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Abstract
We present low-resource spoken keyword search (KWS) strate-
gies guided by distinctive feature theory in linguistics to con-
duct data selection, feature selection, and transcription aug-
mentation. These strategies were employed in the con-
text of the 2016 NIST Open Keyword Search Evaluation
(OpenKWS16) using conversational Georgian from the IARPA
Babel program. In particular, we elaborate on the follow-
ing: (1) We exploit glottal-source-related acoustic features that
characterize Georgian ejective phonemes ([+constricted
glottis], [+raised larynx ejective] specified
in distinctive feature theory). These features complement stan-
dard acoustic features, leading to a relative fusion gain of
11.9%. (2) We use noisy channel models to incorporate prob-
abilistic phonetic transcriptions from mismatched crowdsourc-
ing to conduct transfer learning to improve KWS for extremely
under-resourced conditions (24 min of transcribed Georgian),
achieving a relative improvement of 118% over the baseline and
a relative fusion gain of 32%.(3) Using distinctive feature analy-
sis, we select a compact subset of source languages used in past
evaluations to ensure high phonetic coverage for cross-lingual
acoustic modeling when only limited system development time
and computational resources are available. This strategy leads
to comparable performance to using all available linguistic re-
sources when only 1/3 of the source languages were chosen.
Index Terms: Spoken term detection (STD), keyword spotting,
multilingual training, automatic speech recognition (ASR)

1. Introduction
Spoken keyword search (KWS) can be cast as a detection or a
retrieval task, where the objective is to find all occurrences of an
orthographic term (be it word or phrase) from large streams of
audio recordings. Approaches to spoken KWS are often based
on large vocabulary continuous speech recognition (LVCSR),
following the transcribe-and-search paradigm. For resource-
rich languages such as Mandarin, Arabic, or English, high per-
formance is readily achieved via copious amounts of transcribed
audio [1]. However, low-resource languages such as Georgian
are more challenging due to the lack of word-transcribed train-
ing data. Such challenges have led to initiatives such as the
NIST Open Keyword Search Evaluation and the IARPA Babel
program: “... to rapidly develop speech recognition capability
for keyword search in a previously unstudied language, with
limited amounts of transcription.”

Researchers commonly address challenges of low-resource
spoken KWS via two avenues. The first avenue bypasses the
problem by improving the overall performance of spoken key-
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Figure 1: SINGA spoken keyword search system for low-
resource languages. Blocks filled with light orange are inspired
by distinctive feature theory: Multilingual Data Selection and
Augmentation, Glottal Acoustic Feature Extraction, and Noisy
Channel Model for Mimsmatched Crowdsourcing. Other low-
resource strategies are elaborated in [8, 15, 16].

word search. Such approaches include feature extraction and
selection [2], keyword verification or rescoring [3, 4], score
normalization [5, 6], and system combination (fusion) [5, 6].
This approach is popular in a time constrained evaluation setup,
because once a baseline LVCSR-based KWS system is set up,
by altering the system input (acoustic features) and/or output
(posterior scores), one can efficiently obtain system combina-
tion gains effectively. The second type of approaches for low-
resource spoken KWS tackles the data sparsity problem directly
at various levels such as data augmentation [7], data selec-
tion [8], data-efficient training [9, 10], or linguistically-inspired
frameworks [11]. In this work, we focus on the latter avenue
by exploiting distinctive feature theory in linguistics [12, 13]
in proposing economical strategies in data selection for cross-
lingual transfer learning in acoustic modeling, feature selection,
and mismatched crowdsourcing [14]. When there are massive
amounts of target training data and computational resources,
such linguistic guidance might be unnecessary. Yet, in the ab-
sence of such resources, linguistically guided approaches could
be fruitful. A system diagram of our proposed KWS system
inspired by distinctive feature analysis is in Figure 1.

2. Relation to prior work
There are more than 6,700 spoken languages in the world, all
of them evolved to be produced and perceived by humans. All
languages therefore exploit nonlinearities of human articulation
and perception to increase the distinctiveness of words, and to
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organize morphophonemic variation. A phonological distinc-
tion used by a higher-than-chance fraction of languages is called
a distinctive feature [12, 13]; linguists generally agree that all
distinctions in all languages in the world can be encoded by
∼ 40 distinctive features. A distinctive feature is either an
acoustic attribute or an articulatory gesture. Binary values sig-
nify whether a phonetic segment is specified by a distinctive
feature: a positive value, [+], denotes the presence of the fea-
ture, while a negative value, [-], denotes the absence of the
feature. Distinctive features are grouped into different cate-
gories: major class features such as [+/-sonorant]; laryn-
geal features such as [+/-voicing]; manner features such
as [+/-nasal]; place features [+/-labial]; and vowel
space features such as [+/-back].

Distinctive features [+constricted glottis] and
[+raised larynx ejective] are used in an unusual
way in Georgian. In this work we investigate the usefulness of
such glottal related acoustic features in spoken KWS on conver-
sational telephone speech of Georgian in Section 4 and related
prior work in Section 2.1.

Distinctive feature theory suggests that for under-resourced
languages with few native speakers to perform transcription
tasks, we can leverage on non-speakers of the language to infer
ground-truth phonetic transcriptions (mismatched crowdsourc-
ing) [14] since mutually unintelligible languages are character-
ized with overlapping articulatory gestures and acoustic proper-
ties. We discuss how prior work in mismatched crowdsourcing
is extended in Section 2.2.

In the absence of sufficient system development time, com-
putational power, or linguistic resources, distinctive feature the-
ory can guide us to select a compact set of source languages to
train a multilingual acoustic model to be readily fine-tuned for
a new target language. We discuss related prior work on data
selection and language selection in Section 2.3.

2.1. Acoustic Features Related to Glottal Source
We examine two glottal related distinctive features that are
used in an unusual way in Georgian: [+constricted
glottis] and [+raised larynx ejective], and dis-
cuss acoustic features that can help characterize such speech
production modes. [+constricted glottis] specifies
glottal constriction, which leads to creaky voice quality. (Re-
lated terms: glottalization, irregular phonation, and vocal
fry.) [+constricted glottis] is peculiar to certain lan-
guages: the broken Vietnamese toneme (ngã), the Tagalog glot-
talization phoneme, and Georgian ejective stop consonants [17].
Glottalization also occurs in American English in phrases such
as “uh-oh” [18]. [+raised larynx ejective] refers to
simultaneous constriction in the oral cavity and glottis, which
often results in loud bursts from increased oral air pressure from
glottal constriction [17]. In Georgian, ejection is only heard at
word-initial positions, but glottalization can be spread through
co-aritculation to the following vowel and to word medial po-
sitions [17]. The most common source-related acoustic feature
is the pitch estimate F0, which is known to improve ASR in
both tonal and non-tonal languages. The glottalization phoneme
in Tagalog has been modeled by exploring different hidden
Markov model topologies and using voicing features [19]. Fun-
damental frequency variation (FFV) has also shown to improve
ASR in both tonal and non-tonal languages [20], and in iden-
tifying tonal mispronunciation in Mandarin [21]. Creaky voice
quality (CVQ) features are less explored in speech technology,
though they have been used to model English allophones [22].
In this work, we examine how CVQ features work on conversa-

tional Georgian in spoken keyword search tasks.

2.2. Noisy Channel Models for Mismatched Crowdsourcing
Obtaining ground-truth labels is essential in supervised ma-
chine learning. Crowdsourcing is a cost-effective way to obtain
ground-truth labels for many machine learning tasks in spoken
language technology, where the human transcribers are usually
native speakers of the target language (e.g., Georgian). Mis-
matched crowdsourcing asks non-speakers (e.g., Mandarin) of
the target language to write what they hear, and their nonsense
transcripts (mismatched transcriptions) are decoded using noisy
channel models of second language speech perception [14].
These mismatched transcriptions tend to correctly transcribe
distinctive features shared by both the target language (Geor-
gian) and the annotation language (Mandarin), but features for-
eign to the annotator tend to be incorrectly transcribed. Recent
work from the 2nd Frederick Jelinek Memorial Summer Work-
shop [23] used such mismatched transcriptions to train acoustic
models for improved phone error rate (PER). In this work, we
extend mismatched crowdsourcing from PER tasks using pod-
casts (semi-broadcast news speaking style over clean channels)
to spoken keyword search tasks in noisy conversational tele-
phone speech in extremely under-resourced scenarios.

2.3. Data Selection for Cross-Lingual Acoustic Modeling
Data selection approaches are often used in active learning,
where the goal is to find the most informative and representative
subset of audio for human transcription. These approaches in-
clude utility scores (e.g., confidence scores from acoustic mod-
els) [24, 25], entropy computation [26, 27, 28, 29], or submod-
ular optimization [30, 31, 32, 8]. The aforementioned work
primarily focuses on selecting data from a larger corpus of the
same language. When considering data from source languages
different from the target language, language identification (LID)
has helped identify languages to train cross-lingual acoustic
models when the target language is known [33]. In the context
of OpenKWS16, systems had to be developed within one week
after the release of data, making the LID approach infeasible
due to the short development time. Minimal system develop-
ment time is essential in providing situational awareness infor-
mation from any language in emergent missions such as human-
itarian assistance1, as in the case of the catastrophic 2010 Haiti
earthquake. To tackle such computational challenges, we need
to select linguistic resources that are comprehensive in terms
of acoustic phonetic coverage so we can fine-tune it swiftly
to the target language in urgent situations. In this work, we
turn to an approach grounded in linguistic theory. Distinctive
features have been used to estimate the phonetic coverage and
information loss of mismatched crowdsourcing, where human
transcribers are asked to annotate a language they do not speak
[34]. Sharing a similar spirit, we use distinctive features to ana-
lyze the phonetic coverage of existing transcribed multilingual
resources used for cross-lingual transfer in acoustic modeling.

3. Experimental Setup
3.1. Corpora
This effort uses the Georgian language release (IARPA-
babel404b-v1.0a) for the NIST OpenKWS16 Evaluation. The
Full Language Pack (FLP) training set includes 40 hrs of con-
versational telephone speech. The Very Limited Language Pack

1DARPA LORELEI: http://www.darpa.mil/program/low-resource-
languages-for-emergent-incidents
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Table 1: Glottal Feature Experiment
System Features ATWV
G0 PLP+pitch+BNF 0.3107
G1 PLP+pitch+BNF+FFV 0.3235
G2 PLP+pitch+BNF+CVQ 0.3123
G1+G2 (PLP+pitch+BNF+FFV) +

(PLP+pitch+BNF+CVQ) 0.3610

Table 2: Mismatched Crowdsourcing Experiment
System Description ATWV MTWV
C1 24-min transcribed Georgian audio 0.0317 0.0619
C2 C1 adapted with 10-hr mismatched

Mandarin transcription
0.0690 0.1036

C3 C1 + C2 0.0911 0.1231

(VLLP) provides word transcriptions for a 3-hr subset of FLP,
a 3-hr tuning set, and a 10-hr developmental set. All results
reported are on the 10-hr development data. Pronunciation lexi-
cons were not offered, but web data was. OpenKWS16 allowed
24 Babel languages and some LDC data2 for acoustic modeling.

3.2. Evaluation Metric
Term-weighted value (TWV) is 1 minus the weighted sum of
miss Pmiss(θ) and false alarm PFA(θ): TWV(θ) = 1 −
[Pmiss(θ)+βPFA(θ)]; θ is the decision threshold. Actual term-
weighted value (ATWV) is TWV of the chosen threshold; max-
imum term-weighted value (MTWV) is the best TWV of all
θ. β = 0.99999 for NIST OpenKWS16, thus penalizing miss
probability heavily.

4. Glottal Feature Experiment
4.1. Acoustic Features Beyond Pitch
4.1.1. Fundamental Frequency Variation (FFV) Features
In contrast to scalar representations of pitch, FFV [35] is a vec-
tor representation of delta pitch. FFV is obtained using two
asymmetric windows placed on the same frame, one empha-
sizing earlier samples and the other emphasizing later samples.
Their corresponding spectra are compared using different as-
sumptions for the rate of pitch variation to infer delta pitch. This
comparison results in a spectrum, which is further reduced to a
7-dim vector for each speech frame by applying 7 trapezoidal
filters centered around different rates of frequency variation.

4.1.2. Creaky Voice Quality (CVQ) Features
Creaky voice (glottalization) is caused by glottal constriction.
Features such as pitch or FFV, while related to the glottis, are
not explicitly designed to characterize the irregular phonations
from strong glottal constriction. Therefore, we adopt two ad-
ditional features: (1) Amplitude difference of the 1st and 2nd
harmonics of the inverse-filtered voice signal (H1∗-H2∗), which
is the acoustic correlate of the open quotient of the glottis [36].
(2) Mean autocorrelation ratio, a temporal measure more robust
to channel effects [22]. CVQ features were extracted in voiced
regions; unvoiced regions are padded with zero [22].

4.2. System Implementation Details
The acoustic models were progressively trained, starting from
GMM systems, going from monophones to triphones, apply-
ing LDA and MLLT, eventually arriving at a final GMM sys-
tem with speaker adaptive training using feature MLLR. These

2See OpenKWS16 Evaluation Plan
(https://www.nist.gov/document-194) & OpenKWS16LDC Data
Agreement (https://www.nist.gov/sites/default/files/documents/itl
/iad/mig/OpenKWS16 LDCData EvalAgreement-V1 LDCRev.pdf).

Table 3: 24 Babel languages and word error rates of their cor-
responding monolingual GMM systems (FLP condition).

Language Family Category Language WER (%)
Southeast Asian & Tonal Cantonese 65.1

Lao 58.1
Vietnamese 61.6

Southeast Asian Austronesian Cenuano 65.7
Javanese 73.2
Tagalog 62.2
Tok Pisin 51.0

South Asian (Indian) Assamese 68.5
Bengali 68.9
Tamil 75.1
Telugu 79.1

Middle Eastern Kazakh 66.3
Kurdish 78.1
Mongolian 68.9
Pashto 62.2
Turkish 64.4

African and Caribbean Amharic 62.7
Dholuo 58.4
Haitian Creole 61.1
Igbo 73.5
Swahili 57.6
Zulu 72.0

Native American Guarani 62.9
Eastern European Lithuanian 61.9

GMMs were used to generate alignments which were used
for hybrid DNN system training. This 6-layer feed forward
DNN was used to generate a new set of alignments, used for
bottleneck feature (BNF) training. The features were passed
through the bottleneck network and used to train a second bot-
tleneck network, resulting in stacked BNFs [2]. We retrained
our hybrid-DNN using these stacked BNFs, and used sequence
discriminative (sMBR) training to further refine it. A 4-gram K-
N smoothed language model was trained using text transcripts
augmented with sentences filtered from the official web data
provided by BBN.

4.3. Results

Table 1 shows that appending FFV (System G1 to the base-
line setup of PLP+pitch+BNF (System G0) leads to 4.1% rel-
ative gain, while appending CVQ features (System G2) results
in only 0.5% relative gain. However, when we combine system
G1 and system G2, we achieve 11.9 % relative gain compared to
System G1, suggesting that FFV and CVQ are complementary.

5. Mismatched Crowdsourcing Experiment
5.1. Baseline System C1

Mismatched crowdsourcing is suitable for extremely under-
resourced scenarios, where native transcriptions are minimal.
We use Georgian as a test case in this paper. The baseline KWS
system is trained on 24 minutes of Georgian audio randomly
extracted from the 3-hr VLLP dataset. The acoustic features
are MFCC and pitch, used to train a DNN with 4 hidden layers,
each with 1024 nodes. The number of senone outputs are 364
(number of tied triphones). A 4-gram K-N smoothed language
model was used for decoding.
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Table 4: Language Selection Experiment
System # of Languages #hr ATWV
UpperBound S0 27 (24 Babel languages + 3 from LDC: Arabic, Mandarin, Spanish) 1,954 0.6498
Proposed S1 10 from Babel: Bengali, Haitian Creole, Lao, Kurdish, Zulu, Kazakh, Lithuanian, Guarani,

Amharic, Javanese
480 0.6296

Proposed S2 9 from Babel: Cantonese, Assamese, Pashto, Turkish, Tagalog, Zulu, Lithuanian, Guarani,
Amharic

615 0.6383

5.2. Proposed System C2

We adapted the baseline system C1 with mismatched transcrip-
tions: 10 hrs from the untranscribed portions of FLP were cho-
sen by maximizing the number of speakers via choosing 70 sec-
onds from the middle of each untranscribed Georgian conversa-
tion. A total of 8 Mandarin transcribers were hired from Up-
work (https://www.upwork.com), each in charge of 2.5 hrs, so
each Georgian audio file was transcribed by 2 Mandarin speak-
ers using Pinyin (romanized phonetic system). In this work,
mismatched transcription is converted to matched transcription
using a mismatched channel, modeled as a finite memory pro-
cess using weighted finite state transducers (WFST) [14, 23].
The weights on the arcs of the WFST model are learned using
the EM algorithm3 to maximize the likelihood of the observed
training instances. OpenFST [37] is used for all finite-state op-
erations. Mandarin phones are decoded via the mismatched
channel into Georgian phones, in a lattice format called prob-
abilistic transcription (PT) [14, 23]. PT is used to adapt the
baseline system C1. Unlike previous studies [38, 23], where
no native transcription was used, we assume there is a limited
amount (24 minutes) of native Georgian transcriptions to train
an initial acoustic model (System C1), and 10 hrs of PT and its
corresponding audio are used to further adapt C1.

5.3. Results and Discussion
Table 2 shows that the proposed system (C2) improves the
baseline (C1) by 118% relative in ATWV, and combining the
two systems further improves performance by 32% relative
to the proposed system C2. In addition to ATWV, we also
show MTWV results since the difference between ATWV and
MTWV suggest further gains can be obtained by more targeted
calibration and normalization. These investigations are test beds
for on-going work on ASR for under-resourced languages such
as Singapore Hokkien (Min Nan), where native transcriptions
are extremely challenging to acquire given the absence of a for-
mal writing system. We are also examining how to resolve the
noisy label problem of mismatched transcriptions.

6. Language Selection Experiment
6.1. Oracle System (Upper Bound S0)
A total of 43-dimension filter bank features were extracted from
all 24 languages in the Babel data and 3 languages in the LDC
set (Arabic, Mandarin, Spanish). The shared-hidden-layer mul-
tilingual DNN consists of 6 shared hidden layers (each with
2048 nodes); the output softmax layer is fine-tuned using 40 hrs
of the FLP Georgian data. For pronunciation modeling, 1-letter
graphemes were used to approximate phonemes. A 3-gram LM
was estimated using NIST provided web data.

6.2. Proposed Systems
Our objectives in selecting a subset of languages are as follow:

3Carmel finite-state toolkit,” http://www.isi.edu/licensed-sw/carmel

(1) Maximize acoustic phonetic diversity. For each of
the 24 Babel languages we compared their distinctive fea-
tures, similar to [34], using phonological inventory data
(http://phoible.org). Zulu and Amharic are two of the most
comprehensive languages that cover 29 and 28 distinctive
features respectively. The union of Zulu and Amharic reach 33
distinctive features among 38 specified distinctive features. The
union of the distinctive features in Zulu and Amharic excluding
the 22 common distinctive features across all languages:
+anterior, +click, +constricted glottis,
+long, +lowered larynx implosive, +raised
larynx ejective, +spread glottis, +tap,
+tense, +tone, +trill. For distinctive features not in
this union set of cardinality of 33, they are not specified in the
other Babel languages either. Zulu and Ahmaric were always
chosen to ensure we include not only common phonological
features, but also as many peculiarities as possible.

(2) Minimize number of languages. Besides taking a pho-
netic perspective in language selection through distinctive fea-
ture analysis, we also considered historical linguistic lineage
and geographical proximity to group the 24 Babel languages
into language family categories shown in Table 3. Each cate-
gory shares similarities beyond the acoustic-phonetic level, in-
cluding phonological structure and prosodic rhythm; e.g., the
Southeast Asian Tonal category are all monosyllabic tonal lan-
guages. Note that the categorization is more refined for Asian
languages due to its large proportion of 50%.

(3) Exclude anomalies. High word error rate implies poten-
tial issues to exclude the language in multilingual training: low
signal-to-noise ratio, cross-talk, poor transcription quality, and
linguistic peculiarities such as agglutination, which could be ef-
fectively modeled using automatically parsed morphs [8].

The experimental setup is the same as the oracle system
(S0 in Table 4) except the languages used to train the shared-
hidden layer multilingual DNNs (SHL-MDNN) are different.
See Table 4 for details. Table 4 suggests that our language selec-
tion strategy only sacrifices less than 2% relative ATWV, when
choosing only 1/3 of the total languages.

7. Conclusion
We presented low-resource spoken keyword search strategies
guided by distinctive feature theory to conduct acoustic fea-
ture selection, ground-truth transcription augmentation, and
data/language selection: (1) We exploited glottal features that
characterize Georgian ejective phonemes and showed that they
complement standard acoustic features, leading to fusion gains.
(2) We used noisy channel models of second language speech
perception to incorporate probabilistic phonetic transcriptions
from mismatched crowdsourcers to improve keyword search
performance for extremely low-resource conditions. (3) Using
distinctive feature analysis coupled with linguistic lineage, we
selected a compact subset of source languages to ensure high
phonetic coverage for cross-lingual acoustic modeling.
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