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Abstract— Fringe projection profilometry (FPP) is a popular 

optical 3-dimensional (3D) scanning method which can obtain an 

object’s 3D model at low cost, and achieve high resolution, fast speed 

and full-field measurements. Traditional FPP methods suffer from the 

ambiguity problem that only the wrapped phase information can be 

measured while the true phase information is required to obtain the 3D 

model of the scene. Various phase unwrapping methods were 

suggested to recover the wrapped phase in FPP methods. However, 

most of them will fail when the captured fringe images contain 

complex structures such as having discontinuities due to sudden jumps 

in object’s height profile. To solve this problem, we propose in this 

paper to embed the fringe pattern with a set of textural patterns to 

encode the period order of the true phase information. During the 

offline phase, a convolutional neural network (CNN) is trained to 

learn a set of filters that will be activated when they see the code 

patterns. When the encoded fringe image is captured, the modified 

morphological component analysis is first performed to extract the 

code pattern. It is then decoded by the trained CNN to estimate the K-

map, which contains the period order of the true phase information. 

Experimental results show that the proposed method can measure the 

3D profile of objects with abrupt jumps in height profile, where the 

conventional phase unwrapping algorithms often fail to perform. It 

also has a much higher computational efficiency due to the effective 

utilization of GPU by CNN. 

I. INTRODUCTION 

The fringe projection profilometry (FPP) has been widely used 

as a non-invasive three-dimensional (3D) scanning method. It 

allows a fast, high resolution, and full-field measurement of the 

3D model of objects. In a typical setup of FPP, a projector 

projects a sinusoidal fringe pattern onto the target object and a 

camera captures the deformed light pattern due to the object’s 

height profile. By analyzing the displacement of the fringe 

pattern on the object surface, the height profile of the object 

can be measured.  

There are two major classes of patterns used in FPP: 

aperiodic and periodic fringe patterns. The former requires the 

system to project a code pattern or a set of special code patterns 

unto the target object, such as the Gray code pattern and De 

Bruijn pattern. Although this kind of approaches can decode 

the object’s 3D information directly by absolute codification, 

it is susceptible to the interference from the global illumination.  

This paper focuses on the periodic FPP which offers a salient 

advantage of being resistant to the global illumination. By 

employing repeated fringe pattern (periodic sinusoid), the 

influence of distortion from global illumination and object’s 

texture can be mitigated. However only wrapped phase 

information can be obtained from any conventional FPP 

method. Therefore, additional phase unwrapping procedure 

needs to be performed to obtain the true phase required to 

reconstruct the 3D model of the object. By assuming that the 

Itoh smoothness condition [2] is satisfied, i.e., the true phase 

difference between two neighboring pixels is equal or less than 

π, conventional phase unwrapping methods simply integrate 

the phase differences of the wrapped phase to obtain the true 

phase. Unfortunately, this assumption does not always hold 

good when there are occlusions or sudden jumps in the object’s 

height profile. They lead to the situation that some fringes are 

missing from the camera’s view; the phase difference between 

neighboring pixels can thus be greater than 𝜋 . Hence any 

traditional phase unwrapping algorithm will fail in integrating 

the phase differences of the wrapped phase.  

Most recently, many methods were suggested to extend this 

phase unwrapping principle by using additional period order 

information, i.e., the number of 2𝜋 jumps in the phase angles 

that is hidden in the wrapped phase data. When the period order 

information is known, the true phase can be easily obtained. 

This period order information can be detected using multiple 

cameras [3, 4] or various coded patterns such as Gray code 

patterns [5] [6], phase code patterns [7], and temporal phase-

stepped patterns [8]. However, these approaches require 

additional fringe projections which slows down the acquisition 

process and thus increases the processing time to reconstruct 

the 3D model.  

Alternatively, to avoid additional fringe pattern projection, 

recent approaches embed the period order information into the 

fringe patterns. To encode the period order into the fringe 

pattern, the approaches uses patterns of multiple wavelength or 

multiple frequencies, multiple colors, random patterns, or 

structural markers, etc. Theoretically, no additional fringe 

patterns are projected onto the scene. However, some 

approaches [9-11] can only be used for fringe images of simple 

scenes, e.g. a scene contains only a single simple object. 

Furthermore, the accuracy of the estimated period order in 

these approaches is often low since the embedded code patterns 

can introduce additional distortions to the fringe image.  

Recently we proposed a novel approach which embeds to the 

fringe pattern some code patterns that indicate the true phase 

information [1]. More specifically, for each period of the fringe 

pattern, a unique codeword (period order number) is assigned 
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to a set of pixels and forms a code pattern. The fringe pattern 

is projected to the object and the captured fringe image is 

processed by a modified morphological component analysis 

(MMCA) method and the period order detection using 

discriminative dictionary learning method. The first is essential 

to separate the fringe pattern and code patterns and the latter is 

for the decoding of the coding patterns. Since the decoding 

process can be considered as classification and/or segmentation 

problem, the machine learning based approaches have a great 

potential application in FPP. In our previous work, we have 

employed dictionary learning approach in FPP method to assist 

a multi-level quality guided phase unwrapping algorithm to 

reconstruct the 3D model of the object [1]. However this 

approach is inefficient and less accurate due to the patch based 

operation. The recent trend in machine learning approach is 

deep learning [12] which has been successfully used for image 

classification [13, 14] and segmentation [15, 16]. To our 

knowledge, this approach has not been used in FPP before and 

more importantly it provides superior performance by 

integrating the feature extraction within the training process.  

While the performance of dictionary learning is in general 

satisfactory, further improvement can be achieved by a more 

comprehensive deep learning procedure. 

In this paper, we introduce a new way of decoding the coded 

pattern. This new strategy is based on the convolutional neural 

network (CNN) which is efficient and provides more accurate 

pixelwise prediction due to the massive training process. The 

proposed CNN can be considered as a simplified version of U-

Net architecture [15]. It has less dyadic scale decomposition 

layers and no additional skip connection is added to the 

network. It also works with few training patches and can 

decode the input coded pattern of any size as in [16]. More 

importantly, it yields a higher accuracy than our previous 

discriminative dictionary learning method.  

This paper is organized as follows. We first present in 

Section II an overview of the FPP method. The proposed period 

order estimation using the CNN is explained in Section III. 

Finally, the experimental results and conclusions are presented 

in Section IV and V, respectively.  

II. PROPOSED FPP FRAMEWORK 

For the proposed FPP method, we employ the three-step 

phase shifting profilometry (PSP) method to reconstruct the 3D 

model of the object from the captured fringe images. The three-

step PSP method requires to project to the object a set of three 

fringe patterns with constant phase offset of 2𝜋/3 regardless of 

the starting phase. They are projected unto the object 

sequentially and captured by a camera.  Given 𝑛 = {0,1,2}, the 

three captured images can be represented mathematically as,  

𝐼𝑛(𝑥, 𝑦) = 𝑎(𝑥, 𝑦) + 𝑏(x, y) cos (𝜙(𝑥, 𝑦) −
𝑛2𝜋

3
 ), (1) 

where 𝐼𝑛∈{0,1,2} are the three phase shifted fringe images; 𝑎 is 

the bias component; 𝑏 is the amplitude of the sinusoid; and 𝜙 

is the phase that carries the information of interest.  In (1), the 

three fringes have constant phase shift of 0,
2𝜋

3
, and 

4𝜋

3
 

respectively. In this case, the solutions for the phase 

information 𝜙 in (1) can be obtained from the fringe images as, 

�̂�(𝑥, 𝑦) = tan−1 [
√3(𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦))

2𝐼0(𝑥, 𝑦) − 𝐼1(𝑥, 𝑦) − 𝐼2(𝑥, 𝑦) 
]. (2) 

�̂� thus obtained from (2) is bounded from - 𝜋  to 𝜋 due to the 

tangent function. So the next step in the PSP process is to 

remove such 2𝜋 discontinuities. As mentioned, the basics of 

the unwrapping process as described by Itoh in [2] is to 

examine the phase differences between two neighboring pixels. 

In principle the phase unwrapping can be achieved by adding a 

multiple of 2𝜋 to the wrapped phase. It can be written as,  

𝜙(𝑥, 𝑦) = �̂�(𝑥, 𝑦) + 𝑘(𝑥, 𝑦)2𝜋. (3) 

where 𝑘 is an integer step function indicating the multiple of 

2𝜋. In (3), 𝑘 is the so-called K-Map which is unknown. In this 

paper, our goal is to accurately determine all 𝑘-values in the K-

Map for all �̂�. In [1, 10, 17], the estimated 𝑘(𝑥, 𝑦) is used to 

assist the phase unwrapping algorithm. Additional voting 

algorithm is employed to determine the consistency of the 

estimated absolute phase. On the other hand, our proposed 

method estimates the K-map (all 𝑘 -values) by performing 

pixelwise segmentation as in [18]. To get an accurate pixelwise 

K-map, an additional simple refinement method is performed. 

Details of this decoding stage will be explained in the next 

section. 

Recall our previous work in [1, 17], the key idea of the 

proposed method is to encode the period order 𝑘 in (3) with 

some unique textural patterns and embed them to the fringe 

pattern. Thus, the captured fringe image embedded with the 

textural code patterns can be formulated as,  

𝑋 = 𝑋1 + 𝑋2, (4) 

where 𝑋1 denotes the sinusoidal fringe pattern, i.e, the second 

term in (1), and 𝑋2 denotes the code patterns that encodes the 

k-value. It is defined by,  

𝑋2 = Θ{𝐾(𝜙)};    𝐾(𝜙) = ⌊
𝜙 + 𝜋

𝑁2𝜋
− 𝜋⌋, (5) 

where ⌊𝑥⌋ is the floor function that gives the closest integer 

number smaller than 𝑥 ;  Θ  is an encoding function which 

assigns a textual pattern for each 𝑁  consecutive 2𝜋  regions 

 
Fig. 1. 5 × 5 pixel binary textons (first column); the code pattern 
generated by the corresponding texton (second column); and the 

encoded fringe pattern with 𝑁 = 3 (third column).  
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having the same k-value. For instance, for 𝑁 = 1, the 𝑘-value 

is unique for each 2𝜋 region. Hence every 2𝜋 region will have 

a different textual pattern from the neighboring ones. In this 

paper, we construct the textural pattern by concatenating 

textons and embedding into three 2𝜋 regions, thus 𝑁 = 3. An 

example of the encoded fringe pattern image is depicted in Fig. 

1.  

The overall framework of the proposed FPP method is 

illustrated in Fig. 2. Both in the offline and online stages, the 

MMCA procedure is performed to separate the fringe pattern 

and codes patterns. We refer readers to our previous work in [1, 

17] for the detailed information about the MMCA procedure. 

In this paper, we focus on the period order or K-map estimation. 

In the offline stage, the pixelwise 𝑘 -values and the code 

patterns are known. A supervised CNN can be trained to learn 

a set of filters that will be activated when they see the code 

patterns. In the online stage, the trained CNN is used to decode 

K-map. The whole procedure consists of two steps: estimation 

of the K-Map regions using the proposed CNN and pixelwise 

K-Map refinement. They will be introduced in the next section.  

III. CNN BASED PHASE UNWRAPPING 

A. Network Architecture 

 In this section, we present the proposed CNN based phase 

unwrapping method. The network architecture of the proposed 

CNN is designed based on U-Net [15]. It is for segmenting the 

detected code patterns into different regions according to their 

representing k-values. It is similar to the segmentation problem 

in [18]. An example of the CNN output segmentation map is 

shown in Fig. 6 (second column). Recall that the embedded 

code patterns are specifically designed of having highly 

repetitive structure as shown in Fig. 1. They are also periodic 

and its local ‘order’ is repeated over a small region. By taking 

advantage of these properties, we propose a simplified version 

of the U-Net network as illustrated in Fig. 3. Specifically, we 

reduce the number of contracting (red arrows) and expansive 

path (green arrows) and remove the skip line connections. It is 

because the contracting feature map and the up-sampling map 

are not directly correlated as in the neuronal structure 

segmentation problem in [15]. In the figure, the basic block of 

this network is a 3x3 convolution (Conv) followed by batch 

normalization (BN) and a ReLU (blue box). All basic blocks 

have the same numbers of input and output except the first layer 

whose input is a single coded pattern image.  

In the contracting step, the 2-dimensional (2D) max pool 

with size 2x2 for dyadic scale decomposition is employed 

similar to that in the multiresolution wavelet decomposition. 

Each contracting path and expansive path consists of a four-

consecutive basic block which acts as a multichannel filter. To 

maintain the size of the resulting segmented map, the padding 

process is performed at each convolutional procedure. Hence, 

no additional extrapolation is required as in U-Net. In the final 

step, a 3x3 convolutional layer is added to produce the final 

segmentation map (orange arrow) which indicates the 

pixelwise k-value of the scene.  

B. Training Stage 

 To train the network, we employ the Adam algorithm of the 

PyTorch framework [19]. Since all convolutions are padded, 

the output segmentation map is of the same size as the input. 

One of the difficulties of training CNNs is to collect sufficient 

number of training samples. As it is time consuming to set up 

an FPP system to obtain the fringe image and the ground truth 

of the code patterns, it will take a long time to collect sufficient 

training samples. To have more training data, we favor small 

patches. The input code pattern patches and their 

MCA

CNN Evaluation

Phase Unwrapping 
using KMap

MCA

CNN Training

Conventional Phase 
Unwrapping

I

I

I

I

I

I ̂ 

̂ 

Training Stage

Evaluation Stage

Flat Surface

Actual scene

KMap Refinement

 
Fig. 2. Proposed FPP framework  

 

Table 1. % of segmentation correctness of the proposed CNN 
trained with various patch sizes (16, 32, and 64). 

 

Patch size 16 × 16 32 × 32 64 × 64 

% Correctness 24.51 91.49 93.28 

 

 
Fig. 4. Convergence rate of the proposed CNN 
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Fig. 3. Proposed CNN architecture  
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corresponding segmentation map patches are used for the 

training. To generate more training data, we employ the data 

augmentation method by slightly modifying the image patches 

that let them resemble the real image patches obtained in 

typical FPP system. The three types of modification are: 1) 

performing affine transformation to accommodate deformation 

of fringe due to object’s shape; 2) introducing two additional 

artifacts, namely additive Gaussian noise and Gaussian blur to 

accommodate artifacts due to lens’ distortion or the medium of 

transmission; and 3) adding and multiplying augmentation to 

accommodate various changes in intensity due to object’s 

texture.  

It is known that the receptive field size of neural networks 

correlates with the effective patch size to capture more context 

information for segmentation. Meanwhile, we prefer smaller 

patch size since it is not only simple but also gives more 

detailed segmentation on the boundary in particular.  By fixing 

the learning rate, we determine the effective patch size by 

comparing the loss of three patch sizes, i.e., 16, 32, and 64 (see 

Fig. 4). As illustrated in the figure, we can observe that the 

larger patch size can give faster and more stable convergence 

(black line).  

Table 1 shows a comparison of the segmentation correctness 

of the proposed CNN when training with various patch sizes. 

As shown in the table, the patch size of 16x16 can give only 

24.51% correct segmentation while the larger patch size, i.e., 

32x32 and 64x64, can give more than 91% correct 

segmentation. For this reason, a patch size of 64x64 is selected 

when training the proposed CNN. 

C. K-map estimation and Refinement 

 Although the output segmentation map given by the CNN is 

a good estimation of the regions of different code patterns, it 

still has not reached the pixelwise accuracy as required to 

generate the K-map. To further refine the CNN output 

segmentation map, we use the local information of the 

segmented regions to estimate the K-map as well as to improve 

the misclassified regions. It consists of two steps: region 

refinement and k-value estimation.   

For FPP, the boundary of the region can be determined by 

analyzing the discontinuity of the wrapped phase information 

as in [10]. Note that discontinuity is caused either by the 2𝜋 

discontinuities due to the fringe periodicity, which occurs only 

in the direction perpendicular to the fringe orientation, or by 

the abrupt surface change or occlusion, which can occur in any 

direction. By detecting these discontinuities, we can refine the 

region boundaries.  

After refining the region boundaries, we can estimate the 𝑘-

value of each region. Suppose there are 𝑁𝐶  regions, 
{𝑅𝑚}𝑚=1,...,𝑁𝐶

, the 𝑘 -value for each region 𝑅𝑚  can be 

determined by, 

𝐾(𝑅𝑚) = Θ−1{𝑋2(𝑅𝑚) }, (6) 

where Θ−1  is the decoding function for determining the 𝑘 -

value of a region. It is defined as follows:  

Θ−1(𝑋) = 𝑅𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡 (𝑉(𝐶𝑁𝑁(𝑋))) (7) 

where 𝑉(∙) is the voting function to determine the most popular 

label within the region 𝑅𝑚 ; 𝑅𝑒𝑓𝑖𝑛𝑒𝑚𝑒𝑛𝑡  is a function to 

ensure that the estimated 𝑘-value is valid; and 𝐶𝑁𝑁(𝑋) is the 

output of the proposed CNN for a given code pattern. More 

specifically, the refinement function is to ensure that the order 

of 𝑘-values are valid. For instance, if 𝑁 = 1, the refinement 

function is to ensure that 𝑘𝑅𝑖
< 𝑘𝑅𝑖+1

. On the other hand, if 

𝑁 = 2, ⌊
𝑘𝑅𝑖

3
⌋ = ⌊

𝑘𝑅𝑖+1

3
⌋ < ⌊

𝑘𝑅𝑖+2

3
⌋ = ⌊

𝑘𝑅𝑖+3

3
⌋ must be hold.  

IV. EXPERIMENT 

All experimental results were performed using a real FPP 

hardware setup, which contains a digital projector and a camera. 

The camera is equipped with a 22.2 x 14.8mm CMOS sensor 

and a 17-50mm lens. Both devices are placed at a distance 

700mm-1200mm from the target object and are connected to a 

personal computer with a 3.4GHz CPU and 16GB RAM for 

image processing. All programs were developed in the 

MATLAB and Python environment. More specifically, the 

CNN was built using the PyTorch framework with GPU 

acceleration.  

The first experiment is to verify the performance of the 

proposed CNN for segmenting the code patterns in the fringe 

    
Fig. 5. Planar surfaces with vivid textures (1st and 3rd columns) used for 

validation and their coded pattern images (2nd and 4th columns) obtained by 

the modified MCA [1]. 
 

     

     
 86.08%  94.91%   76.6%  95.02% 

Fig. 6. The segmentation results. (1st and 3rd column) LC-KSVD 
segmentation in [1]; (2nd and 4th column) proposed CNN decoding. The 

first row is the decoding result and the second row is the error map against 

the ground truth.  
 

 

 

Table 2. Comparison in terms of computation time of the proposed CNN 
and LC-KSVD [1] 

Method LC-KSVD 

Proposed 

method 

Amount of 

overlapping of the  
16x16 patches 

Nil   
8x8 

pixels 

12x12 

pixels 

Computation time 

(seconds) 
6.53 27.00 131.60 0.3283 

 

Table 3. Comparison in terms of SNR of the phase error for planar surface  

Number of periods 
PSP + 

Goldstein 
PSP-Speckle 

Proposed 

method 

Shiny pattern 21.73 16.58 26.55 

Flower pattern 20.53 20.88 23.12 

Checkered pattern 16.96 16.72 23.24 
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image. We used a flat board with size 500mm x 400mm as the 

target object in the experiment. Since the k-values of a flat 

board can be easily determined, it was used to train the 

proposed CNN as well as to verify its accuracy. To train the 

network, we first projected fringe patterns unto a white and a 

black board. Then the proposed CNN was trained by sampling 

30,000 patches of the captured fringe images with size 64x64 

pixels. They were randomly selected as the training data. The 

learning rate and batch size are set to be 0.001 and 128 

respectively. To verify the performance of the network, we 

used two flat boards with flower and checkered patterns as 

shown in the first and third columns of Fig. 5 respectively as 

the testing objects. The proposed algorithm is compared with a 

method we previously proposed based on the discriminative 

dictionary learning [1]. The segmentation result and error map 

are shown in the first and second row of Fig. 6 respectively. As 

shown in the figure, the proposed method can clearly segment 

the code patterns even when the object has vividly changing 

textures on its surface. Unlike the segmentation result obtained 

from using the discriminative dictionary learning, the proposed 

method can mitigate the distortion around the boundary; and is 

also more efficient due to the effective utilization of GPU by 

CNN. Table 2 shows the run time performance of the proposed 

method and LC-KSVD. As shown in the table, the proposed 

method can achieve much faster performance by more than 16 

times compared with the fastest performance of LC-KSVD (the 

non-overlapping case). It also does not suffer from the blocking 

effect as in LC-KSVD. 

In the second experiment, we compare the performance of 

the propose method against two traditional approaches 

including: three step phase shifting profilometry with the 

Goldstein phase unwrapping algorithm (PSP+Goldstein) [20, 

21], and PSP with speckles (PSP-Speckle) [10]. The 

PSP+Goldstein method is popularly used nowadays whereas 

the PSP-Speckle was newly proposed to tackle the phase 

unwrapping problem in FPP. They are used to reconstruct a flat 

board with shiny and textured surfaces as in Fig. 5. Table 3 

shows the comparison results in terms of SNR. They show that 

the proposed method can give a more accurate measurement 

compared to PSP+Goldstein and PSP-Speckle. It does not 

introduce additional distortions due to the embedded code 

patterns as the PSP-Speckle method.  

    
Fig. 7. The code patterns of a bottle and a glass in Fig. 9 obtained 

from the modified MCA (1st and 3rd columns) and the ground truth 
of the segmentation (2nd and 4th columns).[1] 

 

     

     
 43.30% 81.85% 47.28% 84.84% 
Fig. 8. The segmentation results of objects in Fig. 7. (1st and 3rd column) 

LC-KSVD segmentation in [1]; (2nd and 4th column) proposed 

segmentation. The first row is the segmentation result and the second row 
is the error map against the ground truth.  

 

 

 

 

         

          
                   Fig. 9. The testing objects (1st column), their ground truth 3D models (2nd column), and their 3D models reconstructed using PSP+Golstein (3rd 

column), PSP-Speckle (4th column), and the proposed algorithm (5th column)  
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In the third experiment, we compare the proposed method 

when measuring the 3D model of real-life objects with abrupt 

changes in their height profile. In the experiment, a cup and a 

bottle were used as shown in Fig. 9. Similar to the previous 

experiment, we first verify the CNN performance. Fig. 7 shows 

the extracted code pattern obtained from the modified MCA 

and the ground truth of the segmented regions determined 

manually. We used the pre-trained CNN from the previous 

experiment to determine the segmented regions. The 

experimental results are shown in Fig. 8. As shown in the figure, 

the proposed method can obtain more accurate segmentation 

(2nd and 4th column) than LC-KSVD (1st and 3rd column), even 

for the relatively small parts of the object, e.g., the handle of 

glass (4th column).  

Finally, we compare the performance of the proposed 

algorithm with the conventional PSP+Goldstein [20, 21] and 

PSP-Speckle [10] for measuring the real-life objects in Fig. 9. 

As illustrated in the figure, the PSP+Goldstein method 

generates incorrect depth information because when the object 

has abrupt changes in the height profile (as compared to the 

background), the Goldstein phase unwrapping algorithm 

cannot generate the unwrapped phase without additional period 

order information. Here we do not assume any physical marker 

is added as in the traditional approaches to aid the phase 

unwrapping. Although the PSP+Speckle method can recover 

the depth information, the embedded speckles introduce 

artifacts to the reconstructed 3D model as can be seen in                    

Fig. 9. Meanwhile, the proposed algorithm can measure the 3D 

model of the objects accurately and are similar to the ground 

truth.   

V. CONCLUSION 

This paper presented a novel CNN based phase unwrapping 

algorithm for FPP. CNN is employed to decode the period 

order information in the fringe pattern and solve the ambiguity 

problem when evaluating the true phase information in FPP. 

The proposed method first embeds the code patterns which 

carry the period order information in the fringe pattern. They 

are then extracted by the MMCA procedure and decoded by the 

proposed CNN. The new algorithm is highly efficient, which 

stems from the efficient utilization of GPU by the proposed 

CNN. Experimental results have demonstrated the superiority 

of the proposed algorithm over the conventional methods in 

terms of computation speed, robustness and accuracy.  
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