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Abstract—In speech-to-singing (STS) voice conversion, the
source speech signals from a speaker are used to generate his/her
singing voice. Such a process requires accurate detection of
boundaries between phonemes and words in the speech signal.
The computation and modification of analysis parameters of
speech signals with respect to the target musical scores or singing
templates, largely depend upon estimation of phoneme durations.
In this paper, an improved dual alignment scheme for speech and
singing voices in template-based STS (TSTS) systems is proposed.
The subsequence dynamic time warping (subDTW) is employed
to match source speech to singer’s speech in the first pass of dual
alignment. We assume that an accurate correspondence between
singer’s speech and target singing vocals has been established
as part of the singing template development. Therefore, once
the source speech is aligned with the singer’s speech, it is
automatically aligned with singing template, that we call the
second pass of dual alignment. The proposed scheme delivers
a relative reduction of 95.8% in word alignment error, over
the baseline dynamic time warping (DTW) approach. Also, it
provides a relative improvement of 38.7% in mean opinion scores
of synthesized singing voices in subjective studies, over the same
baseline. We demonstrate that the proposed dual alignment with
the subDTW is effective in STS conversion applications.

I. INTRODUCTION

Speech-to-singing (STS) voice conversion systems find ex-
tensive applications in the entertainment industry. The karaoke
systems can employ STS mechanism to perfect the singing
of individuals with limited singing abilities [1]. The STS
systems enable training and evaluation of singing skills of
vocal prodigy [2]. Apart from entertainment industry, the STS
system is also useful in medical applications. It can assist
the evaluation of verbal communication capability of persons
with stammering problem, or other ailments like autism. The
characteristics of human voice production are different while
speaking and singing. And, the STS system renders an efficient
pathway for analyzing the relationship between speaking and
singing voices by elucidating the varying characteristics of
voice production mechanism [3]–[5]. Hence, devising an adept
STS system is significant for music information processing.

Singing voices are characterized by distinctive properties
like the peculiar variations in fundamental frequency (F0) of
glottal vibrations, the singing formant, frequency modulated
source-spectral interactions, pitch dependence of the timbre,
etc. [4]–[10]. Effective modeling and synthesis of singing
voices should attempt to capture these salient features. The
model-based singing synthesis captures spectral information

in singing voices with the aid of control information de-
rived from excitation characteristics [11]–[18]. Concatenative
singing synthesis employs sampling method for selection and
boundary smoothing of phonetic units [19]–[21]. The model-
based approaches often suffer from degraded naturalness of
synthesized signals, whereas the concatenative approaches
compromise on flexibility and expressivity of control pa-
rameters. A comprehensive comparison of model-based and
concatenative approaches for singing voice synthesis was
presented in [22].

The STS systems convert the speech signals from a user
(source speech) to corresponding singing voices. The major
approaches for STS conversion can be broadly classified as
score-based STS systems and template-based STS systems.
These systems use the target musical scores or singing tem-
plates from professional singers to modify the prosody, or
equivalently the excitation characteristics, of speech signals.
The timbre, or spectral properties, of the source speech are
preserved and the output singing voices are synthesized. The
basic methodology for STS conversion is illustrated in Fig. 1.

Fig. 1. Basic methodology for STS conversion.

In score-based STS systems, the target musical scores (eg:
MIDI files) were utilized to modify the excitation character-
istics of speech signals [23]–[25]. The spectral and excitation
parameters of source speech were extracted, followed by mod-
ifications of phoneme durations, spectral and F0 parameters
to match with those of target musical scores. For nullifying
the degradations caused by a vocoder in singing synthesis, the
transformation of voices was attempted in the time domain us-
ing a spectral differential control and F0 control on the singing
waveform itself [26]–[28]. As the parameters of singing in
score-based systems were derived synthetically from speech
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parameters, the resulting singing voices are less natural [29].
The template-based STS (TSTS) system employs singing

templates recorded from professional singers. The parameters
of spoken vowels were varied with reference to the corre-
sponding parameters obtained from human singing templates
[30]. The control models for F0, note durations and spectral
properties were learned from a database of natural singing
voices. Similarly the excitation characteristics, or equivalently
the prosody, of singers were directly used for synthesizing
singing voices while keeping the timbre of source speech intact
[31]. As the excitation parameters are extracted from human
singing, the synthesized singing voices from TSTS systems
are more natural [29].

The task of estimating phone boundaries in speech signals is
extremely important for both score-based and template-based
STS systems. The accurate estimation of phoneme durations
serves as a prerequisite for control models to effectively
compute and modify the spectral, F0 and durations of each
phoneme in speech signals with respect to the target musical
score or singing template. The source speech has to be aligned
with target musical scores in score-based systems, whereas
the source speech signals are aligned with singing templates
in template-based systems. Thus an alignment technique de-
livering phoneme matching between speech signals and target
score/template is crucial to STS conversion. The alignment
of lyrics with vocals was previously attempted using Viterbi
alignment or likelihood-based scoring with phonetic models
[11], [32], [33]. These methods works well only on vocals
isolated from accompanying polyphonic music and particularly
on vowel sounds.

The TSTS system synthesizes singing voices by using
spectral vectors from short-time frames of source speech and
prosody from corresponding frames of singing templates. The
prosody characteristics from singing templates deliver the
rhythm, tempo, etc. to the synthesized singing from artistic ex-
pertise of a professional singer. Any misalignment between the
frames of speech and singing can cause annoying distortions in
the synthesized voice. As the nature of phonemes changes with
the mode of speaking (speaking or singing), direct alignment
between speech and singing signals is not feasible. Notice that,
TSTS systems presented in [31], [34] use the dynamic time
warping (DTW) algorithm for temporal alignment [35].

The conventional DTW fails to identify accurate corre-
spondence between short-time frames of speech and singing
signals, as they exhibit significantly distinct characteristics.
The large difference in durations between speech and singing,
which is largely elongated for its soothing effects, also con-
tributes to the failure of DTW. And, the DTW is not generally
effective in aligning two continuous signals compared to align-
ing isolated words. Another challenge with employing DTW
for alignment in the TSTS system arises from the fact that the
source speech may be contaminated with noise. Though the
singing templates are recorded in a quiet studio environment,
the source speech may be recorded anywhere from a normal
room to a car stopped in heavy traffic. There could be multiple
noises and crosstalk present in the recording environment

of source speech. Thus an additional word, unintentionally
recorded into the source speech due to crosstalk, can readily
force the DTW algorithm to fail in alignment of speech
and singing template. Hence, an efficient temporal alignment
technique is essential for the effective functioning of the TSTS
system.

In this paper, we propose a highly competent temporal
alignment methodology for TSTS systems. We present the
dual alignment scheme to match the source speech to the
singer’s speech and then the singer’s speech to original singing
template, in two passes. As the speech signals demonstrate
similar properties among themselves, dissimilar to those of
singing voices, it is advantageous to match source speech
with singer’s speech. The key contribution of this paper is
the use of subsequence DTW (subDTW) to match segments
in source speech to singing template in two passes [36]. The
subDTW will not only render better alignment paths than the
conventional DTW, but also reduce the risk of misalignment
by the presence of crosstalk in source speech. Thus the use
of dual alignment with subDTW renders the TSTS system to
produce singing voices with improved naturalness and less-
ened perceivable distortions as demonstrated in the objective
and subjective studies reported in this work.

The rest of the paper is organized as follows: In Section
II, we review the baseline TSTS system. Here, we will also
highlight the challenges needed to be addressed for improving
the baseline system. The proposed dual alignment scheme with
subDTW is presented in Section III, illustrating its efficacy
in addressing the shortcomings discussed in Section II. In
Section IV, we explain the subjective and objective experi-
ments conducted to validate the role of the proposed alignment
scheme in improving the singing voice synthesis using TSTS
system. In Section V, we summarize the contributions of
this paper towards the synthesis of singing voices of high
perceptual quality.

II. TEMPLATE-BASED SPEECH-TO-SINGING (TSTS)
SYSTEM

The TSTS system makes use of singing templates from
professional singers for STS conversion process. The singing
voice output is synthesized by retaining the prosody of singing
templates and replacing the spectral characteristics with those
of the vocally untrained user. As excitation characteristics of
the synthesized singing voice in TSTS system are derived
from those of professional singer’s data, naturalness of the
synthesized singing is preserved to a great extend [29], [31].
In this section, we review the functioning of the baseline
TSTS system and highlight the possibilities of its failure in
synthesizing good quality singing.

A. The singing templates database

To construct singing templates, multiple songs sung by
professional singers were recorded. The choice of songs were
made by the singers themselves, according to their individual
singing skills [25]. The songs were recorded in a noise-proof
studio environment and were segmented into lyrical sentences.
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Together with the singing data, the speech data obtained by
the singers reading out the lyrics of the songs were recorded.
Thus the templates database consists of singing data (singing
template), singer’s speech and corresponding sentence-level
transcriptions of multiple songs.

B. The STS conversion

STS conversion in the TSTS system is expressed as a
three-stage process, namely, learning, transformation and syn-
thesis [31]. In the learning stage, mel frequency cepstral
coefficients (MFCC) and voiced-unvoiced (VUV) decisions
were extracted. The alignment between source speech and
singing templates was performed in two steps, where the
MFCC features from short-time frames of singer’s speech
and singing templates were aligned followed by the short-
time frames alignment between source speech and singer’s
speech. Thus the source speech was aligned with singing
template, via singer’s speech. The alignment was carried out
using DTW algorithm operating upon cosine distance metric
between MFCC vectors [35]. The synchronization information
(sync info) between frames of signals were saved for further
processing. The alignment process proposed in [31], [34] is
illustrated as a block diagram in Fig. 2.

Fig. 2. Alignment scheme proposed in [31] for TSTS systems.

The learning stage is followed by the transformation stage,
in which the speech and singing signals were analyzed using
a vocoder (eg: STRAIGHT) to extract short-time spectral, F0
and aperiodicity parameters [37], [38]. The F0 transformation
model directly modified the F0 contour of source speech by
replacing it with the F0 contour of singing template. Phoneme
durations in source speech were estimated by DTW, and
later compressed/elongated to match with singing template
durations [34]. The matching of phoneme durations was done
based on the synchronization information acquired in the
learning stage. The spectral parameters of the source speech
were preserved intact, and spectral vectors were replicated or
deleted according to the modified phoneme durations. In the
synthesis stage, singing voices corresponding to the source
speaker were synthesized by a vocoder with the modified
parameters [38]. The functioning of the TSTS system is
illustrated in Fig. 3, where the temporal alignment module
is constituted by the alignment scheme illustrated in Fig. 2.

C. Challenges in speech to singing voice alignment

The human voice production mechanism behind singing
voices has certain distinctive characteristics, which are not
present in the speech production system. Depending upon

Fig. 3. The Template-based STS (TSTS) system.

the style of singing, mode of phonation producing differ-
ent singing expressions and varying loudness, the subglottal
pressure changes considerably [5]. The changes in subglottal
pressure forces F0 to change to a much larger extend in
comparison with speech sounds. Together with variations in
F0, the epochal strengths of glottal flow, peak glottal flow
derivative and the overall sound pressure level also change
[3], [5]. To beautify the singing, singers often introduce quasi
periodic pitch changes known as vibrato. Also with natural
singing, the F0 contour exhibit pitch changes between musical
notes above a certain threshold (overshoot), pitch changes in
a direction opposite to the musical note changes (preparation)
and other fine fluctuations [23]. As human singing is a natural
process, the F0 contours obtained from singers will always
be different from ideal synthetic pitch tracks corresponding to
musical notes [39]. All these unique characteristics of exci-
tation signal in voice production mechanism make singing to
exhibit distinctive differences from the corresponding spoken
sounds.

Together with the excitation characteristics, the singing
voices exhibit peculiar spectral properties as well. The singing
formant is the most prominent property, which is an empha-
sized peak in spectral envelope around 3 kHz [4]. Also it is
observed that the formants in singing spectra undergo certain
frequency modulations depending on variations in F0 contour
[8]. Due to these characteristics, the singing voices can be very
different from spoken voices even if the underlying linguistic
information are the same. Hence, the conventional DTW may
fail in aligning speaking and singing voices. Particularly, if
there exist a difference in linguistic content due to the presence
of crosstalk, the DTW alignment shows high mismatch. The
alignment procedure shown in Fig. 2 uses DTW to match
speech-speech and speech-singing signals. This will result
in accumulation of DTW errors at the ‘merger’ shown in
Fig. 2. Thus the alignment scheme presented in [31], [34]
will force large errors, causing voice quality degradations in
synthesized sounds. Hence, there exist a persistent requirement
for an improved alignment algorithm, which can work even in
adverse situations.

III. DUAL ALIGNMENT SCHEME WITH SUBDTW

In this section, we elaborate the proposed dual alignment
scheme for aligning speech and singing voices. The problem of
frame-by-frame alignment of speech to singing signals is not
trivial due to the reasons explained in Section II-C. Instead,
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aligning short-time frames of two speech signals is a more
straightforward problem as they share similar characteristics.

Fig. 4 shows the alignment between singing and speech
signals, as well as the alignment between two speech signals
using the conventional DTW technique. The DTW algorithms
discussed in this work use cosine distance metric between
MFCC vectors from audio signals. The ground truths regarding
word boundaries in the audio signals are manually marked for
reference. It can be observed from Fig. 4 that the alignment
between two speech signals are more reliable than the same
between speech and singing signals. The speech-singing signal
alignment using DTW forces errors as large as about 1 second,
in matching word boundaries. But the timing errors due to
mismatch of word boundaries made by the DTW algorithm
for two speech signals are considerably less than the same
with speech-singing alignment, as can be seen from Fig. 4(b).
Hence we choose to use a dual alignment scheme for TSTS
conversion systems, different from the one proposed in [31],
[34] as detailed below.
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Fig. 4. Alignment using conventional DTW technique: (a) Speech-singing
alignment and (b) Speech-speech alignment. The vertical lines on the wave-
forms represent word boundaries and the red lines show the alignment between
word boundaries in signals.

While building the singing templates database, the singer’s
speech and singing templates from professional singers are
recorded. The signals are segmented into lyrical sentences and
the corresponding sentence-level transcriptions are made avail-
able. For the STS conversion through STRAIGHT analysis-
modification-synthesis [38], the estimation of phoneme bound-
aries of speech and singing signals has to be done accurately.
The TSTS system in [31] blindly uses the DTW technique
for aligning the phoneme boundaries, which is not a reliable
procedure. We employ a semi-automated process for this task.

The initial phoneme boundaries are marked using forced align-
ment by an automatic speech recognizer (ASR). In this work,
we have used the Montreal forced aligner based on pretrained
ASR models [40]. Later the phoneme boundaries delivered by
ASR forced aligner are manually verified and corrected for
any errors. Even though this task demands exhaustive manual
effort, it is a part of our database preparation and has to
be done only once for numerous repeated usages in future.
Since the accuracy of marking phoneme boundaries plays a
very crucial role in the performance of TSTS systems, we
believe that this process is advantageous. Thus the phoneme
boundaries for singer’s speech and singing templates are
already placed, as accurately as it can be, and the subsequent
alignments are prepared.

We propose to do automatic alignment of source speech to
singer’s speech as this has to be done multiple times in run-
time, unlike the database preparation. The automatic alignment
forms the first pass in the dual alignment scheme. We use
the manually corrected alignment already available between
singer’s speech and singing template from the database as the
second pass to complete the dual alignment. But we refrain
from using the conventional DTW technique for aligning
speech signals. Even though the error produced by the DTW
technique was lesser in speech-speech alignment than in
speech-singing alignment, as illustrated in Fig. 4, it is far
from an optimum solution for matching two continuous speech
signals. Also, the crosstalk attacks in real world scenario can
cause the DTW algorithm to fail miserably in aligning speech
signals, which can result in poor performance of the TSTS
system. Hence we choose to employ a variant of DTW, termed
as subsequence DTW (subDTW) in this work [36].

The subDTW was previously used for the task of query
word detection, in which an isolated audio query word will be
searched in a continuous speech database [41]. It inherently
assumes that the query word is considerably shorter in duration
than the search database. In TSTS system, the source speech
can be segmented into isolated words to form queries and the
singer’s speech can act as the search sentence. The segmented
words from source speech are subsequences of the singer’s
speech sentences, and can be searched for using subDTW.
We have used the Montreal forced aligner to mark word
boundaries of source speech and then segment the continuous
speech into word units. While segmentation, we allow ten
additional frames on either ends of words to accommodate for
any alignment error. There is no manual intervention for error
correction at this stage of the process. The subDTW compen-
sates for errors in word boundaries by giving nearly optimal
alignment paths. Any residual error will be nullified by the
concatenation of alignment paths from subDTW of subsequent
words, by allowing to choose the nearest neighboring frame
in singer’s speech at the overlapped word boundaries. Thus
subDTW and the associated post processing of alignment paths
successfully outperform the conventional DTW in aligning
continuous speech signals.

Also, the subDTW addresses the problem of unintentionally
recorded additional words in source speech. If the query
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word is present in the search database, then the subDTW
will give a ‘hit’ and the corresponding alignment path with
least cost. If the query word is absent in the search database,
then the subDTW will give a ‘miss’. This specific char-
acteristic of subDTW will help in directly nullifying the
crosstalk/babble attacks in the source speech. We assume that
the crosstalk/babble will not contain the poetic lyrics of songs
and they are not overlapping with the source speech. Even
if the crosstalk contains similar words to those in lyrical
sentences, it is observed that the subDTW remains robust to a
considerable extend as it always deliver ‘hits’ of query words
with alignment paths of least cost.

Fig. 5 illustrates the comparison between alignments of
word boundaries between segments of speech signals, deliv-
ered by DTW and subDTW algorithms. It is clearly demon-
strated that the word boundary errors produced by the sub-
DTW are lesser than those with DTW. The frame-by-frame
alignment obtained between source speech and singer’s speech
using subDTW technique is utilized to pick the corresponding
manually corrected alignment between singer’s speech and
singing templates from the database. Thus the dual alignment
between source speech and singing template is realized in
two passes as (i) automated subDTW-based alignment between
source speech and singer’s speech and (ii) picking correspond-
ing alignment between singer’s speech and singing template
from the true alignment available in the database.

The overall alignment between source speech and singing
template in two passes is illustrated in Fig. 6. The time
differences between adjacent black solid lines and black dotted
lines in the ‘singer’s spch’ in Fig. 6 represent alignment errors
produced by subDTW in the first pass. As nearly accurate
timing information is used for alignment in the second pass,
no additional error is generated. Thus the overall alignment
error in the TSTS system is incurred only by the subDTW in
the first pass.

The proposed scheme of dual alignment is shown in the
Fig. 7. For implementation of the TSTS system, the alignment
module (shown as yellow box) in Fig. 3 will be constituted
by the proposed scheme shown in Fig. 7. Also, we used the
synchronous overlap-add fixed synthesis (SOLAFS) algorithm
[42] to modify phone durations in the TSTS system (shown
as blue box in Fig. 3), as opposed to direct DTW alignment
and spectral replications/deletions used in [31]. This choice of
phoneme durations modification, together with the proposed
dual alignment scheme, have helped in improving the quality
of synthesized singing.

IV. EXPERIMENTAL EVALUATION

To validate the efficacy of the proposed dual alignment
scheme with subDTW, we conduct objective and subjective
evaluations. We chose a database of 3 English songs, namely,
‘I dont want to lose you’, ‘Stars shining bright above you’ and
‘Fly me to the moon’, sung by a male and a female singer.
The read speech data of each singer reading out the lyrics of
the three songs are also recorded. The three songs collectively
contributed 80 lyrical sentences, totaling to 604 words, for
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Fig. 5. Alignment between source speech and singer’s speech (a) using
subDTW algorithm and (b) using conventional DTW algorithm. The vertical
lines on the waveforms represent word boundaries and the red lines show the
alignment between word boundaries in signals.
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Fig. 6. Dual alignment between source speech and singing template. The
vertical lines on the waveforms represent word boundaries and the red lines
show the alignment between word boundaries in signals. The vertical dotted
lines on ‘Singer’s spch’ represent the estimated boundaries by subDTW
alignment.

Fig. 7. The proposed dual alignment scheme with subDTW for TSTS system.
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each singer. The average spoken duration of the sentences is
about 3 seconds. The phoneme-level transcriptions of singing
templates and singer’s speech data are prepared as described
in Section III. Later, the source speech corresponding to the 80
sentences are recorded by a male and a female user. The word-
level transcriptions of the source speech sentences are also
prepared. These transcriptions are used only as references for
experimental evaluations, not for synthesizing voices from the
TSTS system. Speech signals are converted to singing voices
using the TSTS system shown in Fig. 3, where the alignment
module is constituted by the dual alignment scheme illustrated
in Fig. 7.

A. Objective studies

We utilized DTW to align 160 source speech sentences with
160 singing sentences in the database (spch-sing), belonging
to both the male and the female singers. Also, the alignment
of source speech sentences with corresponding singer’s speech
sentences (spch-spch) was attempted. We did not perform any
cross gender trials. The mean of absolute values of alignment
errors in marking word boundaries was computed with respect
to the reference transcriptions. The mean error in seconds for
both spch-sing and spch-spch alignments computed over 160
lyrical sentences (1208 words), are reported in Table I. The
DTW-based word alignment error in spch-sing alignment is
almost twice the error from spch-spch alignment. Hence, we
proposed a dual alignment scheme for TSTS systems, in which
the source speech will be aligned with singer’s speech and
the manually corrected transcriptions in the database will be
used to align singer’s speech with singing templates. Thus the
overall alignment error of the system will simply be the error
occurring in the first pass of dual alignment, as the second
pass utilizes nearly accurate annotations of singer’s speech
and singing templates.

TABLE I
MEAN WORD-BOUNDARY ALIGNMENT ERROR USING CONVENTIONAL

DTW ALGORITHM.

Alignment Mean error (s)
spch-sing 1.5747
spch-spch 0.7867

Instead of using conventional DTW technique to align
source speech to singer’s speech, we propose to use the
subDTW algorithm in the dual alignment. As illustrated in
Fig. 5, the subDTW outperforms DTW in aligning continuous
speech signals. To quantitatively validate this observation, we
report the mean word alignment error produced by DTW and
subDTW in aligning 160 source speech sentences with singer’s
speech sentences in Table II. The subDTW (subDTW (spch-
spch)) indeed outperforms conventional DTW (DTW (spch-
spch)). In fact the alignment error produced by subDTW
is merely about 8% of the error produced by the DTW
algorithm, demonstrating its superiority. We also analyzed the
capability of subDTW in directly aligning source speech to
singing template (subDTW (spch-sing)) and, the subDTW
had unambiguously delivered better performance than the

DTW algorithm in this task also. The mean word-boundary
alignment error produced by the proposed dual alignment
scheme is 0.07 seconds, as opposed to the error of 1.57
seconds produced by the baseline DTW approach.

TABLE II
MEAN WORD-BOUNDARY ALIGNMENT ERROR USING DIFFERENT

VARIANTS OF DTW ALGORITHM.

Algorithm Mean error (s)
Alignment of source speech to singer’s speech

DTW (spch-spch) 0.7867
subDTW (spch-spch) 0.0662
Alignment of source speech to singing template

DTW (spch-sing) 1.5747
subDTW (spch-sing) 0.3850

B. Subjective studies

We conducted subjective experiments using singing voices
synthesized by the TSTS system from source speech, em-
ploying different alignment techniques as (i) subDTW for
direct alignment of source speech to singing template (sub-
DTW (spch-sing)), (ii) the proposed dual alignment scheme
(subDTW (spch-spch)), and (iii) conventional DTW for direct
alignment of source speech with singing template (DTW
(spch-sing)). We have also included the baseline TSTS system
using DTW for aligning both passes in the dual alignment
[31]. Notice that, the perceptual quality of synthesized singing
depends on several factors including the accuracy of temporal
alignment, the proper conversion of spectral characteristics,
pitch mapping incorporating excitation features like vibrato,
overshoot, etc. In this work, we only study the contribution of
alignment to perceptual quality of synthesized singing through
subjective studies.

Fifteen neutral listeners, aged 15 to 35, with normal hearing
ears had volunteered for the subjective study. Each volunteer
had listened to three sets of audio files, each containing four
singing voices corresponding to the three alignment techniques
mentioned above, together with the baseline. The audio files
were played to the listeners monoaurally through headphones
in a normal room environment. They rated the singing voices
generated from TSTS systems based on naturalness, distortions
and overall voice quality. The ratings are given on a scale
of 1 to 5, where 1 denotes unacceptable, 2-poor, 3-fair, 4-
good and 5 denotes excellent. The opinion scores provided
by the listeners were averaged over all trials including male
and female singing. The mean opinion scores (MOS) are
reported in Table III. The proposed dual scheme with subDTW
had outperformed all the other alignment techniques in TSTS
systems, providing a relative improvement of 38.7% in MOS
scores over the baseline system.

The MOS reported in Table III shows only the average
value of opinion scores awarded by the listeners, which is a
very limited representation. To illustrate the efficiency of the
proposed alignment method based on the entire set of opinion
scores, the boxplot is shown in Fig. 8. The boxplot takes into
account of individual values of opinion scores and employs
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a notched box to enclose all values between the 25th and
75th percentiles of opinion scores. The notch of the boxes
(shown as red line in Fig. 8) represents the median value
of opinion scores, and the ends of whiskers over each box
represent the extreme values. It can be observed from Fig. 8
that the set of individual opinions scores for the proposed
alignment algorithm (subDTW (spch-spch)) is distinguishably
larger than those corresponding to the other techniques. Thus
its effectiveness is unequivocally demonstrated, not just in
terms of mean or median values of opinion scores.

In MOS scoring, the listeners were asked to listen to
the audio samples and rate them based on their individual
perceptual quality. The listeners did not compare the samples
or discriminate them from each other. While interpreting MOS
scores, we manually compared the individual scores given by
the listeners using average values and boxplots. In order to
evaluate the comparative perceptual quality of audio samples,
all of the 15 listeners were asked to choose the best and worst
sounding singing from each of the three sets of 4 singing
voices. Each listener had listened to the individual singing
voices within a set, which were played multiple times in
different orders. And, the best and worst samples from each
set were chosen by the listeners.

We perform a best-worst scoring (BWS) to quantify the
inter-relationships in perceptual quality of samples and to
nullify any confusions by listeners in evaluating perceptually
similar segments [43]. We selected the BWS score on the
aggregate level, that is with respect to the entire set of trials.
The necessary experimental conditions for BWS scoring are
(i) each trial should contain the same number of items to
be studied and (ii) each item should have equal number of
samples across the entire set of trials. Also, samples within a
set should be played in all possible permutations to listeners
before they choose the best and worst sounding voices [43].
These conditions are satisfied in our subjective study and the
resultant BWS score for each item i, is computed as:

(BWS)i =
Bi −Wi

Ni
(1)

where Bi and Wi denote the number of times the item i
is chosen as ‘best’ and ‘worst’, respectively by listeners. Ni

denotes the number of times the item i is appearing in the
entire set of trials and, Ni = N, ∀i based on the necessary
conditions for BWS scoring on aggregate level [43]. The most
positive BWS score indicate that the item is most appealing
to the listeners and vice versa. The BWS scores computed
for different alignment techniques in the TSTS systems are
reported in Table. III, from which it can be observed that the
BWS score for the proposed alignment technique is the most
positive and consequently the most appealing to the listeners.
Both the MOS and BWS scores for the proposed alignment
technique are significantly better than the other techniques un-
der consideration. Also, the proposed dual alignment scheme
with subDTW clearly outperforms the baseline system.

TABLE III
SUBJECTIVE EVALUATION OF DIFFERENT ALIGNMENT TECHNIQUES USED

IN TSTS SYSTEMS.

Algorithm MOS BWS
subDTW (spch-sing) 2.2111 -0.2667

subDTW (spch-spch) 3.7311 0.7111
Baseline system 2.5333 -0.1333

DTW (spch-sing) 1.9667 -0.3111
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Fig. 8. The boxplot of opinion scores for synthesized singing obtained
using different alignment techniques. The boxplot within the dotted rectangle
denotes the proposed dual alignment.

C. Comparison with existing techniques

The baseline TSTS system uses silence removal and voiced-
unvoiced decisions to preprocess signals and uses conventional
DTW algorithm to align source speech to singing template
[31]. The idea of dual alignment is intuitively used in the
baseline system, but it was implemented using DTW in both
passes resulting in cumulating the errors in DTW along each
pass. There was no usage of manually corrected phoneme
transcriptions in the baseline TSTS system. We use subDTW
to match source speech with singer’s speech in the first
pass, as it is a more efficient tool than DTW for aligning
spoken sounds. Motivated from the fact that DTW, or even
subDTW, are not good enough to directly align speech to
singing signals, we made use of correct transcriptions to align
singer’s speech to singing templates in the second pass. Thus
we proposed a more efficient strategy in comparison with the
baseline, as illustrated in the subjective and objective studies.
In addition, we do not use silence removal or voicing decisions
for preprocessing as subDTW delivers alignment paths which
actually matches to segments in singer’s speech.

Compared to score-based systems, we use human singing
templates to modify parameters of speech and hence syn-
thesized singing will be more natural. Also, the score-based
systems need to force align the speech signals every time it is
being used. Manual corrections may be repeatedly required
to ensure the accuracy of the durations and boundaries of
phonemes to avoid erroneous synthesis. In this work, we per-
form accurate alignment of templates in the database only once
during the database preparation, with no manual intervention
in any other stage of processing.
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V. CONCLUSIONS

In this paper, we proposed a dual alignment scheme for
speech-singing alignment in TSTS systems. We employed a
preferable variant of DTW, namely the subDTW algorithm, to
align source speech with singer’s speech in the first pass of
dual alignment. And we used the manually verified alignment
information computed during database preparation for TSTS
systems, to align singer’s speech with singing templates in
the second pass of dual alignment. The proposed alignment
scheme had consistently outperformed the temporal alignment
used in the baseline TSTS systems in both objective and
subjective evaluations. The utilization of improved alignment
techniques is bound to improve the perceptual quality and
naturalness of synthesized singing.
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