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Abstract—In recent years, the performance of video super-
resolution has improved significantly with the help of convolu-
tional neural networks (CNN). Most recent works based on CNN
use optical flow to handle video frames. They first compensate
the motion and perform multi-frame super-resolution based on
aligned frames. However, this 2-step approach has the drawback
that the first step can be a bottleneck in overall performance.
In this paper, we present a different approach to solving video
super-resolution problem without any use of optical flow or
motion compensation. We adopt recent advances in a recurrent
neural network called long-short-term memory (LSTM) and
residual network to deal with consecutive video frames effectively.
Compared to the single-frame method, our recurrent model
gives superior performance and shows more temporally coherent
results.

I. INTRODUCTION

Increasing a resolution of image or video while maintain-
ing the visual quality is one of the most challenging and
fundamental problems in computer vision. The main goal of
super-resolution is to recover the details of the high-resolution
(HR) image or video from its low-resolution (LR) counterpart.
Recently, video super-resolution has attracted attention with
the trend of devices equipped with high-resolution displays.

Especially, video super-resolution aims to generate the se-
quence of HR video frames given LR frames. Since the video
frames share a lot of information between the frames, it is
necessary to utilize temporal redundancy to design an efficient
algorithm.

Most recent works tackle the video super-resolution problem
by explicitly compensating local or global motions to make
consecutive frames registered. They use optical flow in a
variety of ways to estimate the motion. However, perfect
prediction of optical flow is challenging and is still a research
area. Thus relying on the optical flow as the first step of
the algorithm is a dangerous way. The imperfection of the
first stage can lead to a large performance loss in the overall
algorithm.

In this paper, we present a more seamless way of dealing
with video frames. Our algorithm excludes the use of any
optical flow or motion compensation by introducing a recur-
rent module. The recurrent module operates convolutionally,
thus making our CNN-based model specialized for video
processing. We experimentally demonstrate the superiority of
our model by comparing the conventional CNN with the
proposed recurrent model.

II. RELATED WORKS

Recently, the powerful capability of deep convolutional
neural networks (CNN) has led to dramatic improvements

Fig. 1: The overall architecture of our network (DRRNet). We
use EDSR[13] as a baseline structure. The recurrent module
operates convolutionally, thus allows the model to process
input frames effectively.

in various super-resolution(SR) problems. Since the work of
Dong et al. [1], many super-resolution models based on deep
CNN structure have been suggested. Kim et al. [2] first
proposed to use residual connections in deep CNN. Using
residual learning strategy significantly reduces the burden of
network constructing trivial low-frequency part. Later, residual
networks proposed by He et al. [3] have been adopted in super-
resolution networks to enable the network much deeper while
effective [4][13].

To benefit from temporal correlations between consecutive
frames, video SR methods typically take more than a single
image as input. Most works estimate the optical flow first
using off-the-shelf algorithms [6][12][14][7], or by learning
the optical flow network jointly [16][8]. Huang et al. [15]
proposed to use a recurrent network for modeling long-term
contextual information. Our model also works in a recurrent
manner but uses much deeper architecture and residual learn-
ing techniques.
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III. PROPOSED METHOD

A. Convolutional LSTM

To capture the long-term temporal video information, we
use long-short-term memory (LSTM) [18] modules. LSTM is
known to capture long-term dependencies well. To accommo-
date image processing, unlike regular LSTM cells, our LSTM
module uses a convolution layer rather than fully connected
ones. We replace every vector multiplication in LSTM with
convolutions. Equation (1) describes the activation of the
proposed convolutional Long-Short Term Memory cell.

in = σ(xn ∗ wxi + hn−1 ∗ whi + bi).

fn = σ(xn ∗ wxf + hn−1 ∗ whf + bf ).

c̃n = tanh(xn ∗ wxc̃ + hn−1 ∗ whc̃ + bc).

cn = c̃n · in + cn−1 · fn.
on = σ(xn ∗ wxo + hn−1 ∗ who + bo).

hn = on · tanh(cn).

(1)

xn and hn denotes the input LR frame and output of the
module. w and b are convolution kernels and bias, and ∗
denotes the convolution operation. in, fn, cn and on is the
input, forget, cell, and output gate respectively. We use the
sigmoid function and tanh activation, denoted by σ and tanh
respectively.

B. Network Architecture

The proposed network (DRRNet) has a similar architecture
with EDSR [13]. Please refer to Fig. 2 (c) for the overall struc-
ture of our proposed network. We use global skip connection
and residual network architecture [3], and avoid using batch
normalization layers. The first residual block is consists of
two convolutional LSTM modules described in the previous
section. Other residual blocks are consist of 2 convolution
layers with single ReLU activation layer between them. All the
convolutions have the same kernel size 3×3, and the number
of channels is fixed to 64. The network upsamples the low-
resolution feature map at the last step using deconvolution
layer. For efficient implementation, we use the combination of
convolution and pixel shuffle layers instead of deconvolution.
They perform the same operation as demonstrated by Shi et al.,
[17]. We set the depth of the network by 10 residual blocks.
Thus, the network has the depth of 23 convolution layers in
total.

IV. EXPERIMENTAL RESULTS

For training, we use the Berkeley Video Segmentation
Benchmark (VSB100) [10]. VSB100 consists of 40 training
sequences and 60 test sequences. We use 90 sequences for
training and 10 sequences for validation. A mini-batch consists
of 16 patches extracted randomly from consecutive frames.
The patch size is set to 64. We use ADAM optimizer [11]
with β1 = 0.9, β2 = 0.999, and ε = 10−8. The learning rate
is fixed to 10−4. All the experiments are done in scale 4. We
use the L1 loss as represented in (2) instead of the L2 loss,

(a)

(b)

(c)

Fig. 2: Network architectures used for ablation study. (a)
Modified VDSR. (b) Resnet. (c) Our DRRNet. The operation
of the Convolutional LSTM module is described in (1).

since L1 loss shows better performance. The loss function at
time = T is defined as

lossT =
1

ρ

T∑
t=T−ρ+1

|yt − ỹt|. (2)

where yt and ỹt are target and output frames, repectively. ρ
is the maximum depth of gradient back-propagation through
time, and we set this value to 5. When training the convolu-
tional LSTM modules, the maximum depth of gradient back-
propagation through time is set to 5. The input frames xt are
generated by downsampling the target HR frames yt using
bicubic interpolation. We perform the experiments using a
machine with 8-core 3.0 GHz CPU and a NVIDIA Titan X
GPU. The implementation of our algorithm is based on the
Torch7 framework.

To show the superiority of our model, we compare our
DRRNet with several other network architectures. Fig. 2
depicts the network architectures used in the comparison. A
CNN structure similar to VDSR [2] is the baseline model.
We also compare the Resnet structure same as EDSR [13].
Evaluation of both Resnets with and without the use of batch
normalization layers shows that it is better not to use them.
TABLE I shows the comparative performance evaluation of
these models on benchmark dataset [6]. Our model took 0.24
seconds to process each frame.

TABLE II shows the performance of SRCNN [1], VSRnet
[12], ESPCN [5], and the proposed DRRNet on the Videoset4
sequences (Calendar, Walk, Foliage, City) in [6]. We evaluate
their performance in PSNR, which is the most widely-used
metric. Only the Y channels of the results were used since
some of them can only deal with a single channel. The PSNRs
shown in the table are averaged over all sequences. Fig. 3
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(a) Original high-resolution image

(b) Low-resolution image (scale=4)

(c) Liu et al. [6]

(d) Proposed algorithm

Fig. 3: Qualitative results for the benchmark dataset [6]. From left to right, ’calendar’, ’city’, ’foliage’ sequence.
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Fig. 4: The results of the proposed DRRNet for successive frames in ’walk’ sequence in [6]. The results show that our model
produce stable and consistent SR images over time.

TABLE I: Model comparison on benchmark dataset [6]. Batch
normalization does not help in the Resnet structure. Resnet
structure combined with recurrent module improves perfor-
mance.

Resnet No BN Recurrent PSNR

Simple 24.71 dB

Resnet w/ BN X 25.08 dB

Resnet w/o BN X X 25.10 dB

DRRNet X X X 25.15 dB

TABLE II: Quantitative results on benchmark dataset [6].

Scale 4

PSNR

Bicubic 23.82 dB
SRCNN[1] 24.68 dB
Bayesian[6] 25.06 dB
VSRnet[12] 24.43 dB
ESPCN[5] 25.06 dB

DRRNet(ours) 25.15 dB

compares the result images of our algorithm with those of HR,
bicubic interpolation, and Liu et al., [6]. Fig. 4 demonstrates
that our network produces stable and consistent SR frames
over time.

V. CONCLUSIONS

In this paper, we proposed a recurrent Resnet system for
video super-resolution. By combining the advantages of deep
CNN and RNN, our model can achieve high performance
while omitting the complicated process of estimating object
motion.
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