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Abstract—Detecting deception is complicated for humans even
though it often happens in human communications. In con-
trast, machines can capture small features to achieve accurate
deception-detection, which is difficult for humans. Classifiers
based on supervised learning make it possible to analyze effective
features for deception-detection by giving positive and negative
samples of deception to the classifier. FastText is one accurate
classifier for a variety of classification problems, sentiment anal-
ysis, or the tagging of sentences, all of which use the distributed
representation of features. We constructed a deception detector
for dialogue utterances by giving labels of deception to FastText.
We also combined acoustic features for deception-detection and
analyzed the deception-detection results. The resultant detector
achieved significantly higher accuracy than deception-detection
by humans.

I. INTRODUCTION

Deception is an act that intentionally causes another a
person or persons to hold a false belief. This social behavior
is done by most of us on a daily basis, based on the inevitable
conflicts of interest in human interaction. When deception
happens, it violates the (usually tacit) agreement between the
two parties of information exchanges and thus represents a
misuse of and a threat to communication. As an example of
such a situation, imagine a speaker who profits from and a
listener who suffers a disadvantage in job interviews [1], [2],
[3]. If fraud can be accurately detected, we can avoid such
unreasonable disadvantages.

However, previous researchers argued that the detection
of deception by humans is difficult. Bond et al. carried
out a meta-analysis of research on more than 200 different
previous fraud detections and reported that the average correct
deception-detection rate by a person without special training
was about 54% [4]. Levine et al. experimentally detected de-
ception by changing the proportion of truth that was included
in messages presented to participants. Their results revealed
that accuracy depends on the specific portion of the presented
truth [5]. In other words, accuracy does not substantially
exceed a chance level even when people are striving to detect
deceptions. One various claim as to why we cannot detect
fraud is that humans suffer from biases. For example, we
tend to judge speech as valid regardless whether it is actually
true (i.e., truth-bias) [6]. Perhaps humans cannot recognize
specific phenomena during deception, and another cause of
our difficulty detecting fraud is that we often focus on clues
that are unrelated to deception.

In this study, we constructed a classifier that detects decep-
tion at a higher performance level than humans. Classifiers
based on supervised learning make it possible to analyze
effective features for deception-detection by giving positive
and negative samples of deception to them. FastText is one
accurate classifier for a variety of classification problems,
sentiment analysis, or tagging of sentences that use the dis-
tributed representation of features. We constructed a deception
detector for dialogue utterances by giving labels of deception
to FastText. We also combined acoustic features for deception-
detection and analyzed the deception-detection results. We
investigated the features that are effective for detection and
compared the performances of our system with humans.

II. RELATED WORK

Regarding fraud detection methods, there are reports that
claim that high detection performance can be obtained by
measuring human physiological responses using polygraphs,
fMRIs, etc. [7]. However, it is difficult to detect fraud during
free communication by connecting complicated instruments
to the identification target or extracting responses through a
particular question procedure. Therefore, in this research, we
discuss fraud detection using language and speech features that
do not require such special systems.

A previous study that correlated linguistic features with
deceptive behavior [8] classified deception and truthfulness
from real-world sources, criminal narratives, interrogations,
and legal testimony. Another study’s approach utilized the
non-verbal behavior data of users from social media to detect
multiple account identity deceptions [9]. Torres et al. [10]
performed a study of glottal waveform features for decep-
tive speech classification, and Zhou et al. [11] constructed
deception detection from speech signal using relevance vector
machine and non-linear dynamics features. But these studies
only used either verbal or non-verbal cues. Perez-Rosas et al.
[12] utilized both verbal and non-verbal features to build a
multimodal system to detect deception in real-life settings.

Some existing research on deception-detection has been
done by a statistical learning method with spoken language
from human conversations. Hirschberg et al. created the
Columbia/SRI/Colorado (CSC) Corpus of deceptive speech
for training and testing. It contains about seven hours of
speaker speech including deception with Standard American
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English [7]. Then based on this corpus, they constructed
deception detectors using the Ripper rule-induction classifier
that utilizes various features. A classifier based on acoustic,
prosodic, and speaker dependent features achieved the best
accuracy, which was improved by about 6% compared to
a chance level. Recently, Levitan et al. created a corpus
for English speakers who have both Standard English and
Mandarin as their mother tongue. They used RandomForest
as a discriminator and its acoustics and prosodic features
as well as the characteristics of the speakers and achieved
accuracy about 10% higher than a chance level [13]. But the
study did not perform deception-detection with a deep learning
framework.

Recently, Mendels et al. reported a fully connected neural
network that learned in a speech and bidirectional LSTM
that learned distributed expressions created by GloVe [14]
By combining models, the F1-scores reached 0.64: precision
= 0.67, recall = 0.61 [15]. However, most studies did not
analyze or compare their results with human performances.
In contrast, this study discusses the performance differences
between machines and humans.

III. PROPOSED METHOD

A. Features

A work by Amiriparian et al. argued that emotion scores
estimated from speech are effective for deception-detection
from a corpus that contains human-agent conversation [16].
Therefore, in this work, we used 384-dimensional acoustic
features from the INTERSPEECH 2009 (IS09) emotion recog-
nition challenge [17] using the openSMILE toolkit [18].

We also use word embedding as a lexical feature and
propose a method using fastText [19] architecture, whose
structure resembles the Continuous Bag-of-Words (CBOW)
model of Word2Vec [20], where the middle word is replaced
by a label. Thus it constructs word embedding using the
information of sentence labels and simultaneously learns the
weight of the classifier.

Figure 1 illustrates the fastText architecture with lexical
N n-gram features x1, ..., xN . These lexical features are then
embedded into e1, ..., eN and averaged to form hidden variable
m, which is in turn fed to a linear classifier. Hidden variable m
is a text representation that can be reused for other tasks. Here
the softmax function computes the probability distribution over
the predefined classes, where y is the output label.

Joulin et al. argued that this model achieved high per-
formance in such tasks of text classification as sentiment
analysis [19]. In our case, since we used a text classification
task for deception-detection, we expected to optimize the word
embedding learned by fastText and the deception corpus for
deception-detection.

B. Classifier

As a classifier, we utilized multilayer perceptron (MLP),
which is a kind of feedforward neural network that is com-
prised of multiple layers from Rosenblatt’s perceptron [21]. In

Fig. 1. Architecture of fastText

this work as an activation function, we used sigmoid function:

h (x) =
1

1 + exp (−x)
. (1)

The classifier’s hyperparameters are tuned by Bayesian
optimization, and the expected improvement is based on
maximizing the accuracy for the validation of the dataset
used in our experiment. In this experiment, the range of the
hyperparameters was the number of layers (2 to 5), the number
of units (128, 192, 256), and the dropout rate (0.1 to 0.5) of
the hidden layer of the multilayer perceptron.

We define n as the number of samples for K samples,
comparing output yn with given label tn. While the classifier
learns, we can calculate the loss function by binary cross
entropy:

E = −
k∑

n=1

{tn log yn + (1− tn) log(1− yn)}. (2)

The same classifier is used for both the acoustic and linguistic
features. The overall architecture of the proposed model is
shown in Fig. 2.

The classifier learns by minimizing loss. In our proposed
method, the loss (Eq. 2) is monitored during the learning,
which is stopped after three epochs according to the loss
decreasing.

IV. EXPERIMENTAL SET-UP

A. Dataset

TABLE I
DIALOG EXAMPLES FROM CSC CORPUS

Utterance Label
Well, yeah, there’s a chance. Truth

Uh, actually, I did well. Excellent. Deception
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Fig. 2. Overall architecture of proposed model

We used CSC Deceptive speech1 to make our experiment’s
dataset that originally consisted of about 32 hours of audio in-
terviews with 32 native speakers (16 males and 16 females) of
Standard American English. We utilized every utterance in the
interviews as a dataset for training and testing; since it is hard
to use every utterance because the dataset contains too many
short utterances, extracting useful features is difficult. Since
predicting utterance labels from extremely short utterances is
also difficult, we used utterances longer than five words.

We called our experiment, which used randomly selected
utterances, a random test. We chose this strategy to exclusively
focus on the relationships between the deception labels and
the features that can be extracted from a single utterance: in
other words, ignoring the effect of context-level features. In
this experiment, the test data were 100 utterances (truth 50
and deception 50), and the training data were 4000 utterances
(truth 2000 and deception 2000) randomly selected from
the entire speech in the corpus of the interviewees. As we
mentioned in the introduction, since there is truth-bias, we
adjusted the dataset’s ratio at a 50% chance level.

B. Human Participants
In this research, we also experimentally checked whether

humans and classifiers can detect deception. Our partici-
pants read and listened to deceptive and non-deceptive (truth)
speeches and then predicted whether those speeches were
deceptive or true.

The participants were non-native English speakers whose
English proficiency TOEIC scores were 730 or higher (Mean
= 861.7, SD = 117.7): six male graduate students, three from
Japan and three from other countries.

After our participants read and listened to an utterance from
our test data, they predicted its label. To identify the tendency
whether utterances are deceptive or true, participants freely
confirmed the utterances and the labels of the training data
before they took the test of deception detection.

1https://catalog.ldc.upenn.edu/LDC2013S09

C. Training of Proposed Classifier
We used 90% of the training data (1800 true and 1800 false

utterances) as the training set and 10% (200 true utterances
and 200 lies) of the data for tuning the parameters. Then we
predicted the labels of the test set.

In this experiment, we didn’t use the dialogue’s context in-
formation, and the judgments were only made from utterances.
Also, we used a Theano (version 0.9.0) backend Keras (version
1.2.1) for all the implementation of the classifiers. We used
batch size 10 and epoch number 10 for learning both models
and Adam as an optimization algorithm.

Based on the input’s language feature, a bag of bigrams was
input into the discriminator, and a 30-dimensional distributed
representation was constructed. Based on the acoustic features,
in the discriminator 10% of the units were randomly removed
at each layer of the middle layer and learning was performed.
For a combination of acoustic and lexical classifiers, we set the
weights for lexical classifier w1 = 0.6 and acoustic classifier
w2 = 0.4 based on the highest accuracy with the validation
set.

D. Metrics
Our evaluation used the following formula with deceptive

utterances as a positive example (P) and true utterances as a
negative example (N) as deception-detection metrics.

Accuracy =
TP + TN

FP + FN + TP + TN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

FN + TP
(5)

F −measure =
2 · Precision ·Recall

Precision+Recall
(6)

V. EXPERIMENT RESULTS AND DISCUSSION

Regarding our experimental results, Table II shows the
human deception-detection results and Table III shows the
detection results by the proposed classifier.

For experiments on human deception-detection, we calcu-
lated Fleiss’s Kappa coefficient to investigate the degree of
agreement of the predicted labels for utterances among exper-
imental participants. In general, when the Kappa coefficient
is 0.6 or more, the degree of coincidence of the prediction is
considered high, but in our experiment it was 0.16, causing
variations in the labels predicted by the experiment collabo-
rators. For Table II for the task of a chance level of 50%,
the average human accuracy performance was about 51%. A
one-sided binomial test on this accuracy showed no significant
difference compared with a chance level (p > 0.05).

For deception-detection with our proposed classifier, the
best accuracy was 10% higher than a chance level when we
combined a classifier using acoustic and lexical features. After
carrying out a one-sided binomial test on the detection results
obtained only by listening to the speech with the highest
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TABLE II
HUMAN PERFORMANCE

Accuracy Precision Recall F-measure
Speech 0.515 0.524 0.370 0.414

Text 0.510 0.515 0.387 0.425
Speech+Text 0.512 0.498 0.360 0.405

TABLE III
CLASSIFIER PERFORMANCE

Accuracy Precision Recall F-measure
Acoustic Feat. 0.580 0.577 0.600 0.588
Lexical Feat. 0.62 0.630 0.580 0.604

Acoustic + Lexical Feat. 0.640 0.667 0.560 0.609

accuracy in human detection, we confirmed that deception-
detection with significantly higher precision than humans
was possible by the proposed method (p < 0.05). We also
confirmed that the F-measure obtained by the proposed method
significantly outperformed humans.

We distributed surveys to our human participants after the
experiments. The majority answered that both the acoustic
and linguistic features were useful for detection; however,
we found no significant difference among any experiment
conditions (Table II). Some participants said that they made
their decisions based on such fillers as “um” or “uh” as well
as types of emphasis words, stuttering, intonation, power, and
pitch. However, our results indicate that these criteria were
not useful. Note that since our experiment was conducted with
non-native speakers, we need to verify this result with native
speakers.

VI. CONCLUSIONS

We conducted a comparative verification of deception-
detection ability on interview-style speech with humans and
statistical learning methods. Our results suggest that the human
ability to detect deception is approximately chance level
regardless whether a dialogue context was included. Our result
also suggests that humans tend to predict an utterance to be
true regardless of an actual label. We also confirmed that
classifiers by the statistical learning method are more accurate
than humans and a chance level. In addition, the classifier used
word embeddings and acoustic features that can outperform
a scheme that uses only one feature. In the future, we will
construct a more accurate classifier based on the history of a
conversation. We will also conduct a deception-detection with
native English speakers.
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