
An accelerated SAR Back Projection Algorithm
using Integer Arithmetic
Don Lahiru Nirmal Hettiarachchi∗ and Eric Balster†

∗ University of Dayton, Ohio, USA
E-mail: hettiarachchid1@udayton.edu
† University of Dayton, Ohio, USA

E-mail: ebalster1@udayton.edu

Abstract—Frequency-domain algorithms are used frequently
to form Synthetic Aperture Radar (SAR) images from SAR
video phase histories (VPH). Even though frequency-domain
algorithms are computationally efficient, they work under many
assumptions that do not hold for all imaging cases. Time-domain
back projection (BP) algorithms can avoid such problems. The
drawback of BP is that it requires a higher number of operations
leading to a higher computational complexity in the order of
N3. Recently, various acceleration methods for time domain
back projection have been developed in the radar processing
community. This paper presents a new acceleration method for
SAR BP using fixed-point arithmetic. It is shown that fixed-
point based BP algorithm is faster than traditional algorithm
and it maintains a high output image quality. The proposed
algorithm process images with 15.69% speedup on average, while
maintaining high quality image outputs.

I. INTRODUCTION

Synthetic Aperture Radar (SAR) systems are designed
to generate high resolution images. The resolution of an
optical sensor depends on the distance to the target, but in
SAR systems, the resolution depends on the nature of the
transmitted signal. Therefore, SAR systems can maintain the
same resolution even at a thousand meters or a thousand
kilometers from the target. Due to these reasons, SAR
processing is a very popular technique and has a wide
variety of applications in both military and commercial fields.
Once the SAR system receives the echoed signal from a
target, image formation steps are carried out to generate the
output image. There are many algorithms developed for SAR
image formation and these algorithms are categorized as
frequency-domain algorithms and time-domain algorithms.

Frequency-domain algorithms such as Range Doppler (RD),
ω − k algorithm and Chirp Scaling (CS) are widely used due
to their computational efficiency. Computational complexity
of the frequency-domain is with order of N2log2N [1].
However, frequency-domain algorithms work under many
assumptions that do not hold for all imaging cases. Some
algorithms depend on geometric approximations that neglect
various limits (large image size, narrow angle swath, low
squint angle, or wide bandwidth etc.). Few algorithms
assume that the aircraft flies on a linear flight track. Due to
this reason, off-track motion errors are only approximately
compensated and that could result poorly focused images.

Some frequency-domain algorithms need interpolation in
frequency domain that could generate artifacts on the output
image after conversion to time domain due to the interpolation
errors [2].

Back projection (BP) is a time-domain algorithm that
avoids the above mentioned problems with frequency-domain
algorithms. One of the drawback of BP is that it requires a
higher number of operations with order of N3 which demands
a significant processing time, where the N corresponds to the
N pulses of echo data and N ×N samples (per image). Due
to its immense computational burden, the back projection
algorithm is rarely used in real-time SAR processing or high
resolution SAR image formation [3, 4].

In past two decades, many algorithms have been developed
to accelerate traditional BP. Some algorithms are mainly
derived by modifying the BP [1–6]. Other accelerations are
achieved by utilizing high speed devices like general purpose
graphics processing unit (GPGPU) and field programmable
gate arrays(FPGA) [7–10].

In [2], Yegulalp et al., introduces a fast back projection
(FBP) algorithm that reduces the computational complexity
by
√
N . This modified back projection algorithm manages to

retain all advantages of traditional back projection such as
perfect motion compensation, unlimited scene size, perfect
focus for higher bandwidth, and integration angle. The
basic idea of this method is to divide the full synthetic
aperture into sub-apertures. Each of these sub-apertures
generate sub-images and finally, all sub-images are added
coherently to get the final image. For a N × N pixel
image with Npulses of range compressed data, it is shown
that approximately N3/2Npulses operations are required.
Compared with traditional back projection, this algorithm is
faster by a factor of

√
N .

Ulander et al., modifies the traditional back projection
algorithm and generalizes the FBP algorithm to introduce the
fast factorized back projection (FFBP) algorithm [5]. FFBP
method follows aperture divided to sub-aperture (SA) concept
introduced in FBP. Then it assigns a local polar coordinate
(LPC) system to each sub-aperture and follows a pyramid

80

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018

computational architecture to complete the full aperture.
Finally, a fusion technique and 2-D interpolation is carried
out for all sub-apertures to get the back projected image.

Zheng et al., introduces an accelerated back projection
(AFBP) algorithm by modifying the FFBP algorithm [3]. The
AFBP technique also follows the basic concept introduced
in FBP and FFBP methods. First, it divides the aperture into
sub-apertures. Then, all sub-apertures are allocated a unified
polar coordinate (UPC) system. To avoid 2-D interpolation,
it converts all data into 2-D wavenumber domain. Finally,
a sub-aperture fusion is carried out in 2-D WN domain
and converts back to time domain in order to get the back
projected output image.

Ref [6], develops a simulator for spotlight SAR image
formation. Later in the same year, back projection algorithm
of SAR simulator is accelerated using a GPGPU and
OpenCL language [8]. The accelerated system obtained a
speedup of 4X over single-threaded C++ implementations
and a speedup of 19X over native MATLAB implementations.

This paper introduces a new method for back projection
algorithm acceleration using fixed-point arithmetic. Back
projection algorithm in the image processing module of
spotlight SAR simulator [6] is used for modification.
Proposed algorithm is optimized by incorporating multiple
scale factors for fixed-point conversion and it is developed
with OpenCL to test with multiple devices like CPUs,
GPGPUs and FPGAs. Obtained results show that the
proposed algorithm gains a ∼ 25% speed improvement for
512 × 512 sized images, a ∼ 12% for 256 × 256 sized
images, and a ∼ 11% for 128 × 128 size images. Trade-off
of accelerating back projection algorithm using fixed-point
arithmetic is between image quality and speedup. Comparing
the Peak signal-to-noise ratio (PSNR) values of output
images, it is shown that the acceleration is obtained while
preserving high image quality compared to traditional back
projection.

Following the introduction, Section II includes an overview
of SAR simulator and back projection. Section III introduces
the proposed back projection algorithm. Section IV includes
obtained results and analysis and Section V is dedicated for
conclusion.

II. SPOTLIGHT SAR MODEL

A brief overview of image processing modules in spotlight
SAR simulator [6] are introduced in this section. Fig. 1 shows
the spotlight SAR imaging model that is used for derivation,
where dso is the standoff distance to the scene center, dalt is
the altitude, and θ is the horizontal angular displacement and
φ is the incidence angle.

Fig. 1: Spotlight SAR imaging overview [6]

A. Generate Range Profile

The distance from aircraft to each pixel is given by

dac[v, h, θ] =√
(vG− dso sin(θ))2 + (hG− dso cos(θ))2 + d2alt,

(1)

where v(∈ [N2 ,
−N
2]) and h(∈ [N2 ,

−N
2]) are image indexes

and G is the ground sample distance (GSD) and N represent
number of rows and columns. Then the distance from each
pixel to scene center is shown in (2).

d[v, h, θ] = dac[v, h, θ]−

√
d2alt +

(
dso −

NG√
2

)2

(2)

The echoed pulse return based on individual pixel distances
are shown in (3).

xret(t, θ) =
∑
v,h

I[v, h]xp

(
t− 2d[v, h, θ]

c

)
(3)

Where the xp(t) is the transmitted linear frequency modulated
pulse and c is the speed of light. As shown in (4), the return
signal (xret(t, θ)) is demodulated by mixing with carrier signal
(c(t)) and applying a low-pass filter.

xmix(t, θ) = F{xret(t, θ)c(t)} ; c(t) = cos(2πflt) (4)

The demodulated signal (xmix(t, θ)) is sampled and dis-
cretized to obtain xmix[n, θ]. Then, a matched filter is applied
to generate the phase history (Xph[n, θ]). Equation (5) shows
the match filter process in frequency domain.

Xph[n, θ] = Xmix[n, θ]Hmf [n], (5)

where Hmf [n] is the impulse response of the matched filter.
As shown in (6), the range profile (Rp[k, θ]) is obtained by
applying FFT and oversampling to the phase history.

Rp[k, θ] =
∑
n

Xph[n, θ]e−j
2πn
N k (6)

81

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

B. Back Projection

The range profile (Rp[k, θ]) is used to back project into
a 2-D image space. After applying the phase correction, the
projected data from all return signals are summed up to get the
final image. The final back projected image output is obtained
by

Ĩ[v, h] =
1

ΘN

∣∣∣∣∣∑
θ

R̃p(i, θ)e
−j 4πfldR[v,h,θ]

c

∣∣∣∣∣ , (7)

where dR[v, h, θ] is the differential range and R̃p(i, θ) is
the linearly interpolated range profile. Equations (8) and (9)
show the dR and R̃p respectively.

dR[v, h, θ] = dac[v, h, θ]−
√
d2so + d2alt, (8)

R̃p(i, θ) = (bi+1c−i)Rp[bic, θ]+(i−bic)Rp[bi+1c, θ], (9)

where i = dR[v, h, θ]/ds and ds is the sample distance.

III. PROPOSED BACK PROJECTION ALGORITHM

The proposed back projection algorithm is introduced in
this section. Idea is to convert all back projection variables
into integers and use fixed-point arithmetic. First, new SAR
model with new distance variables are introduced since the
back projection method described in Section II-B uses angles
to calculate distances. Converting variables associated with an
angle into integers can increase the computational complexity
and reduce the accuracy. Therefore, a new spotlight SAR
system model with new distance variables are introduced and
it is shown in Fig. 2.

Fig. 2: SAR imaging overview for fixed-point processing

The fixed-point processing approach can be used to increase
the speed of a calculation [11]. The precision of a floating-
point variable can be preserved by multiplying with a constant
scale value. Higher scale value yields a higher precision after
the conversion. Finally, calculated fixed-point variables can be
converted back to the floating-point variable by dividing with
same constant scale value. The constant scale value is limited
to power of 2 in order to achieve multiplication and division

with binary shifts. Floating-point to fixed-point conversion is
given by

F̂ = b2λF c, (10)

where F represents the floating-point variable, F̂ is the
fixed-point variable, and λ is the scale factor. In the proposed
back projection method, all the floating-point variables used
in back projection in Section II-B are converted to integers.
The Table I consists of floating-point variables, fixed-point
variables, and corresponding scale factors used for each con-
version.

TABLE I: Floating-point variable, Scale factor, and Integer
variable

Floating-point variables Scale factor Fixed-point variables
rx, ry , rz 2λR r̂x, r̂y , r̂z
dx, dy , dz 2λR d̂x, d̂y , d̂z

dR 2λR d̂R
drcp 2λR d̂rcp
drsc 2λR d̂rsc
Rp 2λM R̂p
γ 2λC γ̂

Sγ 2λR Ŝγ
Cγ 2λR Ĉγ

Ĩ 2λR ˆ̃I

There are three scale factors defined in Table I which are
used for the conversion. The λR scale is applied to distances
from aircraft to scene center and aircraft to each pixel location.
Since distances from aircraft to scene center and each pixel
are large values and it plays a significant impact on overall
accuracy, λR is considered to be a higher value. The λM scale
is for range profile conversion and the values in range profile
are significantly smaller compared to distance values measured
from aircraft. Therefore, a smaller scale is used for λM . The
λC value is fixed and it is used to calculate angles for phase
correction.

A. Fixed-Point Conversion

First, the differential range dR[v, h, θ] described in (8) is
converted to integers. The new differential range, d̂R[ξ] is
shown in (11).

d̂R[ξ] = d̂rcp[ξ]− d̂rsc[ξ], ξ ∈ (x, y, z), (11)

where d̂rcp[ξ] is the fixed-point variable distance between
radar to current pixel and d̂rsc[ξ] is the fixed-point variable
distance between radar to scene center. The d̂rcp[ξ] distance
and d̂rsc[ξ] distances are converted to fixed-points by applying
(12).

d̂rcp[ξ] = b2λRdrcp[ξ]c and d̂rsc[ξ] = b2λRdrsc[ξ]c, (12)

where,

drcp[ξ] =
√

(rx − dx)2 + (ry − dy)2 + r2z , (13)

82

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

drsc[ξ] =
√
r2x + r2y + r2z . (14)

The rx, ry, rz in (13) and (14) represent the ranges from
radar to scene center and current pixel to scene center (Fig. 2).
The dx, dy represent the displacements from scene center to
current pixel. Square root operations described in (13) and (14)
are calculated using Newton’s method (or Babylonian method)
[12]. As shown in (15) and (16), all range values are converted
to integers and the radicands are defined as Ŝa and Ŝb. Iterative
method is started by defining X̂a and X̂a as seed values. Since
the radicands are already scaled with 2λR , the X̂a and X̂b seed
values are initiated with the same scaled constant as shown in
(17). Then, the Newton’s iterative method is applied for Ŝb
and Ŝa using (18). The X̂k+1 is the X̂k value for the next
iteration.

Ŝa = r̂2x + r̂2y + r̂2z (15)

Ŝb = (r̂x − d̂x)2 + (r̂y − d̂y)2 + r̂2z (16)

X̂k = 2λR , k ∈ (a, b) (17)

X̂k+1 =
1

2
(X̂k +

Ŝk

X̂k

), k ∈ (a, b) (18)

After Newthon’s method converge to a fixed point, the
values of d̂rsc[ξ] and d̂rcp[ξ] are obtained by considering,

d̂rsc[ξ] ≡ X̂a+1 and d̂rcp[ξ] ≡ X̂b+1. (19)

The differential range d̂R[ξ] is obtained by using (11).
After applying the phase correction, the range profile is back
projected to 2-D image space. Back projected data from all
return signals are summed up to get the final scaled-up image.
Final scaled-up back projected image output is obtained by

ˆ̃I[x, y] =
1

ΞN

∣∣∣∣∣∣
∑
ξ

ˆ̃Rp(i, ξ)e
−jγ̂[ξ]

∣∣∣∣∣∣ , γ̂[ξ] =
4πfld̂R[ξ]

c
,

(20)
where e−jγ̂[ξ] is the phase correction term and ˆ̃Rp(i, ξ) is a
bi-linearly interpolated range profile given by

ˆ̃Rp(i, ξ) =

{(bi+ 1c − i)R̂p[bic, ξ]+
(i− bic)R̂p[bi+ 1c, ξ]}2λR−λM ,

(21)

and i is given by

i =
d̂R[ξ]

d̂s
. (22)

The ˆ̃Rp(i, ξ) in (21) is initially scaled up by 2λM for range
profile values and then by 2λR−λM after interpolation to match
the e−jγ̂[ξ] scale. Finally, as shown in (23) the scaled-up back

projected image output (ˆ̃I[x, y]) is scaled-down by using the
same constant scale value to obtain the final image output.

Ĩ[x, y] =
ˆ̃I[x, y]

2λR
(23)

B. Angle Conversion with Fixed-Point Arithmetics

The Euler’s formula is used to calculate the integer value
of the phase correction term, γ̂[ξ] shown in (20). First, 2π
range is divided by Q number of linearly spaced points, where
Q = d2π2λC e. Then, an integer array, F̂sin[·] is created to
hold the Q number of 2λC scaled values of sine angles.

e−jγ = Ĉγ − jŜγ , (24)

where Ŝγ = sin(γ̂[ξ]) and Ĉγ = cos(γ̂[ξ]). The value of
Ŝγ is calculated by

Ŝγ = F̂sin[γ̂]2λR−λC , (25)

and the value of Ĉγ is calculated by

Ĉγ = F̂sin[(γ̂ +
Q

4
)%Q]2λR−λC , (26)

where % is the modulus operator. Since F̂sin[·] holds 2λC

scaled values of sine angles, Ŝγ and Ĉγ in (25) and (26) are
scaled up by 2λR−λC to match the ˆ̃Rp(i, ξ) scale of (20).
Fig. 3 shows the sine and cosine approximations calculated
after scaling with λC = 3. An accurate approximation can be
obtained by scaling up with a higher scale. After few accuracy
tests, the scale value λC is fixed at 6 for better approximation.

0 1 2 3 4 5 6

Angle()

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

A
m

p
lit

u
d
e

Sine and Cosine approximation with fixed-point arithmetics, when
c
 = 3

Fig. 3: Sine and Cosine approximation with fixed-point arith-
metics

83

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

C. Scale Value Optimization

The λR scale value is used to scale large distances, i.e.
aircraft to scene center and aircraft to each pixel location.
The λM scale value is used to scale range profile distances.
The main goal of this conversion is to accelerate the BP
module. Therefore, several tests are carried out to find the
optimum λR and λM values. Trade-off of the acceleration
process is between output image quality and speedup. Image
quality is calculated objectively using the peak signal to noise
ratio (PSNR) of output images. In order to obtain optimum
λR and λM values, the standoff distance(dso), altitude (dalt),
and patch width (target area) parameters are varied to test on
different configurations. Each parameter is varied 3 times to
get a total of 27 test configurations per image. Varying standoff
distance and altitude parameters change the range distances
from aircraft to scene center and aircraft to each pixels. Scaling
high varying distances with high scales like λR could result
an arithmetic overflow. Therefore, to find the best PSNR value
for each configuration, λR and λM are varied from 1 to 31.
Fig. 4 shows the PSNR values calculated for all λR and λM
combinations for one test configuration.

-15

35

-10

3530

-5

3025

0

25
20

5

λ
M

P
S

N
R

20

λ
R

Configuration: SO = 6000, Alt = 5800, PW = 4000

15

10

15

10

15

10

5

20

5

25

0 0

-10

-5

0

5

10

15

20

X: 16

Y: 4

Z: 24.06

Fig. 4: PSNR variation with λR and λM . Test configu-
ration: standoff distance (SO) = 6000m, altitude (Alt) =
5800m, patch width (PW) = 4000m

As shown in Fig. 4, best PSNR occurs when λR = 16 and
λM = 4. Furthermore, it is shown in the plot that only a small
area represents higher PSNR values throughout the grid. Some
areas covered with low PSNR values are due to low quality
(high noise) of images when scale values are low. Other low
PSNR value areas are due to arithmetic overflow that generate
lower quality images. All test configurations shows that the
maximum PSNR value for each configurations is obtainable
when λR is between 14 to 16 and λM is between 3 to 7.
Analyzing PSNR values with all test configurations, λR is
fixed to 16 and λM is fixed to 4 for further testing.

D. OpenCL Implementation of Proposed Back Projection Al-
gorithm

Implemented BP module is shown in following algorithm.
The algorithm uses the range profile (R̂p[·, ξ]) input to create
the BP image. To increase the processing speed each pixel in
BP image is assigned as an independent work item.

Algorithm : The Proposed BP Module

1: kernel void proposed_BP(ˆ̃I[·], R̂p[·, ξ], P,N, d̂s,
r̂x, r̂y, r̂z, Ĝ, fl)

2: int x, y, t, d̂R, Ŝγ , Ĉγ ,
ˆ̃Ir,

ˆ̃Ii, Ĵγ , γ̂;
3: long X̂a, X̂b, d̂x, d̂y, Ŝa, Ŝb;
4: u = get_global_id(0);
5: x = (int)(u/N);
6: y = u%N ;
7: d̂x =(long)(2 ∗ y −N + 1) ∗ Ĝ;
8: d̂y =(long)(N − 2 ∗ x− 1) ∗ Ĝ;
9: Ĵγ =(int)(B ∗ fl);

10: for(n = 0;n < N ;n+ +){
11: Ŝa = r̂x[n] ∗ r̂x[n] + r̂y[n] ∗ r̂y[n] + r̂z[n] ∗ r̂z[n];
12: Ŝb = (r̂x[n]−dx)∗(r̂x[n]−dx)+(r̂y[n]−dy)∗(r̂y[n]−

dy) + r̂z[n] ∗ r̂z[n];
13: X̂a = (X̂a + Sa/X̂a) >> 1;
14: X̂b = (X̂b + Sb/X̂b) >> 1;
15: d̂R = X̂a − X̂b;
16: i =(int)d̂R/d̂s+(int)(P + 1) >> 1;
17: if (d̂R ≥ 0)
18: i+ = 1;
19: if (i > 0 && i < P){
20: γ̂ = (F̂Y ∗ d̂R) >> λR;
21: γ̂ = γ̂%Q;
22: if (γ̂ < 0)
23: γ̂+ = Q;
24: Ŝγ = F̂sin(γ) << (λR − λC);
25: Ĉγ = F̂sin[(γ +Q >> 2)%Q] << (λR − λC);
26: t = [i+ (P + 1) >> 1] ∗ d̂s − d̂R
27:

ˆ̃Rpr = (R̂pr[i− 1] ∗ t+ R̂pr[i] ∗ (d̂s − t))/d̂s;
28:

ˆ̃Rpi = (R̂pi[i− 1] ∗ t+ R̂pi[i] ∗ (d̂s − t))/d̂s;
29:

ˆ̃Ir = ((ˆ̃Rpr∗Ĉγ− ˆ̃Rpi∗Ŝγ) >> λM+ ˆ̃Ir∗n)/(n+1);
30:

ˆ̃Ii = ((ˆ̃Rpr∗Ŝγ+ ˆ̃Rpi∗Ĉγ) >> λM+ ˆ̃Ir∗n)/(n+1);
}}

First, Lines 1-3 initialize the kernel and variables. Then in
Line 4, the pixel index (u) of the BP image is obtained and
Line 5-6 show the (x, y) position indexes of the BP image.
Line 7 and 8 calculate the distances from current pixel to the
scene center in x and y directions. The term N represents
the BP image size (i.e. N ∈ {128, 256, 512}) and Ĝ is the
ground sampling distance. Line 9 calculates the constant part
of γ̂, where B = 4π

c . Line 10 calculates the intensities for
all pixels in BP image. Lines 11-15 show the implementation
of Newton’s fixed point iteration method to calculate the
differential range d̂R. Lines 16-18 show the calculation steps

84

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

of the range profile sample indexes corresponding to the
current pixel (u) in the BP image. Line 19 constraints the
sample i within the range profile, where P represents the
number of FFT samples. Lines 20-23 calculate the phase
correction γ̂, where Q = d2π2λC e. Lines 24 and 25 calculate
the sine and cosine values of γ̂ angle. Lines 26-28 show
the calculation steps for bi-linear range profile interpolation.
Lines 19-30 calculate the BP image intensities after applying
phase correction. Image output of BP module (in (20)) requires
complex math calculation. Therefore, as shown in Lines 27-
30, real samples (ˆ̃Rpr,

ˆ̃Ir) and imaginary samples (ˆ̃Rpi,
ˆ̃Ii)

of range profile R̂p[·, ξ] and BP image ˆ̃I[·] are calculated
separately.

IV. RESULTS

The proposed back projection module is tested with syn-
thetically generated video phase history (VPH) from the SAR
simulator [6]. The images tested are shown in Fig. 5. These
images are processed with SAR simulator to generate synthetic
VPH, then VPH of each image are used for SAR processing.
Usage of synthetic VPHs are beneficial for performance eval-
uation for SAR imagery techniques, such as calculation of
PSNR comparison with original images.

A. Speed increase with fixed-point processing

All images shown in Fig. 5 are 512× 512 in size, and are
downsampled to form 256 × 256 and 128 × 128 images to
test the BP module with different image sizes. Furthermore,
OpenCL 1.2 is used to develop the BP algorithm and measure
the execution time for floating-point and fixed-point versions.
All tests are carried out on an 4-core Intel core I7-4810MQ
2.8 GHz processor and 64-bit Microsoft Windows 7 Enterprise
operating system. Modern CPUs calculations are optimized
for floating-point arithmetics and therefore CPU optimizations
are disabled to maintain a fair comparison. Execution time
for back projection module with floating-point and fixed-point
(proposed) methods shown in Fig. 6. Different sized images
are tested and it is shown in Fig. 6 that for all images,
execution time of fixed-point version of the back projection
is faster than floating-point version. Also, note that higher the
image size, faster the fixed-point back projection compared to
floating-point version.

As shown in the Fig. 6, 512×512 sized images are processed
with a 24.99% speedup on average, 256×256 sized images are
processed with a 11.51% speedup on average, and 128× 128
sized images are processed with a 10.57% speedup on average.
Therefore, the average speedup is 15.69% for all images.

B. Image Quality Comparison

It is shown in Section IV-A, for all test images, the
fixed-point BP module executes faster than floating-point BP
module. To verify proper functionality of the fixed-point BP
module, quality of test images are measured using PSNR
index. All calculated PSNR (dB) values are shown in Table II.
Note that the change of PSNR values from floating-point BP
to fixed-point BP are very low. On average, for all images

the PSNR value is decreased by 0.1924 dB. Moreover, it is
shown that when the image size increases, speedup percentage
increases (Fig. 6) and PSNR error decreases.

Fig. 6: Execution time for back projection module with
floating-point and fixed-point (proposed) methods.

TABLE II: PSNR (dB) results of all test images.

Image Size Test images Floating-point Fixed-point Error (∆)

128x128

Pentagon 24.2095 24.4420 -0.2325
Airport 18.7690 18.3764 0.3926
San Diego 19.6278 19.0534 0.5744
Stockton 19.8428 19.5710 0.2718
Wash-ir 17.9474 17.3517 0.5957

256x256

Pentagon 23.8985 23.6778 0.2207
Airport 19.9064 19.7595 0.1469
San Diego 23.0957 23.0090 0.0867
Stockton 25.7948 25.6556 0.1392
Wash-ir 18.3788 18.2248 0.1540

512x512

Pentagon 25.2779 25.2561 0.0218
Airport 20.7656 20.6733 0.0923
San Diego 23.8377 23.7267 0.1110
Stockton 27.3165 27.3144 0.0021
Wash-ir 19.5251 19.2161 0.3090

Average Error 0.1924

Floating-point back projection (BP) module outputs and
fixed-point BP module outputs for test images are shown in
Fig. 7 for a visual comparison. As expected, image outputs
from both modules are visually very similar. However, above
back projected output images are generated using synthetic
VPH. Therefore, both BP modules are tested with real SAR
imagery data. Fig. 8 shows the back projected final outputs
from both modules. The ‘parking lot’ image from GOTCHA
dataset, which is very common in the radar processing com-

85

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

(a) Left: Pentagon image, center: Airport image, right: San Diego image

(b) Left: Stockton image, right: Wash-ir image

Fig. 5: Original images used to create synthetic VPHs

munity is used for testing. The PSNR value is not available
because of no image reference. Floating-point BP module
process SAR data and output the image in 84.27 seconds and
fixed-point BP module process it in 74.63 seconds achieving a
11.4% speedup. As expected, fixed-point BP output is visually
similar to the floating-point BP output.

V. CONCLUSION

This paper presents a new acceleration method for SAR
back projection using fixed-point arithmetics. Proposed al-
gorithm, is tested with various images with different sizes
and compared with traditional floating-point BP module. It
is shown that fixed-point based BP algorithm is faster than
traditional BP algorithm and it maintains a higher output im-
age quality. Proposed algorithm process images with 15.69%
speedup on average and average PSNR decrease for all images
is 0.1924 dB.

86

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

(a) Airport image

(b) San Diego image

Fig. 7: Output image comparison. Left: floating-point BP output, Right: fixed-point BP output

(a) Left: Floating-point BP module output (b) Left: Fixed-point BP module output

Fig. 8: Back projected ‘parking lot’ image from GOTCHA dataset

87

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

REFERENCES

[1] H. L. Li, J. Li, Y. X. Hou, L. Zhang, M. D. Xing, and Z. Bao, “Synthetic
aperture radar processing using a novel implementation of fast factorized
back-projection,” in IET International Radar Conference 2013, pp. 1–6,
April 2013.

[2] A. F. Yegulalp, “Fast backprojection algorithm for synthetic aperture
radar,” in Proceedings of the 1999 IEEE Radar Conference. Radar into
the Next Millennium (Cat. No.99CH36249), pp. 60–65, 1999.

[3] L. Zhang, H. l. Li, Z. j. Qiao, and Z. w. Xu, “A fast bp algorithm with
wavenumber spectrum fusion for high-resolution spotlight sar imaging,”
IEEE Geoscience and Remote Sensing Letters, vol. 11, pp. 1460–1464,
Sept 2014.

[4] L. Ran, Z. Liu, T. Li, R. Xie, and L. Zhang, “An adaptive fast factorized
back-projection algorithm with integrated target detection technique for
high-resolution and high-squint spotlight sar imagery,” IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 11, pp. 171–183, Jan 2018.

[5] L. M. H. Ulander, H. Hellsten, and G. Stenstrom, “Synthetic-aperture
radar processing using fast factorized back-projection,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 39, pp. 760–776, July
2003.

[6] E. J. Balster, F. A. Scarpino, A. M. Kordik, and K. L. Hill, “A simulator
for spotlight sar image formation,” in 2017 IEEE 7th Annual Computing
and Communication Workshop and Conference (CCWC), pp. 1–5, Jan
2017.

[7] B. Ge, L. Chen, D. An, and Z. Zhou, “Gpu-based ffbp algorithm
for high-resolution spotlight sar imaging,” in 2017 IEEE International
Conference on Signal Processing, Communications and Computing
(ICSPCC), pp. 1–5, Oct 2017.

[8] E. J. Balster, M. P. Hoffman, J. P. Skeans, and D. Fan, “Gpgpu
acceleration using opencl for a spotlight sar simulator,” in Proceedings
of the 5th International Workshop on OpenCL, IWOCL 2017, (New
York, NY, USA), pp. 1:1–1:5, ACM, 2017.

[9] F. Cholewa, M. Wielage, P. Pirsch, and H. Blume, “Synthetic aper-
ture radar with fast factorized backprojection: A scalable, platform
independent architecture for exhaustive fpga resource utilization,” in
International Conference on Radar Systems (Radar 2017), pp. 1–6, Oct
2017.

[10] D. Pritsker, “Efficient global back-projection on an fpga,” in 2015 IEEE
Radar Conference (RadarCon), pp. 0204–0209, May 2015.

[11] J. C. French and E. J. Balster, “A fast and accurate orthorectification
algorithm of aerial imagery using integer arithmetic,” IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing,
vol. 7, pp. 1826–1834, May 2014.

[12] O. Kosheleva, “Babylonian method of computing the square root: Justi-
fications based on fuzzy techniques and on computational complexity,”
in NAFIPS 2009 - 2009 Annual Meeting of the North American Fuzzy
Information Processing Society, pp. 1–6, June 2009.

88

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

		2018-10-19T10:54:23-0500
	Preflight Ticket Signature

