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Abstract—Code-switching language modeling is challenging
due to statistics of each individual language, as well as statistics
of cross-lingual language are insufficient. To compensate for
the issue of statistical insufficiency, in this paper we propose
a word-class n-gram language modeling approach of which only
infrequent words are clustered while most frequent words are
treated as singleton classes themselves. We first demonstrate the
effectiveness of the proposed method on our English-Mandarin
code-switching SEAME data in terms of perplexity. Compared
with the conventional word n-gram language models, as well
as the word-class n-gram language models of which entire
vocabulary words are clustered, the proposed word-class n-
gram language modeling approach can yield lower perplexity
on our SEAME dev data sets. Additionally, we observed further
perplexity reduction by interpolating the word n-gram language
models with the proposed word-class n-gram language models.
We also attempted to build word-class n-gram language models
using third-party text data with our proposed method, and
similar perplexity performance improvement was obtained on our
SEAME dev data sets when they are interpolated with the word
n-gram language models. Finally, to examine the contribution
of the proposed language modeling approach to code-switching
speech recognition, we conducted lattice based n-best rescoring.

I. INTRODUCTION

Language and acoustic modelings are two key factors of
a state-of-the-art automatic speech recognition (ASR) system
that is in turn an indispensable part for modern spoken lan-
guage understanding. However, most of present ASR system
is only capable of monolingual understanding, which is not
desirable on some occasions where code-switching1 based
multilingual conversations frequently occur.

Compared with building of a monolingual ASR system,
code-switching based multilingual ASR system building is
much harder, at least due to data sharing and data insufficiency
issues. Both issues can exist either in acoustic modeling or
language modeling. For code-switching based acoustic mod-
eling, [1]–[3] proposed using IPA phone set for the benefit of
better data sharing. While [4]–[6] pursued language dependent
phone sets for each individual languages, but phone or senone
merging were attempted. In recent years, as DNN acoustic
modelling framework comes to popularity, performance of
Code-switching Speech Recognition (CSSR) has been im-
proved significantly [7], thanks to the capability of DNN

1In this paper, code-switching refers to different language transition phe-
nomenon, either in a speech utterance or between utterances. To be simplified,
we only consider English-Mandarin language code-switching phenomenon.

acoustic modelling , as well as its inherent capacity for data
sharing across different languages.

Code-switching incurs severe data scarcity problem in lan-
guage modeling, particularly for the n-grams which consist
of language transitions, e.g. “ 一起 去 canteen” and “then
我们 就”, for which obtaining adequate data to learn the
respective probabilities is difficult. As majority corpora are
monolingual, existing techniques of language models adaption,
either data augmentation [8], [9] or model combination [10],
[11], cannot be readily applied to improve the language
models. To tackle such specific problem, several approaches
have been proposed such as incorporating linguistic rules to
govern the language transitions between words [12], [13],
approximating the probabilities by using features that are more
general like POS and word-class [14]–[17], and projecting
words into continuous space to achieve better generalization
[18]–[20]. Overall, these approaches derive complementary
information about the training data to improve the language
model.

Moreover, code-switching language is usually spoken in
spontaneous which contains certain speaking habits that are
specific to a group of speakers, two corpora of the same
code-switching language collected in different regions might
possess different syntactic structures. For example, although
Mandarin-English code-switching language is commonly spo-
ken in South-East Asia and Mainland China, how speakers
switch languages are different, e.g. it is more common for
the speaker in Mainland China to say “ 挺 tough 的” than
in South-East Asia. Combining two models of speaking style
mismatch by using the traditional interpolation methods results
suboptimal model.

In this paper, we are aiming to alleviate data sparsity issue
in code-switching using word-class based language modeling
method. To this end, we propose a restricted word clustering
method in which only those infrequent words are clustered
while those frequent words are dealt with singleton classes
themselves. We dubbed this as “restricted” word clustering
method since some kind of “raw” prior knowledge is consid-
ered when we cluster words into classes. This is obviously
contrasted with conventional ones where the entire word
vocabulary are clustered using data-driven based clustering
method. Although this is straightforward when no third-party
data is available, its effectiveness lies in being capable of
extracting pertained syntactic structures for those infrequent
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n-grams from third-party data while keeping those frequent n-
grams marginally affected when third-party data is employed.

We demonstrate the effectiveness of the proposed method in
two configurations. that is, the case of with or without third-
party data employed. First, We found the “restricted” word
clustering method yields improved perplexity results when it
is interpolated with word n-gram language models when no
third-party data is used at all. It also performs better compared
with the method where overall word vocabulary are clustered.
Secondly, when third-party data is available, the advantage
of the proposed method is further increased thanks to its
amelioration of probability estimation for those infrequent n-
grams using more data. Finally, to examine the effectiveness
of the proposed method in code-switching speech recognition,
we conducted lattice rescoring.

II. DATA DESCRIPTION

In this work, two categories of data sets are employed for
the overall experiments. One is SEAME code-switching data
[21], the other category is composed of two third-party (out-
domain) data sets that are an English transcription corpus and
a Mandarin transcription corpus respectively. Table I depicts
the SEAME data set.

TABLE I
DATA DESCRIPTION OF SEAME CORPUS FOR LANGUAGE MODELING

Data set Size (M) Vocabulary (K) OOV (%)

Train 0.91 29.87 -
devman 0.07 6.45 2.13
devsge 0.06 5.36 1.40

The overall text of the three data sets in Table I is from
the entire transcription of SEAME corpus. Specifically, they
correspond to three data sets of ∼97 hours, ∼8 hours and
∼6 hours with each containing 134, 10 and 10 speakers
respectively. In terms of OOV rate in Table I, English and
Mandarin words are ∼60% and ∼40% respectively in devman,
while they are ∼70% and ∼30% in devsge instead. From this
perspective, we can see English words are not as well covered
as those of Mandarin for the two dev sets.

Table II indicates individual language word occurrence rates
on average of each utterance for the three data sets. From Table
II, we can see Mandarin is dominant in SEAME data. However
as seen in Tables I and II the two defined dev sets contain
different proportions of English and Mandarin data, as devman

is dominated with Mandarin data, while devsge is dominated
with English data. They are defined differently because we
want to have more insights on the actual performance change
under different code-switching scenarios.

Table III describes the general distribution of the third-
party data. The Mandarin text is from the transcription of the
LDC2005T32 corpus, which corresponds to ∼190 hours of
telephony speech data. The English text is the transcription
of the ∼160 hours of Singaporean speech data. We choose
them because the two data sets, as well as our SEAME data
set, belong to the category of spontaneous speech. Besides,

TABLE II
INDIVIDUAL LANGUAGE WORD OCCURRENCE RATE ON AVERAGE OF

UTTERANCE IN SEAME CORPUS

Data set Mandarin (%) English (%)

Train 59.05 40.95
devman 65.66 34.34
devsge 27.93 72.07

real code-switching data is hard to obtain, but we still want
to merge the two data sets to simulate a kind of corpus
approximately equivalent to code-switching data by means
of word-class based language modeling as will be shown
in Section III. However, we notice that both Mandarin and
English data sets in Table III are not purely monolingual
data set, each itself containing very small portions of code-
switching data.

In Table III, we also show the vocabulary overlap rate
of the two data sets relative to the SEAME data set. We
define overlap rate as the portion of the intersected vocabulary
between the third-party data and the SEAME data relative to
the vocabulary of the SEAME training data. For instance, the
overlap rate of the Mandarin data is 35.89%. If we assume the
English data it contains can be ignored, then we can conclude
only half of the Mandarin vocabulary ( refer to Table II) in
the SEAME data appears in the third-party Mandarin data.
Which means both data sets are obviously different in terms of
topic. However, majority of English vocabulary in the SEAME
data is covered by the third-party English data. Both data
sets are also clearly different, for there are still about 10%
of vocabulary in the SEAME training data not covered (refer
to Table II).

TABLE III
DATA DISTRIBUTION OF THIRD-PARTY CORPORA FOR LANGUAGE

MODELING

Data set Size (M) Vocabulary (K) Vocabulary
Overlap rate (%)

Mandarin 1.45 47.93 35.89
English 1.41 21.11 32.72

III. WORD-CLASS N-GRAM LANGUAGE MODELING

In this section, we review some backgrounds of n-gram
language modeling method for the sake of better clarification
in what follows.

A. Restricted word-class based Language modeling

Equation 1 shows how word-class based language model
estimates the n-gram probabilities:

P (wi|wi−n+1, . . . , wi−1) =

P (C(wi)|C(wi−n+1), . . . , C(wi−1))P (wi|C(wi)) (1)

where C(wi) refers to the class of word wi. The first term on
the right hand side of Equation 1 is estimated according to
normal n-gram formula as shown in the following Equation
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3, while the second term is estimated with word count in a
class to which it belongs. For our restricted word clustering
method, when word wi is a frequent word whose count is
above a specified threshold, Equation 1 is changed to:

P (wi|wi−n+1, . . . , wi−1) = P (wi|C(wi−n+1), . . . , C(wi−1))
(2)

This is because word wi itself is a singleton class, thus
P (wi|C(wi)) = 1. We note that our restricted word-class n-
gram language modeling method does not violate the require-
ments of n-gram language modeling theory.

B. Smoothing probability estimate

N-gram language modeling has been widely used in speech
recognition community for long thanks to its simplicity and
effectiveness. However, one of main limitations of N-gram
language modeling is that it suffers from data sparsity issue
given a limited data set. To counter this problem, various dis-
count based backing-off mechanisms were proposed [22]–[24]
to smooth the probability distribution. The general principle
can be explained with Equation 3 [25].

P̂ (wi|wi−n+1, . . . , wi−1) =
α(wi−n+1, . . . , wi−1)P̂ (wi|wi−n+2, . . . , wi−1),

c(wi−n+1, . . . , wi)=0

dc(wi−n+1,...,wi)
c(wi−n+1,··· ,wi)

c(wi−n+1,··· ,wi−1)
,

0<c(wi−n+1, . . . , wi)

(3)

where α(·) is backing-off factor, dc(·) is discount coefficient
factor, and c(·) is word n-gram count accordingly. We note that
the backing-off factor α(·) is dependent on dc(·). For Equation
3, we have the following assumptions:

1) Given a history wi−n+1, . . . , wi−1, the higher its occur-
rence, the better backing-off factor it has, and thus better
probability estimate can be obtained in its backing-off
condition.

2) Propability estimate from the second term is always
better than that from the first term for a given n-gram.

C. Proposed probability estimate for code-switching data

In code-switching speech recognition, data sparsity issue
is more severe. This is because a lot of cross-lingual n-
grams do not occur frequently, and the probabilities of such
n-grams are poorly estimated. Earlier work usually employs
word-class n-gram language modeling approach to alleviating
the data sparsity problem [26]–[28]. However, it is hard to
obtain desirable word-classes using data driven based method
under code-switching scenario. This is because code-switching
data are much sparser than monolingual data, and hence it is
difficult to discover meaningful classes. Besides, it is even
harder when we try to cluster words that has similar semantic
meaning but from different languages into one class due to
data sparsity issue.

In this paper, we propose an improved word-class based
language modeling method where only infrequent words are
clustered and high frequent words are dealt with singleton

classes themselves. Compared with traditional word based n-
gram method, our method alleviate the data sparsity issue.
This is because we use word-classes for those infrequent
words, yielding increased count number of the similar events,
and hence robust probability estimate for those infrequent n-
grams. Moreover, compared with the normal word-class n-
gram method of which word clustering is done with overall
word vocabulary, the proposed “restricted” word clustering
method has the advantages: a) it is much simpler to cluster
words into classes since only those infrequent words are
clustered, and b) it well preserves the discriminative features of
the word n-gram language models for those higher frequency
words. This is because those frequent words are not clustered.
These can be explained with Equation 3 and corresponding
assumptions. For instance, given a higher frequency word
wi, the proposed method can potentially boost its probability
estimate in the case of c(wi−n+1, . . . , wi) = 0, since our
method can make more n-gram occur satisfying assumption 1)
as mentioned. On the contrary, if wi is a infrequent word and
being clustered, more probabilities of the n-gram containing
the word will be estimated using the second term of Equation
3. Therefore we can obtain better n-gram probability estimate
according to the assumption 2) correspondingly.

D. Perplexity results on SEAME data

In this section, we report the perplexity results of the
proposed method for word-class based n-gram language mod-
elling on SEAME data as described in Table I. To evaluate
the effectiveness of the proposed method, we first build word-
class based n-gram language models, then we interpolate the
resulting models with the corresponding word based n-gram
language models. Finally, we conduct perplexity test on the
two dev sets in Table I. Figure 1 plots perplexity results versus
count threshold below which words are clustered into 500
word-classes using Brown clustering method. Here we fix the
total classes as 500 when the count threshold is changed.
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Fig. 1. Perplexity results versus word count threshold with which words that
have fewer counts are clustered; here number of classes from the clustered
words are fixed with 500.

From Figure 1, we can see clustering those lower frequent
words always yields lower perplexity. However when those
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most frequent words are clustered as well, perplexity results
are degraded. Actually, we also observed the similar phe-
nomenon with different word-classes as well. This suggests
those frequent words tend to be a separate classes themselves,
and clustering them with other words would reduce discrimi-
native capability of language models.

Figure 2 depicts perplexity results versus number of word-
classes given a fixed word count threshold 10 to cluster those
lower frequent words.
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Fig. 2. Perplexity results versus number of word-classes clustered from those
words whose frequency count is no more than 10.

We notice the perplexity results in Figure 2 are almost
irrelevant with number of word-classes, which indicates the
Brown clustering method fails to discovery meaningful word
classes. The main reason should be due to data sparsity
problem. Since majority of word n-gram counts are low, it
is hard to exploit those word n-grams that have higher counts
to cluster. Besides, in code-switching scenario, it is hard to
cluster those words with similar meaning but from different
languages into the same class by data driven based word
cluster method. This is because those words probably appear
in complete different n-gram contexts, as a result, they end up
with different classes.

Table IV reports the perplexity results with the proposed
word-class n-gram language modeling method (denoted as
Rest. Class ) on SEAME data. From Table IV, it can be
seen the proposed method has consistently yielded improved
perplexity results, over the baseline word n-gram language
models that are trigram and trained with Kneser-Ney smooth-
ing method. Specifically, it relatively achieves 3.69% and
3.19% perplexity reduction on devman and devsge data sets
respectively.

In contrast, Table IV also reports the results from “Overall
Class LM” method in which all words are clustered. The
interesting thing is that the perplexity results are very close
between the two word-class LMs, but the differences are
remarkably enlarged when they are interpolated with word
n-gram LMs respectively. The “Overall Class LM” produces
degraded results as shown in Figure 1. We note that interpo-
lating factor between the word n-gram and word-class n-gram

language models is fixed with 0.6.

TABLE IV
PERPLEXITY RESULTS OF THE PROPOSED WORD-CLASS BASED N-GRAM

LANGUAGE MODELS ON THE SEAME dev SETS

Language models Perplexity
devman devsge

Word LM 264.18 222.88

Overall Class LM 268.28 228.10
Rest. Class LM 265.66 228.65

Word LM + Overall Class LM 265.94 226.78
Word LM + Rest. Class LM 254.43 215.76

IV. PERPLEXITY RESULTS WITH THIRD-PARTY DATA

In code-switching language modelling, in-domain data is
generally very limited, leading to poor estimate of language
models as a result. We attempt to utilise more third-party
data in Table III to boost language model performance in this
section. Since out-domain code-switching data is also hard to
access as well, we try to simulate a kind of code-switching
data set by merging the English and Mandarin monolingual
data sets as mentioned. This can be realised in terms of word-
class based language modeling environment, provided words
from different languages are clustered into the same class.

However, the key point is how to build word-class language
models using the third-party data. We have two alternatives.
First, we only use the SEAME word vocabulary to do word
clustering on the third-party data set. Secondly, we only cluster
those lower frequency words in the SEAME data set on the
third-party data sets. Here we choose the second method. It
not only mitigates the data sparsity issue of the SEAME data,
but also brings smaller change to the syntactic context of those
frequent words. For comparison, we also use third-party data
to build word language models to interpolate with the SEAME
word language models.

Table V presents the perplexity results of the proposed
method with different third-party data sets employed.

TABLE V
PERPLEXITY RESULTS OF THE PROPOSED METHOD ON THE SEAME dev
SETS, TAKING RESULTS OF THE WORD BASED LANGUAGE MODELS (LM)

AS A BASELINE. THE RESULTING LMS ARE OBTAINED BY INTERPOLATING
THE SEAME WORD LMS WITH CORRESPONDING WORD-CLASS LMS

THAT ARE BUILT WITH SEAME DATA, MANDARIN DATA, ENGLISH DATA,
AND THEIR MIXED DATA RESPECTIVELY

Data Language models
(Interpolation)

Perplexity
devman devsge

Seame Word LM 264.18 222.88
Seame Word LM + Rest. Class LM 254.43 215.76

+Mandarin Word LM + Word LM 260.31 230.05
+Mandarin Word LM + Rest. Class LM 253.90 225.61

+English Word LM + Word LM 264.12 202.54
+English Word LM + Rest. Class LM 255.85 186.27

+Mixed data Word LM + Word LM 253.16 203.33
+Mixed data Word LM + Rest. Class LM 249.94 190.60
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We observe from Table V that using third-party data helps in
general. This is particularly true when third-party data contains
both languages. As seen in the “Mixed data” case of Table
V, we gain 5.39% and 14.48% relative perplexity reductions
respectively in the case of using mixed third-party data.
However when only monolingual (or severely biased to one
of languages) data is employed it is not guaranteed to obtain
improved results. As can be seen in the case of “+Mandarin”
in Table V, we got even worse perplexity results on the devsge
data set. This may be because when one monolingual data is
used a lot of words from another language cannot be clustered
reasonably, consequently resulting in poor performance on the
language that has no data to cluster.

Besides in terms of effectiveness for using third-party data,
results of Table V also suggest the proposed word-class
language models get better results compared with correspond-
ing word language models when both are interpolated with
SEAME word language models.

For word-class language modeling ,we notice that we fix
word-class number, word frequency count to cluster, and inter-
polating factor between word and word-class language models
in Table V. They are 500, 10 and 0.6 respectively. For word
language models from the third-party data, they are all Kneser-
Ney smoothed, and when they are interpolated with SEAME
word language models, the corresponding interpolating factors
are optimized.

V. WORD-CLASS LANGUAGE MODEL RESCORING

To test the effectiveness of the proposed language modeling
method, we perform lattice rescoring in this Section.

A. Speech recognition System
Our acoustic models are trained with lattice-free Maximum

Mutual Information (LF-MMI) [29] criteria, on the top of a
7-layer Time Delay Neural Network (TDNN) similar to one
proposed in [30] but using Rectified Linear Units (ReLU) as
neurons instead. The front-ends are made of 40-dimensional
MFCC plus 100-dimensional i-vectors [31]. They are LDA
transformed over ±1 feature window before fed to the TDNN
as input. The output TDNN has 5950 nodes, which are the
HMM senones. Except for acoustic models as mentioned
above, the lexicon and language models are all built with
training transcripts as well.

B. N-best rescoring
In our work, we employ a similified language model

rescoring method. The rescoring is performed on the n-best
hypthoses instead of lattice. To do this, it is necessary to
generate lattice. In our experiments, all lattices are generated
with word-based trigram language models. We then generate
n-best hypotheses from lattice. and use various language
models to re-rank the n-best combined with corresponding
acoustic scores. Table VI reports the language model rescoring
results. From Table VI, we get rather small but consistent
WER performance improvement using the proposed word-
class based language modeling method. The marginal improve-
ments implicitly say the contribution of the n-gram language

TABLE VI
WER RESULTS OF LANGUAGE MODEL (LM) RESCORING, BY RERANKING

10-BEST HYPOTHESES FROM LATTICE

Setup devman (%) devsge (%)

Oracle 16.90 24.36
Word LM 25.74 37.27

Word LM + Rest. Class LM 25.65 37.14

modeling methods is rather limited due to strong acoustic
modeling method employed.

VI. CONCLUSIONS

In this paper we proposed an improved word-class based
language modeling method for code-switching speech recog-
nition task, in which only low-frequency words are clustered,
while those high-frequency words are dealt with singleton
classes themselves. We first demonstrated its effectiveness with
regard to perplexity reduction of language models. Compared
with word n-gram language models, we achieved up to 3.69%
perplexity reduction when only SEAME transcript data is
employed; and 14.48% reduction when more third-party data
is introduced. We then tried language model rescoring in
speech recognition task, however, we got very marginal but
consistent WER reduction, using state-of-the-art TDNN LF-
MMI acoustic modeling method.
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