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Abstract—Phase retrieval finds applications in various optical
imaging modalities such as X-ray crystallography, holography,
frequency-domain optical-coherence tomography, etc.. The sen-
sors used in optical imaging can measure only the magnitudes of
incoming wavefronts and the phase information is not measured
directly. This necessitates developing appropriate phase retrieval
algorithms to reconstruct the object as phase contains most of
the structural information. The phase retrieval problem naturally
arises in the Fourier imaging context, where the measurement is
the Fourier magnitude/intensity spectrum. Reconstruction from
the Fourier intensity results in the autocorrelation and not the
signal. We therefore address the equivalent problem of signal re-
trieval from the autocorrelation. Since the signal autocorrelation
can be expressed as a convolution of the signal with its flipped
version, we propose to solve the phase retrieval problem within a
deconvolution framework. We consider a non-convex cost in two
vector variables, the signal and its flipped version. An alternating
minimization (Alt. Min.) strategy is employed to arrive at an
optimal estimate of the signal, given the autocorrelation. Due to
non-convexity of the cost function, the accuracy of the estimation
is critically dependent on the initialization. We establish that
the Alt. Min. iterates ensure that the cost is nonincreasing. For
the specific case of causal, delta-dominant signals, the proposed
framework results in exact reconstruction with an all zero-
phase initialization. We shall also consider the effect of random
initialization on the estimation accuracy.

I. INTRODUCTION

Phase retrieval is the problem of reconstructing a signal
from measurements of the Fourier magnitude spectrum alone.
Phase retrieval is encountered in numerous engineering and
scientific applications such as crystallography [1], hologra-
phy [2], electron microscopy [3], frequency-domain optical-
coherence tomography (FDOCT) [4], etc., where only the
intensities of the complex-valued signals are measured and the
phase information is lost. In most optical imaging applications,
the phase of the Fourier transform carries critical structural
information about the object, thus making phase retrieval
inevitable.

Since an infinite number of signals have the same magnitude
spectrum, the problem of phase retrieval is ill-posed. To
determine the signal that led to the magnitude measurements,
phase retrieval techniques make use of prior information about
the signal, such as its support, casuality, or sparsity, or rely on
over-sampled Fourier measurements. Before formally stating
the problem addressed in this paper, we give a brief overview
of the relevant literature on phase retrieval.

A. Related Work

The challenge of developing efficient, guaranteed methods
for phase retrieval has attracted substantial interest over the
past decade [5]. The initial techniques are due to Gerchberg
and Saxton [6] and Fienup [7], and are based on the idea
of error-reduction, where the estimate is alternately projected
between the measurement domain and the signal domain
applying appropriate constraints in respective domains. More
insights have been developed along this line of research by
considering convexity [8] and applying proximal optimization
strategies [9]. Since phase retrieval is an ill-posed problem, the
need to find a unique solution has promoted extensive study
of the class of minimum-phase signals. The well-known result
of Hilbert transform relation between the log-magnitude and
phase spectra associated with the minimum-phase sequences
[10] forms the foundation of the retrieval algorithms developed
in [11], [12]. Both iterative [13] and non-iterative [14]–[16]
techniques have been developed, which result in exact phase
retrieval for minimum-phase signal models. Deviating from
the notion of minimum phase, Shenoy et al. [17] introduced
a new class of signals, called causal, delta-dominant (CDD)
sequences, which allow for exact phase retrieval.

Recently, phase retrieval has been studied extensively by the
compressed sensing (CS) community. Notable CS based algo-
rithms are the compressive phase retrieval (CPR) algorithm
by Moravec et al. [18], and a greedy sparse phase retrieval
(GESPAR) algorithm by Shechtman et al. [19]. Most sparsity-
driven phase retrieval algorithms reconstruct the signal up to a
global phase factor [19], [20]. To ensure uniqueness, Ohlsson
and Eldar [21] established the conditions of sufficiency on
the measurements. Considering undersampled measurements,
Weller et al. [22] developed a multi-layered transform-domain
approach based on iterative optimization, which is used in
the reconstruction of sparse images. Lu and Vetterli [23]
addressed the problem of sparse spectral factorization, which
is a different perspective of the phase retrieval problem,
and perhaps the most closely related one to the framework
considered in this paper.

Other approaches to phase retrieval employ convex
relaxation, where phase retrieval is reformulated as a
rank-minimization problem followed by a relaxation to
nuclear-norm or trace minimization [24]–[26]. Semidefinite-
programming-based techniques have been popular within this
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framework [27], [28]. Non-convex formulations for phase
retrieval based on suitable initialization and gradient update
have also been developed [29], [30]. Most non-convex tech-
niques that do not resort to convex relaxations come under
the umbrella of alternating minimization algorithms. Netra-
palli et al. [31] studied the alternating projection schemes
and provided convergence guarantees under certain types of
initialization. Mukherjee and Seelamantula [32] addressed the
problem of sparse phase retrieval, which employs alternating
minimization based on modified Fienup iterations. Yang et
al. [33] proposed a method of alternating directions, which
considers CPR problem in an image restoration framework.
More recently, Mukherjee and Seelamantula [34] posed the
problem of phase retrieval in a variable splitting framework.

B. This Paper

The autocorrelation of a signal and its Fourier intensity
(power spectrum) are related by means of the Fourier trans-
form. The autocorrelation is inherently phase-blind, which
encourages one to recast the problem of phase retrieval in
spatial domain, deviating from the often employed Fourier
domain formulation. This idea has been studied popularly as
spectral factorization, and relies on the fundamental property
that the autocorrelation of a signal is the convolution of the
signal with its flipped version. In Section II, we develop
a novel deconvolution framework for the problem of phase
retrieval. The deconvolution considered here is necessarily a
blind-deconvolution and is therefore a non-convex problem.
The non-convexity is circumvented by considering two simpler
convex problems (Section III), which leads to an Alt. Min.
strategy. The accuracy of the estimate is critically dependent
on the initialization as the cost function has multiple local min-
ima. In particular, we investigate both all zero-phase initializa-
tion as well as random initialization. Further, we establish the
non-increasing property of the cost function (Section IV). The
class of causal, delta-dominant (CDD) signals admits a unique
solution up to a global phase factor. The proposed approach
exactly recovers the ground-truth signal in such scenarios with
an all-zero-phase initialization. As shown in this paper, certain
types of random initialization also result in accurate recovery
for CDD sequences.

II. PROBLEM FORMULATION

Signals are uniquely characterized by their Fourier magni-
tude and phase spectra. Fourier intensity measurements alone
are incomplete to reconstruct the underlying signal because
of the missing phase information. Combining different phase
spectra with the measurements of the magnitude spectrum
results in different signals. Hence, oversampling becomes
inevitable for successful phase retrieval. In this paper, we
consider oversampled Fourier measurements. The problem is
about recovering a signal x ∈ RN from the measurements
|FMx|2, where FM is constructed using the first N columns
of the M -point DFT (discrete Fourier transform) matrix,
M ≥ 2N − 1 and | · |2 is computed elementwise. Let
r ∈ R2N−1 denote the autocorrelation sequence of x, which

forms a Fourier pair with |FMx|2. The autocorrelation r is
defined as

r = x ∗ flip(x),

= x ∗Px,
(1)

where ∗ denotes the linear convolution operator and P =
(pij) ∈ RN×N with

pij =

{
1, i + j = N + 1

0, otherwise
(2)

denotes the flip operator. We rewrite (1) as

r = x ∗ y = Xy = Yx, (3)

where y = Px and X,Y ∈ R2N−1×N are the linear convo-
lution matrices constructed from x and y in RN , respectively.
Estimating the signal x using the measurement model in (3) is
a blind deconvolution problem, which is inherently ill-posed
as there exist infinitely many combinations of x and y that
give rise to the same r. Taking into account y = Px would
constrain the solution space, but there still exist an infinite
number of solutions. Consider the following deconvolution
formulation of the phase retrieval problem:

Find x,

such that r = x ∗ y,
where y = Px.

(4)

Let us cast (4) into an optimization framework using the
following least-squares cost function

minimize
x∈RN

∥∥∥r− x ∗ y
∥∥∥2,

subject to y = Px,

(5)

which can further be expressed in an unconstrained form as
follows:

minimize
x,y∈RN

∥∥∥r− x ∗ y
∥∥∥2 +

∥∥∥Px− y
∥∥∥2︸ ︷︷ ︸

F (x,y)

.
(6)

The blind deconvolution problem stated in (6) is non-convex
and hence, one cannot resort to standard convex optimization
methods to solve it.

III. ALT. MIN. OPTIMIZATION

We adopt an alternating minimization strategy to solve the
optimization problem in (6). In the first step, we fix x and
optimize F (x,y) over y (flipped signal optimization or f-step).
In the next step, F (x,y) is updated with the estimate of y and
then optimized over x (actual signal optimization or a-step).

Let x(k) denote the estimate obtained at the end of kth

iteration. In the f-step, F
(
x(k),y

)
is optimized with respect

to y to obtain y(k+1):

y(k+1) = arg min
y

∥∥∥r−X(k)y
∥∥∥2 +

∥∥∥Px(k) − y
∥∥∥2︸ ︷︷ ︸

F(x(k),y)

,
(7)
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Algorithm 1 Alt. Min. Deconvolution for Phase Retrieval

• Input: Autocorrelation measurement r ∈ R2N−1.
• Initialization: k = 0, x(0) ∈ RN , X(0) = Conv. Matrix

(
x(0)

)
, kmax.

• While (k ≤ kmax) do:

1) f-step: y(k+1) =
(
X(k)T

X(k) + I
)−1 (

X(k)T
r + Px(k)

)
.

2) Construct Y(k+1) = Conv. Matrix
(
y(k+1)

)
.

3) a-step: x(k+1) =
(
Y(k+1)T

Y(k+1) + I
)−1 (

Y(k+1)T
r + Py(k+1)

)
.

4) Update X(k+1) = Conv. Matrix
(
x(k+1)

)
.

5) k ← k + 1.
end while

• Output: x.

where X(k) ∈ R2N−1×N is a linear convolution matrix
constructed from x(k). The cost function F

(
x(k),y

)
is dif-

ferentiable with respect to y and has a stationary point ȳ,
corresponding to which

X(k)T (
r−X(k)ȳ

)
+ Px(k) − ȳ = 0. (8)

Therefore,

ȳ =
(
X(k)T

X(k) + I
)−1 (

X(k)T
r + Px(k)

)
,

= y(k+1),
(9)

which is used to update x(k+1) in the a-step as follows:

x(k+1) = arg min
x

F
(
x,y(k+1)

)
,

= arg min
x

∥∥∥r−Y(k+1)x
∥∥∥2 +

∥∥∥Px− y(k+1)
∥∥∥2,
(10)

where Y(k+1) ∈ R2N−1×N is a linear convolution matrix
constructed from y(k+1). The cost function F

(
x,y(k+1)

)
is

differentiable with respect to x and has a stationary point x̄,
corresponding to which

Y(k+1)T (
r−Y(k+1)x̄

)
−PT

(
Px̄− y(k+1)

)
= 0. (11)

Since PTP = I and PT = P, we have

x̄ =
(
Y(k+1)T

Y(k+1) + I
)−1 (

Y(k+1)T
r + Py(k+1)

)
,

= x(k+1).
(12)

The alternating minimization scheme is summarized in Algo-
rithm 1, which breaks a non-convex problem into two simpler
convex sub-problems.

A. Descent Property of the Cost Function

We next establish that, after every update of x(k) and y(k),
the cost F

(
x(k),y(k)

)
is a non-increasing function, which

ensures that, in practice, the iterations converge to a reasonable
solution. We first consider the behavior of the cost function F
for a fixed x(k), but with the flipped signal estimated (Lemma
1), then with a fixed y(k) and the actual signal estimated
(Lemma 2). Finally, we combine the two results to get the

desired descent property (Lemma 3).

Lemma 1. Let y(k+1) be the minimizer of F
(
x(k),y

)
after

(k+1)st iteration, for a fixed x(k). Then, F satisfies the descent
property

F
(
x(k),y(k+1)

)
≤ F

(
x(k),y(k)

)
. (13)

Proof: The Hessian of the cost function F
(
x(k),y

)
=∥∥∥r−X(k)y

∥∥∥2 +
∥∥∥Px(k) − y

∥∥∥2 is 2
(
X(k)T

X(k) + I
)

, which

is a positive-definite matrix. Consequently F
(
x(k),y

)
is

strictly convex and hence, F
(
x(k),y

)
has a unique mini-

mizer, which we denote as y(k+1). Thus, F
(
x(k),y(k+1)

)
≤

F
(
x(k),y(k)

)
.

Lemma 2. Let x(k+1) be the minimizer of F
(
x,y(k+1)

)
after

(k + 1)st iteration, for a fixed y(k+1). Then, F satisfies the
descent property

F
(
x(k+1),y(k+1)

)
≤ F

(
x(k),y(k+1)

)
. (14)

Proof: The Hessian of the cost function

F
(
x,y(k+1)

)
=
∥∥∥r − Y(k+1)x

∥∥∥2 +
∥∥∥Px − y(k+1)

∥∥∥2 is

2
(
Y(k+1)T

Y(k+1) + I
)

, which is a positive-definite matrix.

Consequently F
(
x,y(k+1)

)
is strictly convex and hence,

F
(
x,y(k+1)

)
has a unique minimizer, which we denote as

x(k+1). Thus, F
(
x(k+1),y(k+1)

)
≤ F

(
x(k),y(k+1)

)
.

Combining Lemmas 1 and 2 gives the following result
pertaining to the descent of the cost F after updating both
the flipped and the actual signals.

Lemma 3. Suppose y(k+1) and x(k+1) are the minimizers in
(7) and (10), respectively. After (k+1)st iteration of Algorithm
1,

F
(
x(k+1),y(k+1)

)
≤ F

(
x(k),y(k)

)
. (15)

While the cost F
(
x(k),y(k)

)
is guaranteed not to increase

with iterations and the algorithm is relatively simple, the non-
convexity of (6) in the variables x and y, and the presence of
local minima is a concern.
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Algorithm 2 Estimation of Zero-Phase Initialization [35]
• Input: Autocorrelation measurement r =

[r1−N , . . . , r−1, r0, r1, . . . , rN−1] ∈ R2N−1.
• Method:

1) Obtain the one-sided autocorrelation r̄ =
[r0, r1, . . . , rN−1] ∈ RN .

2) Construct the diagonal matrix ĨN×N =
diag{[1 2 2 . . . 2]} and compute the N -point DFT of
Ĩr̄: FĨr̄, where F denotes the N -point DFT matrix.

3) Compute the zero phase sequence: φ = [0, 0, . . . , 0].
4) Reconstruct x(0): F−1{R{FĨr̄} 1

2 ejφ}, where R{.}
takes the real part of its argument.

• Output: x(0).

B. Initialization

Due to non-convexity of the cost function, convergence
of the algorithm to the local minima is largely governed by
the initialization x(0). Employing random initialization for the
initial estimate of the actual signal leaves us uncertain about
the final estimate x∗, which could either be a local minimum or
one of the global minima (note that the cost function in general
has several global minima). For signals such as minimum-
phase signals and causal, delta-dominant (CDD) signals that
are retrievable uniquely up to a global phase factor from the
magnitude spectrum, this approach would give the unique
solution.

For initialization, we determine x(0) that corresponds to the
inverse Fourier transform of the measurements of the mag-
nitude (not intensity) spectrum (with zero-phase component),
which is obtained from the autocorrelation measurements [35].
We call such an estimate as zero-phase initialization and the
estimation procedure is summarized in Algorithm 2. In the
speech processing context, this is also referred to as square-
root autocorrelation.

IV. EXPERIMENTS AND RESULTS

We empirically demonstrate the usefulness of zero-phase
initialization as one of the ways to avoid bad initializations
that lead to local minima. Banking on the descent property of
the cost with zero-phase initialization, we analyze exactness
of phase retrieval for CDD signals. The CDD class of signals
has exact phase retrieval properties similar to minimum-phase
signals [17]. Finally, we explore both adversity and advantage
of deviating from the zero-phase initialization.

A. Effect of Zero-Phase Initialization

We start with the autocorrelation of a randomly generated
256-length sequence. An all-zero phase is used to begin the
iterations of the Alt. Min. scheme. The value of the objective
as a function of iterations, averaged over 100 independent trials
is shown in Fig 1. Empirically, the cost function was found to
decrease monotonically and attain a value close to zero. Thus,
we empirically show that zero-phase initialization succeeds in
recovering the sequence x, which is one of the global minima
of the deconvolution problem (6).
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Fig. 1: Convergence to a global minimum using zero-phase initialization.
The profile has been obtained by averaging over 100 independent Monte

Carlo trials.

To assess the performance of the algorithm on synthesized
data, we define the normalized mean-squared-error (NMSE)
metric. Let x̂ be an estimate of the ground-truth signal x. The
NMSE of the estimate is defined as

NMSE = 20 log10

(
‖x− x̂‖
‖x‖

)
dB. (16)

B. Reconstruction of CDD Sequences

Definition 1 (Causal, delta-dominant sequence [17]). A se-
quence z = {zn}n∈Z is said to be causal delta-dominant
(CDD) if zn = 0, for n < 0 and z0 >

∑
n>0

|zn|.

A CDD sequence need not have a rational transfer function
[17], unlike a minimum-phase sequence. However, there exist
sequences that are both CDD and minimum phase. Specifi-
cally, a finite-length CDD sequence is also a minimum-phase
sequence [17].

We now use zero-phase initialization to analyze the al-
ternating minimization procedure, when the autocorrelation
measurements of a CDD sequence are available. A 256-
length CDD sequence is randomly generated, which is used
to obtain the measurements. The experiment is repeated for
100 independent trials. Figs. 2(c) and (d) confirm that the
cost reduces to a small value. The NMSE plots are shown
in Figs. 2(a) and (b), which shows that the algorithm achieves
a reconstruction error of −57 dB. In Fig. 3, we demonstrate
signal reconstruction taking the specific example of a CDD
sequence shown in Fig. 3(a). The reconstructed sequence is
shown in Fig. 3(b). The proposed reconstruction is seen to
have an MSE of the order of magnitude 10−30. This shows
that CDD sequences are exactly reconstructed by the proposed
algorithm with zero-phase initialization.
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Fig. 2: Phase retrieval of a CDD sequence with zero-phase initialization. The values are averaged over 100 independent trials. (a) NMSE for 10 iterations;
(b) NMSE for 1000 iterations; (c) Cost function profile over 10 iterations; and (d) Cost function profile over 1000 iterations.

C. Deviating From the Zero-Phase Initialization

We investigate the significance of zero-phase initialization,
where we address two questions: i) Is there any other ini-
tialization that guarantees exact reconstruction of a CDD
sequence? and ii) Does zero-phase initialization ensure the best
convergence? Instead of combining zero-phase in Algorithm 2,
we consider a random phase sequence drawn from a uniform
distribution in the interval [− π

Q ,
π
Q ], Q ≥ 1 as the initial

estimate x(0). Fig. 4(a) shows five such distributions obtained
with different values of Q. We start with the measurements
corresponding to a 256-length CDD sequence. In Fig 4(b), we
have recorded the reconstruction performance, averaged over
100 independent trials for different Qs, which shows that for
Q ≥ 4, the proposed recovery method attains a reconstruction
error better than −40 dB. Also, superior reconstruction is
obtained as Q increases from 4 to 16, which implies, as the
distribution becomes narrower (concentrated near zero), the re-
construction performance improves, the best being for Q = 16.
Surprisingly, Q = 16 beats the zero-phase initialization with a
2-dB improvement. In order to investigate the behavior beyond
Q = 16, we consider phase drawn from the distribution with
parameter Q = 32. Fig. 4(c), shows that the performance with
Q = 32 approximates the zero-phase reconstruction and does
not improve over that obtained using Q = 16.

V. CONCLUSIONS

We considered the problem of phase retrieval from autocor-
relation measurements, which was cast into a blind deconvo-
lution framework. Due to non-convexity of the formulation,
we proposed an alternating minimization strategy, which gave
rise to simpler convex sub-problems. The ambiguity in con-
vergence to local and global minima was solved by resorting
to a specific initial estimate called zero-phase initialization.
Zero-phase estimate for the initialization proved fruitful in
arriving at one of the global minima. We considered the class
of CDD signals and showed exact phase retrieval using the
proposed algorithm based on zero-phase initialization. We also
considered random-phase initialization, specifically for the
reconstruction of CDD sequences, where the phase was chosen
from a uniform distribution concentrated about the origin. We
showed that exact reconstruction was possible with phase se-
quence drawn from highly concentrated distributions. We also
showed empirically the existence of a random initialization,
which performs better than the zero-phase initialization.

While the deconvolution perspective brings in new insights
into the phase retrieval problem, it also brings up several
interesting questions. For instance, the role of initialization
seems to be extremely crucial and designing a robust initial-
ization scheme that guarantees convergence to the ground-truth
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Fig. 3: Demonstration of exact reconstruction for a CDD sequence using zero-phase initialization: (a) Original sequence; (b) Reconstructed sequence; (c)
Original DFT magnitude; (d) Reconstructed DFT magnitude; (e) Original DFT phase; (f) Reconstructed DFT phase; and (g) Phase error.

signal is a topic for further research. Applying the proposed
algorithm to real-data will be considered separately. Further,

one could extend the proposed formalism to sparse signals and
modify the cost to include sparsity promoting regularizers –
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Fig. 4: Comparison of reconstruction performance for the CDD sequence using a random-phase sequence, drawn from a uniform distribution, for the initial
estimate. (a) Uniform distributions parameterized by Q; (b) Reconstruction performance corresponding to the distributions in Fig. 4(a) and zero-phase

initialization; and (c) Reconstruction performance for Q beyond 16 and its relation to zero-phase initialization.

these are all aspects that warrant further investigation.
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