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Abstract—Multiple-regression Gaussian mixture models (MR-
GMM) allow for control of voice timbre along several axes each
described by a voice timbre expression word. To create these
axes, perceptual scores corresponding to multiple voice timbre
expression words are manually assigned to individual pre-stored
target speakers as the voice timbre control parameters, and then
acoustic basis vectors corresponding to the individual control
parameters are learned. The voice timbre expression words are
usually selected from various words using factor analysis so
that the voice timbre control parameters are independent of
each other. However, the resulting basis vectors are not often
orthogonal to each other, and they practically cause difficulties
in intuitively controlling the converted voice timbre. Towards the
development of the MR-GMM capable of intuitively controlling
converted voice timbre, we investigate how to design the voice
timbre control parameters so that not only the voice timbre
control parameters but also the corresponding acoustic basis
vectors are independent of each other. Experimental results
demonstrate that 1) a method for annotation of the voice timbre
control parameters using the converted voices rather than natural
voices is effective, and 2) the independences of the voice timbre
control parameters and acoustic basis vectors is helpful for
improving the converted voice timbre controllability of the MR-
GMM.

I. INTRODUCTION

Varieties of voice characteristics, such as voice timbre and
fundamental frequency (Fp) patterns, produced by individual
speakers are always restricted by their own physical constraints
imposed by the speech production mechanism. Voice conver-
sion (VC) is a potential technique for us to produce speech
sounds beyond our own physical constraints [1].

As one of the most popular statistical VC methods that
converts voice timbre of a source speaker into that of a
target speaker, a conversion method using a Gaussian mixture
models (GMM) have been proposed [2], [3]. This technique
converts acoustic features of the source speaker into those
of the target speaker based on a previously trained GMM
using parallel utterances of the source and target speakers. To
make it possible to convert an arbitrary source speaker into
an arbitrary target speaker, many-to-many conversion based
on eigenvoice GMM (EV-GMM) has been proposed [4]. The
EV-GMM is trained in advance using multiple parallel data
sets including utterance pairs of a single reference speaker
and many other pre-stored target speakers. This technique
models various source/target speakers’ acoustic features using
orthogonal basis vectors (i.e., eigenvectors). Therefore, it is
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straightforward to manually change converted voice timbre
by manipulating interpolation weights for the basis vectors.
However, it is essentially difficult to intuitively control them
because a voice timbre component modeled with each basis
vector does not have any specific meaning.

In order to manually control voice timbre of the source
speaker based on intuitively understandable parameters, statis-
tical VC with multiple-regression GMM (MR-GMM) [5] has
been proposed. In the training of the MR-GMM, the model
learns basis vectors corresponding to individual voice timbre
control parameters, which are perceived scores on specific
voice timbre expression word pairs, using the multiple parallel
data sets along with the voice timbre control parameters
manually assigned to each pre-stored target speaker. The MR-
GMM makes it possible to intuitively control converted voice
timbre thanks to the voice timbre control parameters having
specific meanings represented by the corresponding voice
timbre expression word pairs. However, it is still difficult to
achieve sufficiently high controllability because the resulting
basis vectors are not usually orthogonal to each other and the
use of them causes difficulties in simultaneously manipulating
the corresponding voice timbre control parameters.

In this paper, towards improvements of controllability of
converted voice timbre using the MR-GMM with multiple
voice timbre control parameters, we carefully investigate how
to design these parameters. We assume that it is effective to
design them so that 1) the voice timbre control parameters
are independent of each other in a perceptual space, and 2)
the corresponding basis vectors are orthogonal to each other
in an acoustic space. The experimental results demonstrate
that 1) an annotation method of the voice timbre control
parameters using the converted voices rather than natural
voices is effective, and 2) the voice timbre controllability of
the MR-GMM is significantly improved by making the voice
timbre control parameters independent of each other and also
basis vectors orthogonal to each other.

II. VOICE TIMBRE CONTROL BASED ON MODIFIED
MR-GMM

In this paper, we utilize a modified representation of the
MR-GMM (Modified MR-GMM) [6] as an enhanced version
of the traditional MR-GMM [5]. In the training process of
the Modified MR-GMM, a canonical MR-GMM consisting
of basis vectors corresponding to individual voice timbre

APSIPA ASC 2017



Proceedings of APSIPA Annual Summit and Conference 2017

control parameters defined by the perceived scores is pre-
viously trained using multiple parallel data sets consisting
of a reference speaker’s voices and many pre-stored target
speakers’ voices in the same manner as the traditional MR-
GMM. Then, a part of the canonical MR-GMM parameters is
modified so that voice timbre of a specific target speaker is
well converted while retaining speaker individuality.

In the conversion process, the voice timbre control param-
eter differentials are manually set to desired values. Then, the
voice timbre of the source speaker is converted into the desired
one according to the given voice timbre control parameter
differentials. The maximum likelihood estimation of speech
parameter trajectories [3] is used in conversion.

III. DESIGN OF VOICE TIMBRE CONTROL PARAMETERS

Several voice timbre expression words were carefully se-
lected from various candidate words using factor analysis
through a large-sized perceptual test [7]. In our previous
work [5], these selected words were used to assign the voice
timbre control parameters to the individual pre-stored target
speakers through listening to their natural voices. The assigned
voice timbre control parameters are usually less correlated to
each other. On the other hand, the resulting basis vectors of
the MR-GMM trained with these parameters are not usually
orthogonal to each other, causing difficulties in intuitively
controlling the converted voice timbre in practice. We carefully
investigate how to address this issue, focusing on how to
design the voice timbre control parameters.

A. Investigation of how to define voice timbre control param-
eters

Previous work on the voice timbre control of singing voices
revealed that a perceived age can be effectively used as a
voice timbre control parameter [6]. Our informal experimental
results also revealed that the same tendency was observed in
the voice timbre control of normal speech. In this paper, to
simplify the problem, we use the perceived age as the first
voice timbre control parameter and investigate only how to
define the second voice timbre control parameter.

We hypothesize that the development of the orthogonal basis
vectors corresponding to uncorrelated voice timbre control
parameters is helpful for improving controllability of the
converted voice timbre. However, in spite of the use of the
uncorrelated voice timbre control parameters, the second basis
vectors often fail to be orthogonal with the first basis vectors
as mentioned above. One possible reason is that acoustic
space modeled by the MR-GMM is differ from natural voice
because the MR-GMM can model only voice characteristics on
a subspace spanned by the basis vectors. These differences are
expected to strongly affect the voice timbre control parameters
as the acoustic cues not modeled by the MR-GMM are also
evaluated in their assignment.

We investigate the effectiveness of using converted voices
rather than natural voices in the assignment of the voice
timbre control parameters. After the development of the first
basis vector for the perceived age, we generate the converted
voices of the pre-stored target speakers with the Modified
MR-GMM by setting the target perceived age to be constant
over all speakers. In other words, the perceived ages of the
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individual pre-stored target speakers are normalized into the
constant value. Because the acoustic variations modeled on the
subspace spanned by the basis vector are removed from these
converted voices, the use of them for assigning another voice
timbre control parameter to the individual pre-stored target
speakers is expected to be effective for making the second
basis vectors orthogonal to the first one.

B. Voice timbre normalization

We perform perceived age normalization of all pre-stored
target speakers to generate the converted voices to be used for
the assignment of the second voice timbre control parameter.
To also remove the effects of prosodic features not handled
in the MR-GMM-based voice timbre control on the converted
voices, voices of a single reference speaker are used as the
source voices to be converted. In the perceived age normal-
ization process, the perceived age score differential needs to
be determined for each pre-stored target speaker.

1) Normalization based on perceptual score differential:
The perceived age normalization is performed in the perceived
age space previously developed by evaluating natural voices,
which is used for the development of the first basis vector. The
perceived age score differential Aw(s) of the s-the pre-stored
target speaker is determined as follows:

Aw(s) = w™) —w©(s), (1)

where w(?)(s) and w™) are the perceived age score of the
s-th pre-stored target speaker and the normalization target age,
respectively.

2) Normalization based on acoustic feature distance:
Perceived age normalization is performed in the acoustic space
by minimizing the Mahalanobis distance between the target
mean vectors and the normalized mean vectors on the subspace
spanned by the first basis vector. The perceived age differential
Aw(s) is determined as follows:

Aw(s) =argmin(u() — pY)(5) = b Aw(s)) =X

Aw(s)
(LS — ) (s) — b Aw(s)),  (2)
pi) =00 w™ + @y, (3)

where bg ) is the first basis vector corresponding to the
perceived age and ug ) (s) is the mean vector of the speaker-
dependent model of the s-th pre-stored target speaker. *&{ )
is the bias vector. Zgy) is the covariance matrix of the MR-
GMM. m is the mixture component index.

3) Refinement considering perceptual scores assigned to
normalized voice: We also investigate the effectiveness of re-
fining the perceived age differential considering perceived ages
newly annotated using the perceived age normalized voices.
After generating the perceived age normalized voices using
the normalization method described in III-B2, we additionally
assign perceived ages to the pre-stored target speakers by
listening to the normalized voices. Although it is ideal that
these ages are identical to the normalization target age over
all pre-stored target speakers, they are actually different from it
due to insufficient performance of the MR-GMM-based voice
timbre control. To improve the perceived age normalization
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performance, we refine the perceived age differential as fol-
lows:

(T) _ y(0)
Aw' = A Z W)
w(s) — w9 (s)
where Aw’ is the refined perceived age differential and the
w(s) is the newly assigned perceived age using the perceived
age normalized voices.

“

IV. EXPERIMENTAL EVALUATIONS

In this evaluation, we performed the following evaluations:
1) comparison of the accuracy of the perceived age normal-
ization techniques, 2) simultaneous voice timbre control using
two voice timbre expression words.

A. Experimental conditions

We used JNAS [8], consisting of Japanese speech utterances
spoken by about 300 Japanese male and female speakers in
their 20s, 30s, 40s, 50s, and 60s. The sampling frequency was
set to 16 kHz. The 1st through 24th mel-cepstral coefficients
parameterised from spectral envelope extracted by STRAIGHT
analysis [9] were used as spectral features. As the source
excitation features, we used Fy and aperiodic components in
five frequency bands, i.e., 0-1, 1-2, 2-4, 4-6, and 6-8 kHz,
which were also extracted by STRAIGHT analysis [10]. The
frame shift was 5 ms.

For the training of the MR-GMM, we used parallel data
sets of a reference speaker and 277 pre-stored target speakers
including 137 male and 140 female speakers. The duration of
each utterance was approximately 8 seconds. The number of
training utterances for each pre-stored target speaker was about
50. The number of mixture components of each MR-GMM
was 128 for the spectral features and 64 for the aperiodic
components. In this paper, because we focused on only how
to design the voice timbre control parameters, the number of
subjects was set to 1 in order to remove the effect of perceptual
differences among multiple subjects.

B. Evaluation of accuracy of perceived age normalization
techniques

We evaluated normalization accuracy of the several per-
ceived age normalization techniques. The following converted
voices were evaluated.

e w/o norm: converted voices w/o the perceived age nor-
malization (i.e., perceived age score differential Aw was
set to 0),

o w/ PS: converted voices w/ the perceived age normaliza-
tion on the perceptual age space described in Sect. III-B1,

o w/ AS: converted voices w/ the perceived age normaliza-
tion on the acoustic space described in Sect. III-B2.

o w/ ref: converted voices w/ the perceived age nor-
malization using the refinement process described in
Sect. 1II-B3.

We performed perceptual evaluation twice to assign the per-
ceived age score to these converted voices. In the first evalua-
tion, the converted voices of w/o norm, w/ PS, and w/ AS
were evaluated. Using the results of w/ AS, the perceived
age score differentials were refined and the converted voices
of w/ ref were generated. Then, we performed the second
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TABLE I
CORRELATION COEFFICIENTS BETWEEN TARGET PERCEIVED AGE AND
PERCEIVED AGE SCORES OF VARIOUS CONVERTED VOICES

Correlation coefficients
Method First Second
w/o norm | 0.86 0.80
w/ PS 0.81 N/A
w/ AS 0.78 0.67
w/ ref N/A 0.34

evaluation using the converted voices of w/o norm, w/ AS, and
w/ ref. We used 30 utterances spoken by randomly selected 30
evaluation speakers. We used original perceived age scores of
the evaluation speakers as the reference, which were assigned
in our preliminary experiment. The normalization target age
for all evaluation speakers was set to 45, which was derived
by averaging the original perceived age scores for all pre-
stored target speakers. To reduce the noise of annotation, the
subject annotated the perceived age score to each utterance
five times, and then, an average value over these five scores
was calculated for each speaker.

Table I describes correlation coefficients calculated between
the averaged perceived scores and the original (reference) ones
over the evaluation speakers. If the perceived age normaliza-
tion effectively works, the correlation coefficient should be
close to zero. We can see that the effect of the perceived age
normalization by w/ PS and w/ AS is limited but w/ ref is
capable of effectively normalizing the perceived age of the
converted voices. These results suggest that 1) the perceived
age control method based on the MR-GMM is capable of
effectively normalizing the perceived age of the converted
voices but 2) it is still necessary to manually tune the manipu-
lated parameters (i.e., the perceived age differential) to achieve
sufficient performance of the perceived age normalization.

C. Evaluation of voice timbre control based on simultaneous
manipulation of multiple voice timbre control parameters

We evaluated controllability of the voice timbre control
simultaneously using two voice timbre control parameters.
We used the perceived age score as the first voice timbre
control parameter. To define the second voice timbre control
parameter, we conducted a perceptual evaluation in a similar
manner as done in the previous work [7]. We assigned the
perceptual scores on several voice timbre expression word
pairs to the individual pre-stored target speakers by listening to
their voices. Unlike the previous work, we used the perceived
age normalized voices (by w/ ref) in this evaluation to more
carefully evaluate the remaining voice timbre variations after
the perceived age normalization, which were also well mod-
eled by the MR-GMM. We used 11 voice timbre expression
word pairs in the evaluation and apply factor analysis to the
corresponding 11 perceptual scores over all pre-stored target
speakers. As a result, we found that “carrying voice (less
carrying - more carrying)” was the most effective voice timbre
expression word pairs to model the remaining voice timbre
variations. Therefore, we decided to use the carrying voice
score as the second voice timbre control parameter.

In order to evaluate the effects of how to design the voice
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TABLE 11
CORRELATION COEFFICIENTS BETWEEN TWO VOICE TIMBRE CONTROL
PARAMETERS AND ANGLES BETWEEN CORRESPONDING TWO BASIS

VECTORS.

Method | Correlation coefficients | Angle
Method 1 -0.29 57.1°
Method 2 -0.33 80.2°
Method 3 -0.21 87.8°

timbre control parameters on the voice timbre controllability
of the resulting MR-GMM, we assigned the perceived age
score and the carrying voice score to the individual pre-stored
target speakers using the following three methods:

e Method 1) the natural voice samples of the pre-stored
target speakers were used in the annotation.

e Method 2) the converted voice samples from the refer-
ence speaker’s voices into the pre-stored target speakers’
voices were used in the annotation.

o Method 3) the perceived age scores were annotated with
the method 2 but the carrying voice scores were annotated
using the perceived age normalized voice samples gen-
erated by converting the reference speaker’s voices into
the pre-stored target speakers’ voices using the perceived
age normalization method with the refinement (w/ ref).

In the method 2, the voice timbre control parameters were
designed considering the acoustic variations possibly modeled
by the MR-GMM. Furthermore, in the method 3, the second
voice timbre control parameter was more carefully designed
compared to the method 2 considering only the residual
acoustic variations not modeled on a subspace spanned by the
first basis vector of the MR-GMM. An annotation scale for the
carrying voice was set to 7 (-3 through 3). Using each of the
resulting three types of the voice timbre control parameters,
the MR-GMM was trained. Then, the converted voice samples
were generated using the resulting three MR-GMMs by setting
a pair of the perceived age score differential and the carrying
voice score differential to (20, -10), (20, 0), (20, 10), (0, -
10), (0, 10), (-20, -10), (-20, 0), and (-20, 10). Each converted
voice sample was presented to the subject only once in random
order, and then, the subject assigned the perceived age score
and the carrying voice score to each sample.

Figure 1 and Table II describe the subjective and objective
experimental results for the simultaneous voice timbre control
using perceived age and carrying voice. In Fig. 1, we can see
that the method 3 makes it possible to control voice timbre
more widely compared with the other two methods. Moreover,
in Tab. II, we can see that the method 3 is capable of keeping
the two voice timbre control parameters less correlated to each
other and also making the two corresponding basis vectors
very close to orthogonal. These results suggest that the voice
timbre controllability is significantly improved by carefully de-
signing multiple voice timbre control parameters considering
not only 1) correlation between different voice timbre control
parameters but also 2) acoustic variations modeled by the MR-
GMM to develop a subspace spanned by the basis vectors
holding independence on both the perceptual score space and
the acoustic feature space.
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Fig. 1. Result of subjective evaluation on voice timbre control simultaneously
manipulating two voice timbre control parameters.

V. CONCLUSIONS

In this paper, in order to improve controllability of the
voice timbre control based on the MR-GMM with multiple
voice timbre control parameters, we have investigated how
to design these parameters to hold independence between
the different parameters on both a perceptual space and an
acoustic space. The experimental results have demonstrated
that the proposed approach to carefully annotating the voice
timbre control parameters to each speaker’s voice using the
converted voices is capable of improving the voice timbre
controllability of the MR-GMM. In future work, we plan to
develop a model training framework to reduce the annotation
efforts while preserving high controllability.
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