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Abstract—Faster-than-Nyquist (FTN) signaling is one of the
approaches that improve spectrum efficiency by transmitting
symbols faster than the Nyquist rate. However, it suffers from
inter-carrier interference (ICI) and inter-block interference (IBI).
Thus, the ICI and IBI canceller is needed at a receiver. In
this paper, signal detection based on belief propagation (BP) is
applied to FTN symbol detection. The BP algorithm provides very
high performance in signal detection with large scale random
factor graphs. However, when we apply the BP algorithm to the
FTN signal detection, the factor graph has many short loops
locally, and randomness cannot be found in the edge strength
distribution. Thus, proper convergence is not always expected.
To improve the convergence performance in such an environment,
we propose a technique to scale a posteriori LLR values before
channel decoding. The simulation results show that the error
floor is significantly reduced by this LLR scaling.

I. INTRODUCTION

With the rapid spread of communication terminals such as
smartphones, it is expected that the traffic of the radio access
becomes more than 1,000 times in 2020 than that in 2010 [1].
In order to cope with rapidly-increasing traffic, dramatic im-
provement in both spectrum efficiency and system throughput
is required. In recent years, non-orthogonal multiple access has
attracted attention [2], [3] as an approach that can efficiently
perform user-scheduling by allowing inter-user interference.

OFDM-based faster-than-nyquist (FTN) is one of the other
techniques utilizing non-orthogonality [4], [5]. FTN signaling
improves spectrum efficiency by transmitting symbols faster
than the Nyquist rate at the expense of inter-carrier interference
(ICI) and inter-block interference (IBI). Thus, it is necessary
to remove the ICI and IBI at the receiver using an interference
canceller.

The similar situation can be seen in signal detection in
MIMO systems where inter-stream interference exists. Typical
detection techniques are linear spatial filtering, soft interfer-
ence canceller, and maximum likelihood detection. Recently,
in addition to these techniques, signal detection based on
a belief propagation (BP) algorithm has been studied in
large MIMO systems [6]–[9]. The BP-based detection is a
lightweight technique and achieves almost ideal performance
when the number of antennas is large enough and the channel
correlation is reasonably low [8]. However, the convergence
performance of BP generally degrades severely in a bad-
conditioned factor graph. Then, other helper techniques such
as LLR damping [6], [10] and LLR scaling [11] are needed.

When the BP-based detection is applied to the FTN signal
detection, high detection performance cannot be expected
because the factor graph has many localized short loops having
similar edge strengths as described later. Therefore, it is
expected that the BP-based FTN signal detection is a challenge
to confirm the capability of BP algorithm. In this paper, we
consider to apply the BP-based detection and propose a new
helper technique for performance improvement. The rest of the
paper is organized as follows. FTN signaling is summarized
in Section II. In Section III, signal detection based on the
BP algorithm is described. Section IV shows the performance
evaluation. Finally, the paper is concluded in Section V.

II. FTN SIGNALING

First, we describe FTN symbol construction from OFDM
symbols. This helps understanding our interference canceller
in the later part of this paper. An OFDM symbol sequence is
expressed as

sOFDM(t) =
∞∑

ℓ=−∞

M−1∑
k=0

xk,ℓ u
(
t− ℓT

)
ej2πkFt, (1)

where xk,ℓ is the data symbol, which is taken from a finite
complex alphabet constellation, at the kth subcarrier of the
ℓth symbol timing, M is the number of subcarriers, T is the
symbol length, F denotes the subcarrier interval, and u(t)
represents a pulse waveform. The subcarriers are orthogonal
to each other since the Nyquist criterion is satisfied by setting
FT = 1.

An FTN symbol sequence can be expressed similarly as

sFTN(t) =

∞∑
ℓ=−∞

M−1∑
k=0

xk,ℓ v(t− ℓηT )ej2πkFt, (2)

where v(t) is a different pulse waveform. Note that the symbol
length is shortened to ηT (0 < η < 1) under the same
subcarrier interval condition, i.e., ηTF < 1. Thus, the Nyquist
criterion is no longer satisfied. This destroys the subcarrier
orthogonality and yields an ICI.

Here, let us map each FTN data symbol component to
OFDM data symbols. As described above, there is the ICI.
In addition, the pulse waveform difference between u(t) and
v(t) causes an inter-block interference. Thus, several FTN data
symbols are projected on one OFDM data symbol.
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Fig. 1. Illustration of FTN symbols projected on an OFDM symbol.

In this paper, we assume rectangular pulse shapes for u(t)
and v(t). The rectangular pulse cannot localize the range of
ICI whereas it minimizes the range of IBI. Specifically, all
subcarriers in the frequency domain but only two symbols
at most in the time domain interfere each other. Thus, we
can easily control the number of FTN data symbols projected
on one OFDM data symbol by changing the number of
subcarriers. Since u(t) or v(t) take the value of 1 within the
time of 0 to T or ηT , and 0 otherwise, we can express as
follows

u
(
t− nT

)
ej2πmFt = Um,n(t) (3)

v
(
t− nηT

)
ej2πmFt = Vm,n(t). (4)

Then, the FTN symbol sequence given by (2) can be rewritten
as

sFTN(t) =

∞∑
ℓ=−∞

M−1∑
k=0

xk,ℓ Vk,ℓ(t). (5)

Mapping this sequence to an OFDM symbol sequence, we can
further rewrite the above equation as

sFTN(t) =
∞∑

n=−∞

M−1∑
m=0

x′m,n Um,n(t), (6)

where

x′m,n =
∑
k

∑
ℓ

Cm,n,k,ℓxk,ℓ, (7)

and Cm,n,k,ℓ is the projection coefficient of the FTN data
symbol at the kth subcarrier of the ℓth symbol timing to the
OFDM data symbol at the mth subcarrier of the nth symbol
timing, as shown in Fig. 1.

The above formulation does not consider a guard interval
(GI). In actual situations, we first map FTN symbols to OFDM
symbols. These symbols are followed by IFFT with the OFDM
symbol interval, and finally a GI is added [4].

III. INTERFERENCE CANCELLATION BASED ON BP

A. Detection Concept and Factor Graph Expression

The OFDM data symbol after removing the GI from the
received FTN symbol sequence and performing the FFT is
expressed as

x′m,n =
∑
k

∑
ℓ

hmCm,n,k,ℓxk,ℓ + zm,n, (8)

Observation nodes

Symbol nodes

Edge strength: 0.75, 0.5, 0.354, 0.25

Fig. 2. Factor graph expression for FTN data symbols to be estimated and
observed OFDM data symbols.

where hm is the channel coefficient at the mth subcarrier, and
zm,n is a white Gaussian noise. For the sake of simplicity, we
assume the maximum time delay of the multipath channel is
not greater than the GI.

Our problem is to estimate the transmitted FTN data symbol
xk,ℓ from the observation x′m,n. This can be expressed by a
factor graph as shown in Fig. 2. In this figure, we assume
4 subcarriers and 4 FTN symbols with η = 0.75 as a
simple example. The observation nodes in Fig. 2 correspond
to the observed OFDM data symbols, and the symbol nodes
correspond to the FTN data symbols to be estimated. The
edge exists only when the projection coefficient Cm,n,k,ℓ exits.
We can see that edge distribution is localized and that the
edge strength, i.e., the projection coefficient takes a constant
value at each local region. Actually, there are only 4 different
coefficients from 0.25 to 0.75 except zero. Considering many
loops in the factor graph and regularity in the edge strength,
we may say that the estimation using BP becomes very severe.

B. LLR Update at Observation Nodes

The received OFDM data symbol x′m,n given by (8) can
be rewritten as follows when we focus on a certain FTN data
symbol xi,j :

x′m,n =hmCm,n,i,jxi,j

+
∑
k ̸=i

∑
ℓ̸=j

hmCm,n,k,ℓxk,ℓ + zm,n, (9)

where the first term of the righthand side is the signal
component of interest, and the second term is the interference
from neighboring symbols.

Here, let us consider to estimate a belief of xi,j from
x′m,n. This corresponds to generating a message to the (i, j)th
symbol node from the (m, n)th observation node. Equation (9)
can be rewritten as

hmCm,n,i,jxi,j = x′m,n−
∑
k ̸=i

∑
ℓ̸=j

hmCm,n,k,ℓxk,ℓ−zm,n. (10)

Clearly, estimating the belief of xi,j from x′m,n requires
marginalization of other beliefs of xk,ℓ. To reduce the cal-
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culation complexity, we apply a soft canceller instead of the
marginalization.

As a first step, a soft replica x̂k,ℓ is calculated from the belief
(the extrinsic LLR value) passed from the (k, ℓ)th symbol
node. Then, the signal of which ICI and IBI are partly removed
is expressed as

x̃′m,n = x′m,n −
∑
k ̸=i

∑
ℓ ̸=j

hmCm,n,k,ℓx̂k,ℓ. (11)

In general, in early iteration stages, the replicas are not
perfectly reconstructed, ant thus some interference components
still remain in x̃′m,n. These are approximately regarded as
Gaussian-distributed random values [7]. Each variance (inter-
ference power) is calculated from the difference between the
expected value of soft replica’s power and the data symbol
power. After replacing the noise power by a sum of the noise
power and residual interference power, the bth bit’s LLR of
xi,j can be estimated by

α
(b)
i,j←m,n = log

p
(
x̃′m,n|x(b)

i,j = 1
)

p
(
x̃′m,n|x(b)

i,j = 0
) , (12)

where x
(b)
i,j is the bth bit value of xi,j . This process is repeated

for all (i, j) combinations, and these LLR values are passed
to corresponding symbol nodes.

C. LLR Update at Symbol Nodes

Let us describe the LLR update at the (i, j)th symbol node.
At first, a posteriori LLR of the bth bit of xi,j is calculated
by a sum of LLR values passed from the observation nodes
connected by edges as

γ
(b)
i,j =

∑
m,n

α
(b)
i,j←m,n. (13)

When channel coding is applied, this a posteriori LLR is
used as an input of the channel decoder and replaced by
the output of the decoder. The final decision is made by
this a posteriori LLR. The extrinsic LLR value passed to the
(m,n)th observation node is obtained by subtracting the LLR
value passed from corresponding observation node as

β
(b)
m,n←i,j = γ

(b)
i,j − α

(b)
i,j←m,n. (14)

This process is repeated for all the (m,n) combinations, and
these LLR values are passed to the corresponding observation
nodes. The initial value of the extrinsic LLR β

(b)
m,n←i,j in the

observation node is set to 0. Thus, the soft replica becomes 0
at the first iteration.

D. Problems in Factor Graph of FTN

The BP algorithm is a method of improving the reliability of
the a posteriori LLR by repeatedly exchanging the reliability
information between the symbol nodes and the observation
nodes. It is known that it works well in the case of LDPC
decoder where edges are sparsely distributed. When the factor
graph has short loops, the convergence is not guaranteed
generally. However, in a massive MIMO environment where

many short loops exist in the factor graph, the BP algorithm
works well because the edge strength distributes randomly [8].

In the factor graph of FTN, there are many short loops but
the edge strength takes one of a few limited values. The edge
strength variation increases with the number of subcarriers
under the assumption of rectangular pulse shape. Therefore,
when the number of subcarriers is too small, it is expected
that an influence of short loops increases. In addition, the
edges are connected very locally as shown in Fig. 2. It means
that nodes providing beliefs are limited in the local region.
In other words, a wide-range exchange of beliefs cannot be
expected. Thus, we need to take some measures to improve the
convergence performance in such a severe-conditioned factor
graph.

E. LLR Damping

When the LLR values are not appropriately converged, LLR
oscillation is seen frequently [12]. Therefore, reducing such
oscillation is expected to improve the convergence perfor-
mance. A simple way to prevent oscillation is damping [6],
[10] which is an exponential average of past reliabilities.
Damped LLR values change gradually. Therefore, the oscil-
lation may be prevented. We can damp LLR values at either
side of the factor graph. In the paper, we apply the damping
at the observation nodes. The LLR values at the (m, n)th
observation nodes passed to the (i, j)th symbol nodes are
damped as

α̂
(b)
i,j←m,n = Dα̂

(b)
i,j←m,n,prev + (1−D)α

(b)
i,j←m,n, (15)

where D (0 ≤ D < 1) is the damping factor, and α̂
(b)
i,j←m,n,prev

is the damped LLR at the previous iteration. The damped LLR
α̂
(b)
i,j←m,n is passed to the (i, j)th symbol node instead of

α
(b)
i,j←m,n. In this paper, with respect to the value of D, the

optimum value was empirically determined in terms of the
BER performance.

F. LLR Scaling

LLR scaling (multiplying a positive coefficient less than
one) is another approach to improve the convergence per-
formance in severe-conditioned factor graphs. There are two
different ways for LLR scaling. One is scaling of β

(b)
m,n←i,j .

This suppresses yielding quasi-hard replicas in soft cancel-
lation at the observation nodes. It is reported that this LLR
scaling improves the convergence performance in the uncoded
case [11].

Another is scaling of α(b)
i,j←m,n. In the coded case, high LLR

inputs to the decoder provides much higher LLR outputs. If
some of LLR inputs have wrong information, miscorrection
with very high LLR may occur. Therefore, reducing the
LLR values of decoder inputs is expected to improve the
convergence performance. Here, we propose the LLR scaling
of α

(b)
i,j←m,n in (12) as follows. The scaling factor should

depend on the LLR value α
(b)
i,j←m,n itself. This adjustment

can be done by observing the SINR after soft cancellation in
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TABLE I
SIMULATION PARAMETERS.

Modulation OFDM/QPSK

Number of subcarriers 4 or 8

Symbol interval shortening ratio 0.75

GI ratio 0.25

Block length 3 symbols

Number of blocks 10,000,000

Channel statistics Block Rayleigh fading

Number of waves 2 (4-subcarrier) or 3 (8-subcarrier)

Channel encoding Recursive systematic convolutional code
(constraint length 3, coding rate 1/2)

Channel decoding Max-Log MAP decoder

LLR scaling parameters 0.6 ≤ c ≤ 0.8
0.01 < d < 0.11

Number of iterations in BP 10

(11). We have tested several functions of SINR and selected
one as a tentative solution:

ρm,n,i,j = c e−dξm,n,i,j , (16)

where c and d are certain constants, and ξm,n,i,j is the SINR
value of x̃′m,n by regarding xi,j as the signal component.
In general, α

(b)
i,j←m,n becomes very high at the high SINR.

Therefore, we adjusted ρm,n,i,j to be a smaller coefficient
when SINR is higher. The optimum values of c and d were
empirically determined by a trade-off between the cliff and
error floor level of BER performance. For comparison, we
also performed LLR scaling only using SNR in (16). Specif-
ically, the residual interference power is removed from the
denominator of ξm,n,i,j .

IV. NUMERICAL EVALUATIONS

A. Simulation Environment

In this paper, we assume FTN transmission based on an
OFDM/QPSK modulation scheme using rectangular pulse.
The computer simulations on the BP-based detection have
been conducted under the conditions as shown in Table I.
The number of subcarriers is 4 or 8. The transmission block
length is 3 symbols. The subcarrier interval is the same as
OFDM whereas the symbol interval is shortened to 0.75. We
used a AWGN channel model or a block Rayleigh fading
channel model having an equal power delay profile. In fading
channels, the numbers of paths were set to 2 and 3 in the
4-subcarrier and 8-subcarrier cases, respectively, according to
the GI length. The channel state information is assumed to be
perfectly known at the receiver. As a channel code, a recursive
systematic convolutional code (constraint length 3 and coding
rate 1/2) is used.

B. BER Performance

Figures 3 and 4 show the BER performance of FTN data
symbol detection in the AWGN channel. In the paper, we

Fig. 3. BER performance of the 4-subcarrier case in the AWGN channel.

Fig. 4. BER performance of the 8-subcarrier case in the AWGN channel.

examine the detection performances of BP-based algorithm
with or without LLR damping and scaling. As the baseline,
we also evaluate the detection performance using a matched
filter 1(denoted as “w/o canceller” in the figures).

It is observed that the BP algorithms reduce the error
floor compared with the case without interference cancellation.
For the convergence helpers, the SINR-based scaling is most
successful in reducing the error floor. It can be said that
reducing the input value of the decoder by scaling based on the

1In this case, the degrees of freedom are not enough to cancel the
interference. Hence, the ZF filtering based on MP generalized inverse matrix
is equal to the matched filter.
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Fig. 5. BER performance of the 4-subcarrier case in the 2-path fading channel.

SINR is very effective for error floor reduction. Furthermore,
it can be seen that the convergence performance is further
improved when the number of subcarriers is increased to 8. As
described before, the edge strength variation increases with the
number of subcarriers. Therefore, in the 8-subcarrier case, the
short loop effect can be weakened. It is highly expected that
the error floor will disappear when the number of subcarrier
is much larger.

The BER performance in the fading channel is shown in
Figs. 5 and 6. Even in fading environments, the LLR scaling
based on SINR shows the best performance and becomes
more effective. In the fading channel case, the edge strength
is replaced by the multiplication of channel and projection
coefficients. Then, a few strong edges appear in the factor
graph and become dominant in the message passing. In such
a case, some LLR values may be masked by a few big LLR
values in (13). The LLR scaling prevents the LLR values from
being very large, and thus it is supposed that ill convergence
due to LLR masking is reduced by the LLR scaling.

V. CONCLUSIONS

In this paper, we applied the BP algorithm to the FTN
data symbol detection. The given factor graph has short loops
locally and no randomness in the edge strength distribution.
Thus, the BER performance was poor when only the BP-based
detection is used. In order to improve the performance, we
tested LLR damping and proposed a new LLR scaling method.
As a result, it has been shown that the LLR scaling based on
the SINR reduces the error floor significantly in both AWGN
and multipath fading channels.

In the paper, we assumed a simple rectangular pulse for
FTN signaling. Because the assumption is unusual, it is needed
to check the performance in more general pulse shapes such
as Gaussian pulse. In addition, the proposed technique may

Fig. 6. BER performance of the 8-subcarrier case in the 3-path fading channel.

be applicable to other detection problems. Further studies are
needed to investigate these issues.
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