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Abstract—Voice Conversion (VC) aims to convert one’s voice
to sound like that of another. So far, most of the voice conversion
frameworks mainly focus only on the conversion of spectrum.
We note that speaker identity is also characterized by the
prosody features such as fundamental frequency (F0), energy
contour and duration. Motivated by this, we propose a frame-
work that can perform F0, energy contour and duration con-
version. In the traditional exemplar-based sparse representation
approach to voice conversion, a general source-target dictionary
of exemplars is constructed to establish the correspondence
between source and target speakers. In this work, we propose
a Phonetically Aware Sparse Representation of fundamental
frequency and energy contour by using Continuous Wavelet
Transform (CWT). Our idea is motivated by the facts that CWT
decompositions of F0 and energy contours describe prosody
patterns in different temporal scales and allow for effective
prosody manipulation in speech synthesis. Furthermore, pho-
netically aware exemplars lead to better estimation of activation
matrix, therefore, possibly better conversion of prosody. We also
propose a phonetically aware duration conversion framework
which takes into account both phone-level and sentence-level
speaking rates. We report that the proposed prosody conversion
outperforms the traditional prosody conversion techniques in
both objective and subjective evaluations.

I. INTRODUCTION

Human voice carries unique speaker identity. Voice con-
version refers to a process of modifying the characteristics
of one speaker such as spectrum or/and prosody, to sound
as if it was spoken by another speaker. Over the last few
decades, there has been immense research in voice conver-
sion technology with the applications such as personalized
speech synthesis, disguising one’s voice, and dubbing of
movies, etc.

Speaker characteristics are carried by multiple speech
features including spectrum, F0, energy and duration. Be-
sides spectrum, transformation of other features is also
reqiured to build a comprehensive voice conversion frame-
work. On the other hand, most of well-known voice con-
version frameworks focus only on spectral conversion. Vec-
tor quantization (VQ) [1] and fuzzy vector quantization
[2] were used to establish the mapping between source
and target speakers in early studies. The voice conversion
frameworks such as Gaussian mixture model [3] [4], partial
least square regression [5] and dynamic kernel partial least
squares regression (DKPLS) [6] are the statistical parametric
approaches, which marked a success of converting speaker
identity. Even though the statistical parametric approaches

convert speaker identity better than the frequency warp-
ing approaches including bilinear frequency warping [7]
and correlation-based frequency warping [8], the resulting
speech quality remains to be improved, especially when
we have highly limited training data. To alleviate this
problem, nonnegative matrix factorization (NMF) [9] based
voice conversion frameworks such as exemplar-based voice
conversion with non-negative spectrogram deconvolution
[10], locally linear embedding (LLE) for exemplar-based
voice conversion [11], and an exemplar-based unit selec-
tion framework called Cute [12] have been proposed. To
address the over-smoothing problem arising from linear
combination of exemplars, exemplar-based sparse repre-
sentation technique [13], discriminative graph-embedded
NMF approach [14] and multiple dictionaries in an NMF-
based framework [15] suggest to constrain the activation
vector to be sparse.

So far, spectral mapping mechanism is central to the
study of voice conversion. On the other hand, how to
effectively generate the prosody in the target voice remains
a challenge. In case the listener is familiar with the speaker
and/or his speaking style, source related cues such as
fundamental frequency, energy contour and duration, play
a crucial role in transmitting the speaker identity [16].

It is generally agreed that prosody is inherently supra-
segmental and hierarchical in nature [17] [18] and it can
be affected by both short term as well as long term depen-
dencies [19]. Previous studies of prosody conversion mainly
focus on fundamental frequency (F0) which is an essential
prosodic factor in speech. F0 modeling and generation
continue to be a a challenging in voice conversion, due
to the fact that the amount of training data is limited with
tens to a few hundreds of utterances. One of the widely-
used technique for F0 conversion is to transform the mean
and variance of source speaker’s F0 to that of the target
[13]. This method is based on a frame-level operation.
However, human manipulates F0 in a segmental manner
at phone, syllable, word, phrase or sentence level. There
have been some extensions of this widely-used technique
such as GMM-based mapping [20] and a piecewise linear
mapping for transformation of F0 contour by using a small
linguistically motivated parameter set [21].

The continuous wavelet transform (CWT) models F0 in
different temporal scales that has been used to characterize
F0 within an hidden Markov model (HMM) framework [22]
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[23]. Moreover, voice conversion frameworks such as DKPLS
[19] and exemplar-based prosody conversion [24] [25] show
that CWT decomposition of F0 contour works well in voice
conversion. A recently proposed emotional voice conver-
sion framework [26] also motivates the use of CWT decom-
position for F0 and energy contour in voice conversion.
In a study [15] on exemplar-based sparse representation
for voice conversion, the strategy of multiple dictionaries
is shown to be more effective than single dictionary. In
this paper, we further the idea of exemplar-based sparse
representation by incorporating phonetic information. We
believe that phonetically aware prosody dictionaries allow
us to provide a better estimation of the activation matrix,
therefore, yielding a better conversion of prosody.

Duration transformation has not been considered in
many of the well-known voice conversion frameworks. One
of the widely used technique is to keep the duration of
target speaker same as that of the source speaker. On the
other hand, it is important to mention that speakers tend to
speak at different rates and with different rhythms. In such
cases, transformation of duration becomes crucial in voice
conversion. There have been few attemps to incorporate
durational modification in voice conversion such as GMM
based durational modification [27], Gaussian normalized
transformation of phone durations in ANN based voice
conversion [28] and prosody conversion using DNN seg-
mental models [29]. Considering that phone duration is reg-
ulated both locally at phone-level and globally at sentence-
level, we propose a phone-dependent duration conversion
framework, which takes into account both phone-level
and sentence-level speaking rates between the source and
target speakers, that we call phonetically aware duration
conversion.

The main contribution of this paper is a novel prosody
conversion framework that focuses on F0, energy contour
and duration transformation. The proposed framework uses
10-scale representation of F0 and energy contour while
constructing the phone-dependent prosody dictionary. We
have good reasons to believe that phonetic exemplars allow
us to achieve a better estimation of activation matrix,
hence a better conversion performance. The 10-scale rep-
resentation of F0 and energy contour allows us to capture
the temporal changes at different levels. The proposed
Phonetically Aware Sparse Representation framework differs
from the previous studies [13] [15] [25] in the following
ways:

• We make use of an automatic speech recognition (ASR)
system to extract the phone labels and their boundaries
to obtain phone-dependent CWT decompositions of F0
and energy contours.

• We construct phone-dependent dictionaries that in-
clude spectral and prosody features.

• To include the segmental information in speech, we
use biphone exemplars together with monophone ex-
emplars to construct the dictionary.

Moreover, we propose a phone-dependent duration conver-
sion framework that estimates the converted duration for
each phone by interpolating phone-level and sentence-level
speaking rates. We obtain the phone-dependent optimal
weight by performing convex optimization. Overall, we
show that the proposed prosody conversion framework for
F0, energy and duration can work in conjunction with
a spectrum conversion technique, and outperforms the
state-of-the-art techniques both in objective and subjective
evaluations.

This paper is organized as follows: In section II, we de-
scribe the details of phone-dependent CWT decomposition
of F0 and energy conversion. In section III, we propose
a framework for F0 and energy conversion. Section IV
describes the proposed duration transformation framework.
The experimental results and conclusion are given in Sec-
tion V and VI.

II. PHONE-DEPENDENT F0 AND ENERGY REPRESENTATION

Speaker identity is characterized by various speech fea-
tures, that include spectrum and prosody. A comprehensive
voice conversion should include the transformation of both
spectrum and prosody among others. However, prosody
conversion is a challenging task for many reasons. For ex-
ample, prosody can be used contrastively to communicate
meaning such as emotions (angry or joyful), lexical stress,
or speech acts in a dialogue (statement or question) that we
call speaker independent prosody, it also carries personal,
dialectal, and other background characteristics that belong
to an individual (speaker dependent prosody) [30]. The
individual’s characteristics are not linguistically significant.
However, they are significant in speaker characterization,
that is needed in voice conversion. In voice conversion, we
would like to carry over the speaker independent prosody,
both F0 and energy contours, from the source to the target,
but to replace the speaker dependent prosody of source
speaker with that of target speaker. Prosody is demonstrated
in a hierarchical structure [17] which is affected by short
term as well as long term dependencies [18]. Therefore,
it is not adequate to use a linear model to represent all
variations in different temporal scales.

Recently, CWT has been proposed for the analysis and
and modeling of F0 in speech synthesis [22] [23] and voice
conversion [19] [25]. It was also shown that CWT decom-
positions of F0 can be used effectively as the exemplars in
the exemplar-based prosody conversion [25]. In addition,
a recently proposed emotional voice conversion framework
[26] shows that CWT can also be used to model energy
contour. We consider that the CWT decomposition of a
F0 or energy contour represents the speaker- dependent
and speaker-independent prosody in different scales, that
provides an useful tool for prosody transformation. We also
believe that prosody patterns, either speaker dependent or
speaker independent, are phone dependent. Therefore, we
propose a phone-dependent prosody conversion framework
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Fig. 1: F0 contours from a female speaker, uttering the
sentence ”And even beyond, where the paddocks were, and
the berry patches." before and after applying pre-processing
steps.

that decomposes F0 and energy contours into CWT decom-
positions in different scales to facilitate the conversion.

To start with, the continuous wavelet transform of an
input signal f0(t ) can be written as

W (τ, t ) = τ−1/2
∫∞

−∞
f0(x)ψ

(
x − t

τ

)
d x, (1)

where ψ is the Maxican hat mother wavelet. If we fix the
analysis at 10 discrete scales, f0 can be represented as [25]

Wi ( f0)(t ) =Wi ( f0)(2i+1τ0, t )(i +2.5)−5/2, (2)

where i = 1, ...,10 and τ0 = 5ms. These timing scales were
originally proposed by [23] in a hierarchic prosody model
[22], and then used in some voice conversion frameworks
such as [24]–[26].

After performing wavelet analysis, the original signal can
be approximated by the following formula:

f0(t ) =
10∑

i=1
Wi ( f0)(t )(i +2.5)−5/2. (3)

In the proposed framework, we use Eq. (1) and (2) to
decompose F0 and energy contour into 10 temporal scales.
It is important to mention that the wavelet transform is
sensitive to the abrupt F0 changes due to unvoiced frames
but having little to do with prosody patterns, therefore
as shown in Figure 1, some pre-processing steps such as
transformation to logarithmic scale, smoothing F0 contour
by using 3-point mean filter, filling the gaps produced by
unvoiced frames, and normalizing the resulting F0 contour
to zero mean and unit variance are needed [19]. Figure 2
is an example to illustrate the corresponding F0 scales of
one speech signal.

The stress of the syllables, the stress of the words, and
the intonation patterns are important criteria among speak-
ers [19]. By using CWT, we hope to separately represent
the speaker dependent and speaker independent prosody
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Fig. 2: Wavelet transform of the F0 contour from a female
speaker, uttering the sentence ”And even beyond, where the
paddocks were, and the berry patches."

patterns in different temporal scales, for example scale 1
represents microprosody events and scale 3 and 4 represent
stress of the syllables. By converting the scales 3 to 8 out of
the 10 scales, we hope to convert the prosody at syllable,
word and sentence levels, that are speaker dependent. We
will directly carry over the less speaker dependent scales,
i.e. 1, 2, 9, 10 from the source speech to the target speech
[19].

In the traditional framework for spectrum and prosody
conversion [25], a randomly selected subset of paired joint
exemplars is used to construct the coupled joint dictionary.
In the proposed framework for prosody conversion, we
first obtain phonetic labels and their boundaries by using
an ASR system. Then, the coupled joint dictionary, that
consist of spectrum, 10-scale representation of F0 and
energy contour, are organized according to the phonetic
labels. We believe that rather than selecting the exemplars
randomly to construct the joint dictionary, phonetically
aware CWT representation of F0 and energy may yield a
better estimation of activation matrix, hence better prosody
conversion.

III. F0 AND ENERGY CONVERSION

A. Traditional NMF Framework for Spectrum and Prosody
Conversion

The traditional exemplar-based sparse representation
[13], performs spectrum conversion by describing a mag-
nitude spectrum as a linear combination of exemplars.
Recently, this framework was extended to perform both
spectrum and prosody conversion [25]. To convert spectral
and prosody features simultaneously, a pair of dictionaries,
denoted as A and B, each consists of spectrum, aperiodicity
component, energy contour and 5-scale CWT representa-
tion of F0 is constructed. A and B are derived from a parallel
database, where exemplars are aligned frame-by-frame.

At run-time, the matrix denoted as X that consists of both
spectral and prosody features of a source utterance can be
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Fig. 3: Training and run-time phases of F0 and energy conversion using Phonetically Aware Sparse Representation.

represented as

X ≈ AH (4)

Nonnegative matrix factorization (NMF) technique is em-
ployed to estimate the activation matrix H, which is con-
strained to be sparse. Mathematically, the objection func-
tion is written as

H = argmin
H≥0

d
(
X,AH

)+λ||H|| (5)

where λ is the sparsity penalty factor. A generalised
Kullback-Leibler (KL) divergence is used to estimate ac-
tivation matrix H. It has been showed in the previous
studies [13] [14] that as long as the dictionaries A and B
are aligned, the source and target speakers can share the
same activation matrix H. Therefore, the converted spectral
and prosody features can be written as

Ŷ = BH. (6)

Both subjective and objective evaluations show the effec-
tiveness of prosody transformation in voice conversion.

B. Phonetically Aware Sparse Representation

In the traditional NMF framework for spectrum or/and
prosody conversion, the frame alignment between source
and target is used as a collection of exemplars without
referring to the phonetic labels of the data [10], [13],
[24], [25]. It is important to note that with the scripts of
the training data and a general purpose ASR, we easily
obtain valuable phonetic information [31], [32], for example
phonetic labels and their boundaries.

In this paper, we propose an approach for prosody
conversion which uses such phonetic information to con-
struct the coupled joint dictionary, that we will call
phone-dependent joint dictionary. We propose replacing
the acoustic dictionary in the traditional NMF framework
[13], [25] with phone-dependent dictionary. Instead of hav-
ing a single coupled joint dictionary [A; B], we construct
multiple phone-dependent joint dictionaries, denoted as Ai

and Bi for phone i where i = 1, ...,n. We call such phone-
dependent joint dictionaries the sub-dictionaries.

We propose to construct the phone-dependent joint
dictionary that consists of spectral features, and CWT
representation of F0 and energy contour as well. Figure 3
presents the training and run-time conversion phases of the
proposed F0 and energy conversion framework.

At training phase, we construct phone-dependent joint
dictionary, that includes aligned spectral and prosody fea-
tures of both source and target speaker. Given the parallel
source and target utterances, we use STRAIGHT to extract
spectrum and fundamental frequency that are denoted as
S and F0, respectively. To obtain the energy contour of
the speech signal, we first find the energy em of a speech
frame m, where m = 1, ..., M with M being the number of
frames in the speech signal. With the energy of every speech
frame, we obtain the energy contour of the speech signal
[e1, ...em , ...eM ].

Previously, we note that prosody is influenced both at a
supra-segmental level and at a segmental level. To represent
all temporal scales of F0 and energy contour, we perform
wavelet analysis by using Eq. (1) and (2). We first use an
ASR to obtain phonetic labels and their boundaries. Then,
the phone-dependent joint dictionaries, that consist of
spectrum, 10-scale representation of F0 and energy contour,
are organized according to the phonetic labels.

At run-time conversion, we estimate the phone-
dependent activation matrices. For phone i = k, a source
speaker speech is represented by a matrix, denoted as Xk ,
that consists of spectrogram, and 10-scale representations
of F0 and energy contour, can be written as

Xk ≈ Ak Hk (7)

The objection function for estimating the activation matrix
Hk can be formulated as follows.

Hk = argmin
Hk≥0

d
(
Xk ,Ak Hk

)+λ||Hk|| (8)

A generalised Kullback Leibler divergence [33] is used to
estimate the activation matrix Hk . The activation matrix is
applied to the target phone-dependent joint dictionary to
perform conversion. The converted speech, represented by
the matrix Yk , consists of converted spectral and prosody
features, can be written as:

Yk = Bk Hk (9)

Once the prosody conversion is achieved, we transform the
syllable, word and sentence levels (scale 3-8) and copy the
rest of the decompositions in other scales from the source
speaker. By converting the scales from 3 to 8, we aim to
convert the prosody at syllable, word and sentence levels.
To reconstruct the converted F0 and energy contour, the
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Fig. 4: Training phase of the proposed framework for duration modeling where we estimate the parameters for the
conversion function Eq. (13).

reconstruction formula given in Eq. (3) is used. As a post-
processing step to energy conversion, we perform energy
contour improvement to obtain an energy contour of the
converted spectrum which is more close to that of the target
[25].

1) Phone-dependent Dictionary with Contextual Informa-
tion: So far, we haven’t taken into account contextual
information, which means that each frame is converted
independently. To alleviate the sharp changes across frames
and achieve a more reliable activation matrix estimation, we
use exemplars which span multiple consecutive frames in
phone-dependent joint dictionary [13].

To achieve a smooth phone transition, we use biphone
exemplars together with monophone exemplars while con-
structing the phone-dependent dictionary. Our idea is mo-
tivated by unit selection approach to speech synthesis [12],
[34] where we favor speech units that share similar phonetic
context as the intended context by using bi-phone or tri-
phone context. We note that in the non-negative matrix
factorization and signal reconstruction, the sequence of
frames in the dictionaries are not particularly informative.
By using the biphone exemplars, we would like to make sure
that the intended phone transition frames are captured in
the dictionary.

It is important to mention that, under the constraint
of limited training data, it is not guaranteed that there
is always a sub-dictionary for each phone in the test
utterance. In this case, a backoff scheme will be helpful.
For instance we can use all voiced exemplars to form a
sub-dictionary. In the extreme case where use all phonetic
exemplars are used in the backoff scheme, our proposed
framework is reduced to the traditional NMF framework
[25].

IV. DURATION CONVERSION

So far, we perform conversion on spectrum, fundamental
frequency and energy contour. We now move on to study
the duration transformation, which is a part of the prosody
description of speaker identity.

A. Prior work in Phone-dependent Duration Transformation

Duration transformation has not been considered in
many well-known voice conversion frameworks. In [28], it

Fig. 5: Training phase of the duration transformation frame-
work [28].

was proposed to incorporate duration transformation into
the Artificial Neural Network (ANN) for voice conversion.

The prior work [28] studied a training process in which
we find the duration of each phone from all utterances and
estimate the mean and variance of both source and target
speakers. At run-time, it is proposed to have a duration
formulation via a Gaussian normalized transformation, that
is given as:

dt ,i =μt ,i +
σt ,i

σs,i

(
ds,i −μs,i

)
(10)

where μt ,i ,σt ,i are the mean and variance of target speaker’s
duration, and μs,i ,σs,i are the mean and variance of source
speaker’s duration for phone i .

The experimental results show that segmental duration
transform can be done in the baseline voice conversion
framework, and yield a significant improvement on con-
version performance.

B. Proposed Back-off Scheme for Duration Conversion

In a voice conversion framework, duration transforma-
tion is an essential prosody feature that should be taken
care of. In some cases, duration transformation becomes
more vital, for example the scenario where speaking rate of
source speaker differs from target speaker by a large margin
and depends on the phonetic composition of the sentence.
In such case, a sentence level duration conversion doesn’t
pay sufficient attention to the details. Therefore, either
phone or syllable level duration conversion is necessary
for a better conversion performance. With this motivation,
the traditional duration transformation approach [28] has
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Fig. 6: The distribution of phones /ae/ and /ay/ has a high
variance, hence performing transformation of duration, that
is phone-dependent only [28], may not be reliable.

been proposed to perform segmental duration conversion.
On the other hand, it highly depends on how reliable
the data are for each phone. In the experiments that we
conducted using VCC dataset [35], [36], a specific phone
might have very different duration values, which is shown
in Figure 6. As a result, it may not be very reliable to use
only phone-level duration information of source and target
speaker. To avoid this problem, we need a better duration
transformation scheme, which takes into account phone-
level as well as sentence-level speaking rates.

Representative works in duration modification also in-
clude a modification based on HMM model called DeBi-
HMM [37], which proposes a voice conversion model as
the post processing of a text-to-speech (TTS) system for
speech synthesis. Another duration conversion framework
[38] suggests to attach duration models to statistical models.

In this paper, we propose a back-off scheme by taking
into account phone level speaking rates as well as sentence
level speaking rates, which is more reliable than [28] when

only limited parallel data are available. Furthermore, this
approach is seen as converting speaker-dependent duration
information at both phone level and sentence level. As
shown in Figure 8, we estimate the duration of target
speech before performing spectrum, F0 and energy contour
conversion. Traditionally [10], [12], [13], [25], the duration
patterns of the source speech are directly carried to the tar-
get speech. Such technique assumes that the target speaker
and source speaker share the same duration patterns, which
cannot be true in general. With our proposed duration
conversion technique, duration of the converted speech will
be closer to that of target.

We summarize the proposed framework in Figure 4.
The training process involves three steps: 1) to estimate
phone-level duration ratio, 2) to estimate sentence-level
duration ratio, and 3) to find the optimal weigths for phone
and sentence level duration ratios by performing convex
optimization.
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Fig. 7: Illustration of Step 3 in Training Phase. For each
phone, number of iteration needed for convergence is given
in x-axis, and the error in terms of number of frames is
given in y-axis. We perform this optimization by using a
development set.

In Step 1, we use an ASR to find the phone labels and
boundaries for each training utterance. Then we estimate
the duration ratio between source and target phone i
denoted as αi where i = 1,2, ..., N and N is the total number
of phones in the training data. In Step 2, we estimate the
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Fig. 8: The work flow of run-time spectrum and prosody conversion. The dotted red boxes are prosody conversion modules
discussed in Section III (F0 and energy conversion) and Section IV (Duration conversion).

sentence level duration ratio, denoted as ε. In step 3, we
assign the weights, that are denoted as (1 −βi ) and βi ,
to interpolate the duration estimates between phone-level
and sentence-level duration values. Now we would like to
estimate the weight βi between αi and ε using the parallel
training data. We note that αi ,ε,βi characterize a speaker
pair involved in the conversion. In other words, they will
apply to the duration conversion of all utterances between
a pair of given speakers at run-time.

The formulation can be written as follows:

d t
i =

(
(1−βi )αi +βi ε

)
d s

i (11)

where d t
i is the original target duration and d s

i is the
original source duration of phone i in the parallel data.
After Step 1 and 2, the only unknown in Eq. (11) is the
weight value βi for i = 1, ..., N . Then, we solve the problem
of finding optimal βi for phone i by performing convex
optimization. The objection function for estimating the
optimal weights for each phone can be formulated as
follows.

β̂i = min
0≤βi≤1

((
(1−βi )αi +βi ε

)
d s

i −d t
i

)2
(12)

where i = 1, ..., N and N is the total number of phones. We
can consider that this is the phone duration ratio estimate
with sentence duration ratio as the back-off. Figure 7 shows
that this optimization problem is actually convex and can
be optimized by simply varying βi from 0 to 1.

At run-time conversion phase, the converted duration of
phone i can be written as:

d c
i =

(
(1− β̂i )αi + β̂i ε

)
d s

i (13)

where d c
i is the converted duration, and d s

i is the phone
duration of the source speech. After estimation of converted
duration for each phone in the testing utterance, we use
a time scaling modification algorithm called SOLAFS [39],
that is similar to Synchronized Overlapp-Add Algorithm
with reduced computational requirements.

V. EXPERIMENTS

We conducted the experiments on the Voice Conversion
Challange (VCC) 2016 dataset [35], [36] to assess the perfor-
mance of the proposed prosody conversion framework for
F0, energy contour and duration with parallel training data.

The VCC 2016 dataset, that is recorded by professional US
English speakers, includes 5 female and 5 male speakers.
However, we only considered speakers TF1, SF2, and SM1
for simplicity. In experiments, we use a DNN-HMM based
ASR [40] to obtain phone labels and phone boundaries.

A. Objective Evaluation

1) Conversion of F0 and Energy Contour: We first report
the experiments for F0 and energy conversion as presented
in Section II, with 10, 20 and 30 source-target utterance
pairs in training phase. The correlation coefficient of two
signals is a measure of their linear dependence. As an
objective evaluation for F0 and energy contour conversion,
we first calculated the correlation coefficient between the
converted and the reference target F0, then the correlation
coefficient between the converted and the reference target
contour.

The Pearson correlation coefficient(CC) can be defined
as:

p(S,T ) = cov(S,T )

σSσT
(14)

where σS and σT are the standard deviations of signals
S and T , respectively. It is important to mention that
the correlation coefficients for both F0 and energy are
calculated between the frames aligned by dynamic time
warping.

Table I compares the proposed Phonetically Aware Sparse
Representation approach with two reference approaches,
namely the traditional NMF-based approach [25] that we
call Single Dictionary Sparse Representation, and linear
conversion of F0 where F0 is linearly converted by nor-
malizing the mean and variance of source speaker to target
speaker. The formula for linear conversion of F0 is given as
follows:

ŷ = σy

σx

(
xt −μx

)+μy (15)

where xt and ŷ are log-scaled F0 of the run-time source
speech, and converted one at frame t . The parameters μx

and σx are the mean and the standard deviaton of log-
scaled F0 calculated from training data of source speaker,
and μy and σy are the mean and the standard deviaton of
log-scaled F0 calculated from training data of target speaker.
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F0 conversion framework # Frames Phonetic Dict. # Training Pairs Pearson CC for F0

Phonetically Aware Sparse Representation

1 Monophone 10 0.817
1 Monophone 20 0.825
1 Monophone 30 0.836
3 Monophone+Biphone 10 0.852
3 Monophone+Biphone 20 0.876
3 Monophone+Biphone 30 0.891

Single Dictionary Sparse Representation [25]
3 - 20 0.793
3 - 30 0.801

Baseline: Linear F0 conversion (Eq. 15)
- - 20 0.703
- - 30 0.721

TABLE I: Comparison of correlation coefficients of the proposed Phonetically Aware Sparse Representation for F0
conversion, the traditional exemplar-based sparse representation [25], and the traditional approach to convert F0 linearly
given in Eq. (15). The number of frames indicates the window size for activation matrix computation, and ’# Training
Pairs’ indicates the number of parallel utterances used in the training phase.

Energy conversion framework # Frames Phonetic Dict. # Training Pairs Pearson CC for Energy

Phonetically Aware Sparse Representation

1 Monophone 10 0.804
1 Monophone 20 0.812
1 Monophone 30 0.828
3 Monophone+Biphone 10 0.814
3 Monophone+Biphone 20 0.826
3 Monophone+Biphone 30 0.836

Baseline: Direct Transfer - - - 0.802

TABLE II: Comparison of correlation coefficient of the proposed Phonetically Aware Sparse Representation for energy
contour conversion and Direct Transfer that uses the energy contour of the source speech to reconstruct converted target
utterance. As in Table I, the number of frames indicates the window size when computing activation matrix, and ’#
Training Pairs’ indicates number of parallel utterances used in the training phase.
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Fig. 9: An illustration of energy contours of target, source
and converted speech. The energy contour of the converted
speech is obtained by performing the proposed prosody
conversion framework called Phonetically Aware Sparse
Representation. In this experiment, 30 parallel utterances
were used during training.

Firstly, in Table I, we observed that all Phonetically Aware
Sparse Representation settings for F0 conversion outper-
form the traditional F0 conversion frameworks. Secondly,
we observed that contextual information, e.g. multiple-
frame exemplars together with biphones is effective to
improve the conversion performance.

We further report the experiments for energy conversion
as presented in Table II. We perform energy contour con-
version by using Phonetically Aware Sparse Representation

of different temporal scales by using CWT. As expected,
we observed that all Phonetically Aware Sparse Represen-
tation settings for energy contour conversion outperform
the baseline system where we use source speaker’s energy
contour directly. In addition, the experiment results show
that modeling of contextual information is also crucial for
conversion of energy contour.

2) Conversion of Duration: We further report the experi-
ments for duration transformation framework as presented
in Section III, with parallel training data. As in the Pho-
netically Aware Sparse Representation for F0 and energy
conversion, we use the same ASR to get the phone labels
and boundaries [40]. By taking into account both phone-
level and sentence-level speaking rates, we expect to see a
more reliable duration estimates. As an objective evaluation
for the proposed framework, we calculated the distance
between the converted and corresponding reference target
durations in phone-level as well as sentence-level. Mathe-
matically, the distance between the converted duration and
the corresponding target duration denoted as δi for phone
i can be written as:

δi =
∣∣∣∣d t

i −
(
(1− β̂i )αi + β̂i ε

)
d s

i

∣∣∣∣ (16)

where i = 1, ..., M and M is the total number of phones in a
test utterance. We calculated the mean of δi for i = 1, ..., M ,
and call it Phone-level error. Sentence-level error is calcu-
lated as the mean of all the utterances that occured in
testing data. Table III shows the errors calculated in phone-
level as well as sentence-level for a number of settings in
a comparative study. One of the widely used techniques
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Duration Conversion Framework # Training Pairs Phone-level Error Sentence-level Error

Proposed Back-off Scheme
10 10.48 59.80
20 10.29 57.30
30 10.13 55.70

Traditional Framework [28]
20 10.67 62.21
30 10.53 60.52

Baseline: Direct Transfer - 11.36 78.34

TABLE III: Comparison of the proposed back-off scheme for duration transformation, the prior phone-dependent approach
[28] for duration transformation and the baseline system that uses source speaker’s duration directly. ’# Training Pairs’
indicates the number of parallel utterances used in the training phase.

in duration transformation is to keep the duration of
target speaker same as that of the source speaker. For that
reason, we use this approach as a baseline framework, that
we call Direct Transfer. In addition, we implemented the
traditional framework [28], and include the results to Table
III as a reference. Firstly, we observed that our proposed
scheme outperforms both reference approaches. Secondly,
as expected, increasing the number of training utterances
yields a better estimation of converted duration.

B. Subjective Evaluation

We further conducted listening tests to assess the perfor-
mance of Phonetically Aware Sparse Representation for F0
and energy contour conversion in terms of prosody similar-
ity. In all of the listening experiments, we use 30 utterance
pairs from source and target speaker during training. In VC
literature, XAB preference test is the evaluation technique
which have been widely used [13]. For that reason, we
prefer to use XAB preference test to evaluate our proposed
framework. 12 subjects participated in all the listening tests.
Overall, we conducted the following 2 listening experiments
to assess the prosody conversion performance.

• F0 conversion
• F0 and energy contour conversion

The first listening experiment that is given in Figure 10,
assesses the performance of F0 conversion. In this experi-
ment, each listener was asked to listen both the converted
samples and the original target samples. Then, each listener
chose the sample that is closest to the target in terms
of prosody similarity. We observe that Phonetically Aware
Sparse Representation for F0 conversion outperforms the
traditional framework where F0 is linearly converted by
normalizing the mean and variance of source speaker to
target speaker.

In Experiment 2, we evaluated the performance of F0
conversion together with energy conversion, as reported in
Figure 11. In this experiment, Phonetically Aware Sparse
Representation was used to perform both F0 and energy
conversion. In the baseline system, the source speaker’s
energy contour is directly used, and F0 conversion is per-
formed linearly as given in Eq. 15. The same listeners were
asked to listen the target reference sample first, then the
converted samples. Next, they decide which sample is the
closest to the reference target in terms of prosody similarity.
We observed that Phonetically Aware Sparse Representation

for F0 and energy conversion outperforms the baseline
framework.

0 10 20 30 40 50 60 70 80

Phonetically Aware Sparse Representation

Linear F0 conversion

Fig. 10: Listening Experiment 1: Preference test results of
prosody similarity for F0 conversion. The proposed frame-
work Phonetically Aware Sparse Representation of F0 is
compared with linear conversion of F0 given in Eq. 15. The
results are provided with 95% confidence intervals.

0 10 20 30 40 50 60 70 80

Baseline

Phonetically Aware Sparse Representation

Fig. 11: Listening Experiment 2: Preference test results of
prosody similarity for conversion of F0 and energy contour.
The baseline system refers to the scenario where energy
contour is directly transferred from source speaker, and
F0 is converted linearly by using Eq. 15. The results are
provided with 95% confidence intervals.

VI. CONCLUSION

We have proposed a novel prosody conversion framework
that includes F0, energy contour and duration transforma-
tion. By using CWT, we modelled F0 and energy contour
in different temporal scales effectively. In the proposed
framework, we converted F0 and energy contour with
Phonetically Aware Sparse Representation. In addition, we
proposed a durational transformation approach that con-
siders both phone-level and sentence-level speaking rates.
We have validated that phonetically aware conversion of F0
and energy contour outperforms the traditional methods in
both the objective and subjective evaluations. Moreover, the
proposed back-off scheme for durational transformation
marked a success in the estimation of converted duration.
The proposed prosody conversion framework can work
together with a spectrum conversion framework as an
integrated solution to voice conversion which will be an
interesting future work.
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