class or not. If so, this node is a “pure” node and no further
split is needed. Otherwise, the node is an “impure” one. For
an impure node, we check it using the second criterion. It is
based on the total variance of images in the node, which can
be computed by

V anchor =
1

Nc

Nc∑
i=0

1

Mi

Mc∑
j=0

Exj,ai
(3)

where Nc is the number of class types, Mi is the number of
images in class i in the node, and Exj,ai

is the correlation
between an image and an anchor vector of a class, which
follows the definition given in Eq. 2. If V anchor is smaller
than a pre-selected threshold value denoted by Tv , the split
process is stopped. This means that images in this node
are visually similar, yet they belong to different classes. In
Fig. 4, the two image blocks with the yellow border are good
examples for this case. No further splitting is needed since it
does not help much. This is truly a challenging subset and we
need to find another solution to resolve the confusion. This
will be detailed in Sec. IV-B. On the other hand, if V anchor

value is larger than Tv , it is a node with the pink border in
the figure. Further splitting is needed.

A representative ASC process is illustrated in Fig. 4. The
root node at the top level represents a confusion set with the
pink border. It contains images from 4 classes (i.e., “pasture”
and “field wild”, “field cultivated” and “marsh”). We split
it into two child nodes. Images in the left child node with
the yellow border do not satisfy the first stopping criterion
but the second one. We see that these images are visually
similar yet with different class labels. The right child node
is further split into two child nodes at the 3rd level. The
right node in the 3rd level is a pure one (with the green
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Fig. 5. A post-processing module that integrates the ASC process and the
random forest (RF) classifier to boost the performance of a baseline CNN in
confusing sets.

border) which satisfied the first stopping criterion. The left
node (with the pink border) is further split into two child
nodes. The right node in the 4th level is a pure one (with the
green border) while the left node in the 4th level satisfies the
2nd stopping criterion (an impure node with a small variance).

For this particular example, we obtain 4 leaf nodes in the
binary hierarchical tree - two pure subsets and two impure
subsets at the end of the ASC process. For the two pure
subsets, we have images from the “field cultivated” and
the “marsh” classes, respectively. We see visually similar
images that contain humans and crops in images of the
“field cultivated” class and water surface and green plants in
images of the “marsh” class. This demonstrates the power
of ASC to identify distinguishable pure image subsets in an
unsupervised manner. It is worthwhile to point out that the
two impure subsets also contain visually similar images. For
example, animals and fields are observed from images of the
yellow-border node in the second level, and wide landscape
views are observed from images of the yellow-border node in
the fourth level. This demonstrates the power of combining
three components: 1) the use of feature vectors at the last
FC layer, 2) the adoption of the SAV concept in clustering
image samples, and 3) the use of the ASC process to split a
confusion set into multiple subsets.

B. Post-Processing by Integrated ASC/RF

The understanding of the source of confusion as discussed
in Sec. III-B and Sec. IV-A allows us to measure the
capability of a baseline network and identify the challenging
samples in the Places dataset. Furthermore, based on the
understanding, we propose a post-processing technique to
boost the performance in confusion sets for the baseline
method.

Fig. 5 presents an overview of the proposed system, where
the left part includes a set of input images, the middle part
shows a baseline CNN and the right part is the proposed
post-processing module that consists of two components:

confusion set analysis and the ASF/RF scheme. The latter
will be presented below. In the training stage, given a
baseline CNN for the Places set (e.g. the trained AlexNet
or VGG16), we first determine confusion sets by analyzing
SAV correlations as discussed in Sec. III. Then, for each
confusion set, we conduct the ASC process to cluster images
into subsets as described in Sec. IV-A. Finally, we train a
multi-class RF classifier in each impure subset to enhance the
classification performance.

The choice of the RF classifier is justified below. The
feature vectors obtained by the baseline CNN have an
outstanding discriminant power as shown in the example
in Fig. 4. We would like to re-use the feature vector as
much as possible in each impure node. The RF classifier
contains a large number of decision trees and it can select
the most discriminant feature in making decision in a
sequential manner. Thus, we use the RF classifier to mine
minor differences between confusing classes and images
furthermore.

In the testing stage, we first obtain the feature vector of
a test image using the baseline CNN. If it is located in a
confusion set, we assign it to a leaf node in the hierarchical
tree by traversing the tree created by the ASC process for
the particular confusion set. If the subset is pure, we simply
output class label associated with that node. Otherwise, it
is an impure node and we run the RF classifier trained by
images in that node to provide a predicted class label.

V. EXPERIMENTAL RESULTS

In this section, we conduct experiments to show the
advantages of the two proposed methods; namely, the
confusion set analysis in Sec. III and the post-processing
ASC/RF module in Sec. IV. We first explain the experimental
settings and, then, present the performance gain achieved
by each single method. Finally, we will show the overall
performance gain of the whole system consisting of both
methods.

A. Experimental Settings

Dataset. We evaluate the proposed methods on the Places [54]
dataset. It contains 205 categories of scene images. There are
2,469,373 images in total, where 2,448,873 images are used
as training images and 20,500 images are used as testing
images. The averaged number of images for the training set
is more than 10,000 per class while that for the testing set is
100 per class.

Baselines and features. We present experimental results of
the proposed methods over two baseline CNNs, AlexNet
and VGG16 [54], which are applied to the Places dataset.
In the proposed system, confusion set identification and
ASC/RF are two individual modules that both contribute to
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TABLE I
COMPARISON OF AVERAGED PRECISION (AP) AND STANDARD DEVISIONS
(STD) OF 5-FOLD CLASSIFICATIONS VALIDATION USING CM AND SAV.

Methods AP STD
AlexNet/CM 50.01% 1.34%
AlexNet/SAV(Ours) 51.53% 0.41%
VGG16/CM 58.76% 2.07%
VGG16/SAV(Ours) 60.94% 0.68%

performance enhancement. For the confusion set identification
module, we use the filter weights from the FC8 layer (the
last-stage constitutional layer) of a CNN as the SAV in
identifying confusion sets. For the ASC/RF post-processing
module, we adopt the layer output from FC7, which is the
second-to-the-last layer in a trained CNN.

B. CM versus SAV for Confusion Set Identification

We focus on two aspects in the comparison of the
CM method and the SAV-based method for confusion set
identification.

Data dependency. The SAV-base method is determined by
the CNN training data only. Once a CNN is completely
trained, its SAVs are fixed. Then, one can conduct the
confusion analysis without any additional data. In contrast,
the CM method does need additional data to test the
classification performance of the trained CNN. If we use the
CNN training data for this purpose, the results tend to be
bias. Since the trained CNN will provide biased results. As
a consequence, we need a set of new training data. For this
reason, we use 5-fold validations to evaluate the performance
of the two methods, where 80% of the data were used to
train the CNN and 20% of the data were used to obtain the
CM. Then, we use the test dataset to evaluate the performance.

To compare the robustness of the two methods, we present
the averaged precision (AP:averaged top-1 classification
accuracy) and the corresponding standard devisions (STD) in
TABLE I. Clearly, the SAV-based method has a larger AP
and a smaller STD than the CM method for both AlexNet
and VGG16.

Confusion set transferability. It is interesting to study the
performance by transferring the confusion set knowledge
learned by one CNN to the other CNN. For example, we
compute the confusion set by analyzing the AlexNet using
either the CM or the SAV-based method and apply this
knowledge to a VGG16 CNN. The results are given in
Table II. By comparing the results in the first column of
TABLE I and TABLE II, we can see the performance drop
due to the knowledge transfer. The performance of the
AlexNet with the CM method, drops from 50.01% to 49.01%
while the performance of the AlexNet with the SAV-based
method drops from 51.53% to 51.42%. The performance

TABLE II
COMPARISON OF TOP-1 AND TOP-5 CLASSIFICATION PERFORMANCE BY
TRANSFERRING THE CONFUSION SET KNOWLEGE LEARNED FROM ONE

CNN TO ANOTHER CNN.

Methods Top-1 Top-5
AlexNet/CM(VGG16) 49.01% 80.15%
AlexNet/SAV(VGG16) 51.42% 81.27%
VGG16/CM(AlexNet) 58.01% 86.23%
VGG16/SAV(AlexNet) 60.77% 88.12%

TABLE III
CLASSIFICATION PERFORMANCE COMPARISON USING ASC ALONE, RF

ALONE AND JOINT ASC/RF.

Methods Top-1 Top-5
AlexNet + ASC 50.62% 80.80%
AlexNet + RF 50.10% 80.03%
AlexNet + ASC/RF 51.31% 81.15%
VGG + ASC 59.37% 87.67%
VGG + RF 59.32% 87.12%
VGG + ASC/RF 60.84% 88.06%

of the VGG16 with the CM method, drops from 58.76%
to 58.01% while the performance of the VGG16 with the
SAV-based method drops from 60.94% to 60.77%. It is clear
that the SAV-based method has a more robust performance
against the confusion set knowledge transfer.

C. Evaluation of ASC/RF Post-processing

In this subsection, we would like to evaluate three
combinations (i.e., ASC alone, RF alone and joint ASC/RF)
to understand their contributions more clearly.

Automatic Subset Clustering (ASC). In the joint ASC/RF
module, an RF classifier is used to make further judgment
in mixed subsets after ASC. As an alternative, we can
simply output the label of the class that has the largest
number of samples. This is a good test for the ASC scheme
since samples of different classes can be well separated
by a good ASC scheme. We compare the top-1 and top-5
classification performance of three post-processing techniques
in TABLE III. As compared with the joint ASC/RF post-
processing, the performance drops in the top-1 accuracy
of the ASC alone are 0.69% and 1.47% for AlexNet and
VGG16, respectively.

RF confusion set classifiers. When the ASC procedure is
removed, we obtain a larger set of confusing classes. We
can still train a RF classifier for that particular confusion
set to boost the classification performance. The results are
shown in TABLE III. As compared with the joint ASC/RF,
we see significant performance drops, namely; 1.21% (top-1)
and 1.12% (top-5) for AlexNet and 1.52% (top-1) and
0.94% (top-5) for VGG16. These results show the necessity
of conducting the ASC procedure before the RF classification.
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TABLE IV
COMPARISON OF TOP-1 AND TOP-5 CLASSIFICATION ACCURACIES OF
ALEXNET, VGG16 AND THEIR ENHANCED SOLUTIONS AGAINST THE

PLACES DATASET.

Methods Top-1 Top-5
AlexNet 49.805% 80.244%
AlexNet (Enhanced) 51.307% 81.148%
VGG16 58.526% 86.731%
VGG16 (Enhanced) 60.843% 88.061%

D. Overall Performance Improvement

We compare the classification performance of the two
baseline CNNs and their enhanced versions, which include
both SAV-based confusion set identification and joint ASC/RF
post-processing, in TABLE IV. We see from the table that
the fully integrated system outperforms its baseline CNN by
a significant margin. For the AlexNet, we see 1.5% (top-1)
and 0.9% (top-5) improvement. For the VGG-16, we observe
2.3% (top-1) and 1.3% (top-5) improvement. These gains are
impressive by considering the fact that we do not perform
any additional CNN training as done in previous work, e.g.,
[49], [36], [50], [41]. Furthermore, the proposed methodology
can be applied to any baseline CNN for further performance
gain.

It is worthwhile to emphasize that the Places dataset
is well known for its challenging scene confusion. The
large performance gain in the top-1 classification accuracy
demonstrates the power of the proposed solution in resolving
inter-class confusion. The lower performance gain in the
top-5 classification accuracy can be explained by the fact that
the ASC/RF post-processing module focuses on resolving
confusion within a confusion set, yet many confusion sets
contain less than 5 confusing scene classes.

To further demonstrate the power of the proposed
confusion set resolution scheme, we list the improvement of
top-1 and top-5 classification accuracies in TABLE V and
TABLE VI, respectively, in several representative confusion
sets. Generally speaking, a confusion set with a smaller
number of confusing classes has a higher top-1 accuracy
improvement. On the other hand, a confusion set with a larger
number of confusing classes has a higher top-5 accuracy
improvement. This observation can be explained as follows.

If the confusion set size is large in terms of the number
of confusing classes, there exist severe ambiguities between
images from different classes in the set. This makes the top-1
classification enhancement more challenging. On the other
hand, there are more learning samples in the confusion set,
leading to more reasonable guesses to the ground-truth label.
Thus, we see more improvement in the top-5 accuracy. If
the confusion set size is small, there is less confusion but a
limited number of training samples for the ASC/RF module.

TABLE V
COMPARISON OF THE TOP-1 CLASSIFICATION ACCURACY FOR VGG16
AND ENHANCED VGG16 IN FOUR REPRESENTATIVE CONFUSION SETS.

Confusion Sets Top-1 Accuracy
VGG16 Ours

fairway, golf course 60.34% 75.21%
galley, kitchen, kitchenette, 69.74% 80.14%pantry, restaurant kitchen
botanical garden, orchard,

63.01% 72.01%formal garden, herb garden,
cottage garden, topiary garden,
vegetable garden
apartment building, skyscraper,

63.18% 71.70%building facade, fire escape,
hospital, office building

TABLE VI
COMPARISON OF THE TOP-5 CLASSIFICATION ACCURACY FOR VGG16

AND ENHANCED VGG16 IN FOUR REPRESENTIVE CONFUSION SETS.

Confusion Sets Top-5 Accuracy
VGG16 Ours

banque hall, bar, beauty salon,

81.22% 92.34%

bakery shop, cafeteria,
coffee shop, dining room,
dinette home, food court,
ice cream parlor,
restaurant, restaurant patio
crevasse, iceberg, igloo,

80.11% 89.67%ice skating rink outdoor,
mountain snowy, ski resort,
ski slope, snowfield
ballroom, game room, office,

85.68% 90.75%home office, music studio,
reception, stage indoor,
television studio
aqueduct, boardwalk, bridge, 92.31% 95.28%pavilion, rope bridge,viaduct

Finally, we present four test images and show the process
of confusion resolution in Fig. 6. The test image in the first
column is from the “game room” class and it is assigned to
a pure subset in the ASC process, which leads to an efficient
correct labeling. The test image in the last column is from
the “court yard” class. It is assigned to a confusion set at
the first level. Then, it goes to a mixed subset consisting
of two confusing classes - court yard and picnic area. It
is eventually classified to the correct class using the RF
classifier. The probability distribution of confusing classes
along the classification path in the ASC/RF system for each
test image is clearly demonstrated. For all four cases, we
are able to get the correct result. It is interesting to point
out that the coast image in the second column could be
assigned to the “islet” class at the first level since the latter
has a higher probability. However, as the image moves along
the path, the probability of the coast class becomes the highest.

VI. CONCLUSIONS AND FUTURE WORK

The Places dataset is the most challenging scene
classification dataset today for its challenging intra-class
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Fig. 6. Studies on the classification path of four correctly labeled images in the
Places dataset, where each column shows a test case. The first row gives the
distribution of confusing classes in the assigned assigned confusing set. The
red box indicates a decision is made using a RF classifier based on samples
at that node.

variation and inter-class ambiguities. In this work, we first
proposed an SAV-based method to identify confusing sets.
Then, to enhance the classification performance within a
confusion set, we proposed an ASC/RF post-processing
module. Extensive experiments were shown to demonstrate
the significant gains of the proposed enhancement schemes.

There are several possible extensions of the current work
in the future. First, we are interested in applying the proposed
methodology on top of more advanced networks such as
ResNet. Second, it is promising to design a soft assignment
scheme that allows a test image to have multiple subset labels
in the ASC procedure. Then, we can conduct a weighted
average to boost the classification accuracy. Finally, it appears
to be meaningful to extend the confusing class identification
technique to multi-level confusion hierarchies to obtain even
higher classification performance improvement in confusion
sets.
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