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Abstract—We developed a label-designing and restoration
method for end-to-end automatic speech recognition based on
connectionist temporal classification (CTC). With an end-to-end
speech-recognition system including thousands of output labels
such as words or characters, it is difficult to train a robust model
because of data sparsity. With our proposed method, characters
with less training data are estimated using the context of a
language model rather than the acoustic features. Our method
involves two steps. First, we train acoustic models using 70 class
labels instead of thousands of low-frequency labels. Second, the
class labels are restored to the original labels by using a weighted
finite state transducer and n-gram language model. We applied
the proposed method to a Japanese end-to-end automatic speech-
recognition system including labels of over 3,000 characters.
Experimental results indicate that the word error rate relatively
improved with our method by a maximum of 15.5% compared
with a conventional CTC-based method and is comparable to
state-of-the-art hybrid DNN methods.

Index Terms—end-to-end ASR, acoustic modeling, connection-
ist temporal classification, long short-term memory

I. INTRODUCTION

Automatic speech recognition (ASR) technology has been
improved using hidden Markov models (HMMs) and deep
neural networks (DNNs). The hybrid HMM-DNN system uses
the states of HMMs to handle the difference in the sequence
length between acoustic features and output labels. Typically,
three succeeding states of these HMMs are associated with
phonemes. The phonemes are mapped to words using a pro-
nunciation dictionary. On the other hand, the acoustic model of
the end-to-end ASR system can train the relationship between
acoustic features and characters or words directly. In contrast
to a state transition model in HMMs, connectionist temporal
classification (CTC) [1] absorbs the difference between the
sequence of acoustic features and the output labels by using
a blank label. CTC typically uses long short-term memory
(LSTM) [2] or bi-directional LSTM (BLSTM) [3], [4]. The
performance of end-to-end ASR systems are comparable with
that of HMM-DNN hybrid systems using CTC [5]–[15].

However, it is difficult to train end-to-end ASR systems
handling thousands of output labels. If we use an acoustic
model that involves basic units such as words or thousands of
unique characters, we have to solve the data-sparsity problem.
For example, we have to train 3,000 and 6,000 output labels
for Japanese and Chinese, respectively, while we only have
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Fig. 1. Overview of model using low-frequency character clustering

to train at most about 100 output labels for English. When
the number of output labels is large, the number of training
samples of many labels is insufficient. To solve this problem,
we believe it is necessary to increase the number of training
samples for each label by redesigning the label set.

Studies on redefining the output labels have been conducted
[13], [16]. These studies aimed at examining appropriate
character delimiters for robustly representing acoustic features.
However, since they increased the number of output labels,
the data-sparsity problem was not solved. To increase the
number of training samples for each label, conventional sys-
tems typically use phoneme or sub-phoneme units. The system
developed by Audhkhasi et al. [14] uses a model initialized
using a phoneme-based model to train a word-based model.
The system developed by Kanda et al. [15] uses syllables as
output labels. However, few studies have been conducted for
solving the data-sparsity problem without using phonemes or
sub-phoneme units.

In this paper, we propose a label-designing and restoration
method for end-to-end speech recognition using class-based
labels for acoustic modeling in CTC. An overview of the
model using the proposed method is shown in Fig. 1. Our
system consists of two models. One is a character-based
acoustic model including class labels. This acoustic model
replaces thousands of rare labels with 70 class labels. This
clustering is expected to improve robustness similar to state
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tying of HMMs [17]. Unlike other syllable-based methods,
we apply syllable-based approximate clustering for only low-
frequency characters. The other is a language model including
an additional weighted finite-state transducer (WFST) [18] that
restores the class labels to their original labels. The WFST
expands the lattice including class labels into a lattice of only
original labels using context.

The proposed method correctly estimates these low-
frequency characters by restoration using the above language
model. Our experiments involving Japanese TV program
showed that a Japanese-character-based system using our
method is superior to a current end-to-end ASR system [9]
and that the word error rate (WER) of our method is on par
with hybrid DNN methods.

II. CONNECTIONIST TEMPORAL CLASSIFICATION (CTC)
CTC is an approach to map the acoustic feature sequence

directly to symbols such as characters and words. The posteri-
ori of the output string c = {c1, c2, ..., cT } for input sequence
X is expressed by the following equation.

P(c|X) =
T∏

t=1

uct
t , (1)

where uct
t is the output score estimated by the probability of

ct at time t. CTC introduces a blank symbol ø to absorb the
difference in sequence length among inputs and outputs. The
symbol ø is estimated to fill frames between characters. For
example, “AAøBøCC” and “AøBBBøCø” are mapped to the
same symbols sequence “ABC”. Consequently, the posterior
probability of the output label series z is expressed by the
following equation.

P(z|X) =
∑

c∈Φ(z)

P(c|X), (2)

where Φ(z) is all series whose output label sequence is z, the
element c is mapped to the same z. CTC trains the connection
weight W to minimizes the error function E(W ).

E(W ) = −
∑
n∈N

log P(zn|Xn), (3)

where (Xn, zn) is a pair of input and output series for given
sentence n, which is the element of the training data N .

III. LABEL-DESIGNING AND RESTORATION METHOD FOR
END-TO-END ASR SYSTEM

Our method converts low-frequency characters to class
labels and restores them to original characters using context.
In this paper, the acoustic model is trained using a newly
designed label set instead of labels with a small number of
training samples. The designed label set, therefore, consists of
labels with sufficient training samples and class labels. Since
the number of labels in the acoustic model is reduced using
class labels, the number of training samples per label increases.
When decoding, class labels are restored from a lattice hypoth-
esis including the class labels to original labels using a WFST.
Our WFST contains the mapping from characters including
class labels to words.

A. Label designing for low-frequency characters

Low-frequency characters are classified into classes based
on syllable-based expressions.

However, there are two problems when clustering kanji
(Chinese-based characters used in Japanese) based on sylla-
bles. The first problem is that one kanji can contain a sequence
of consecutive syllables. For example, the kanji ‘寿’ consists
of four connected syllables, “ko” “to” “bu” “ki”. In this paper,
for the sake of simplicity, it is divided into classes for each
first syllable of each character. The second problem is that
one Japanese kanji can have many readings. For example, the
kanji ‘生’ has more than ten completely different readings
such as “nama”, “sei”, and “ki”. In this paper, when clustering
kanji with multiple readings, we use the typical reading of
that character. The number of classes is 70, which is the total
number of syllables.

B. Restoration to original labels

The acoustic model adopting the class model outputs tokens
including class labels. To output a recognition hypothesis, it is
necessary to restore the class labels to the original characters.
We restore class labels to low-frequency characters by using
a trusted language model. With only the training data of the
acoustic model, it is difficult to learn all labels robustly. On the
other hand, a highly reliable language model can be trained
because the training data of the language model are easier to
collect than those of the acoustic model. We believe that it is
more reliable to estimate low-frequency characters by using a
language model instead of a NN.

We estimate low-frequency characters by using WFST de-
coding that extends Miao et al.’s method [9]. A WFST is a
converter that transitions information by writing pairs of input
and output signals and their weights. In this study, we decoded
by synthesizing three transducers, i.e., from CTC label to
character (T ), character to word (L), and word to sentence
(G). Transducer composition S is expressed as

S = T ◦min(det(L ◦G)) (4)

With our proposed method, we restore the original label
from the class label by transducer L, which converts the token
sequence including the class labels estimated by transducer
T into a word containing the original character. The FST of
the word “演奏会” (“concert”) when training by assigning the
kanji ‘奏’ to class label ”<class15>” is shown in Fig. 2.

The original label is determined by the posterior of the class
label and the n-gram described by transducer G.

IV. EXPERIMENTS

A. Setup

We used NHK’s informative TV show “Hirumae Hotto”
consisting of about 32 k words as evaluation data. The
data consists of clean utterances, including read speech of
news manuscripts, and noisy utterances, including background
music or field noise. The noisy utterances contain spontaneous
speech. For our end-to-end ASR experiments, the baseline
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Fig. 2. Example of restoration using FST
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Fig. 3. Cumulative frequency distribution of labels in training data

used the EESEN [9] framework based on the Kaldi toolkit
[19], which we modified to enable Japanese-character output.
We trained a CTC-based BLSTM for the acoustic model
using NHK broadcast programs and their closed-captions as
training data. The CTC model was trained using 712 hours
of training data on 4-layer BLSTM. The BLSTM contains
320 memory cells at each layer for forward and backward.
We adopted a “newbob” annealing schedule. This scheduling
reduces the learning rate by half if the cross-varidation frame
accuracy did not increase by more than 0.5 compared with
the previous epoch. The initial value of the learning rate was
set to 5.0× 10−5. We applied low-rank matrix decomposition
[20], [21] to affine transformation layer at the output end of
the network. The NN that outputs Japanese characters has
many parameters due to its large number of labels. This matrix
decomposition is aimed at reducing learning time. We replaced
the affine transform layer full-rank matrix of 640 × V , with
two matrices, one of 640 × 320 and another of 320 × V ,
where V is the output label size. We used 40-dimentional
filter-bank features together with their first and second-order
delta derivatives as input acoustic features. We trained using
a WFST language model as a 3-gram. The language model
was estimated from a total of 620 million words in the
NHK news manuscripts and closed-captions with a 200-k-
word vocabulary. The output labels of the network consist
of 1,500 high-frequency characters and 70 class labels. In
our training data, the top 1,500 high-frequency labels covered
99% of the data (Fig. 3). The remaining 1,977 characters were
assigned to 70 class labels.

We used the following model as the baseline:
baseline: The model based on Miao et al.’s method [9]

trained with the above parameters. The class
labels are not used.

In order to compare with the clustering criterion in Sec.III-A,
we proposed two additional clustering criteria. We compared
the following three clustering models with our proposed
method:

class (all): The model trained with our method that
assigns all the remaining characters to one
class label.

class (random): The model trained with our method that
randomly assigns the selected labels to 70
class labels.

class (reading): The model trained with our method that
assigns the selected labels to 70 class la-
bels based on their reading, as mentioned in
Sec.III-A.

We also compared two conventional models based on NNs:
HMM-DNN: The model trained with HMM-DNN cross-

entropy training based on Moriya et al.’s
method [22].

TDNN: The model trained with a time-delay neural
network (TDNN) [23] based on Kaldi recipe.

We used the default parameters in these conventional mod-
els. The training data of the acoustic and language models
were the same as those of the baseline.

B. Results

1) Difference in clustering methods:
Table I compares the WERs (%) of the three clustering
models trained with the proposed method with their number
of labels in the“#Labels” column. The results of HMM-DNN
and TDNN are also shown in the same manner. The results
indicate that these class models improved the WER, regardless
of clustering criteria. This is because smoothing of the output
score of the NN by introducing class labels. By smoothing the
score, correct hypotheses remain as candidates for rescore.
If a hypothesis remains as the output of an NN, we can
output it using the rescore of the language model. There
was significant improvement in the “class (reading)” model.
This clustering model exceeded the WERs of the HMM-DNN
and TDNN models. Performance improved using 70 classes
compared to using one class. This is probably because the
smaller number of characters belonging to each class, the
higher the prediction performance of the language model.
However, in the case of the same class number, there was no
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TABLE I
PERFORMANCE OF VARIOUS CLUSTERING MODELS WITH OUR PROPOSED

METHOD, AND COMPARISON WITH RESULTS PRESENTED IN PREVIOUS
WORK

Model # of Labels WER
baseline 3, 477 14.2
class (all) 1, 501 13.1
class (random) 1, 570 12.2
class (reading) 1, 570 12.0
HMM-DNN - 12.8
TDNN - 12.7

TABLE II
NUMBER OF WORDS THAT CONTAIN LOW-FREQUENCY CHARACTERS IN

RECOGNITION HYPOTHESES

Model #Words
baseline 1, 359
class (reading) 662
reference 665

significant difference in WER among the clustering models.
This is thought due to approximation of clustering. In the
“class (reading)” model, since clustering is based on the first
syllable of the representative reading of each character, the
variance in the acoustic-feature quantity for each class is not
small.

2) Difference in recognition hypotheses:
Next, we compared the speech-recognition hypotheses. Ta-

ble II shows the number of words that contain low-frequency
characters in the recognition hypotheses. In the baseline, the
number of low-frequency characters included in the recogni-
tion hypotheses was 694 more than the reference. The baseline
model unnecessarily output words containing low-frequency
characters. From this result, we assume that the acoustic
features of low-frequency characters are not correctly learned.

Tables III and IV list examples of the recognition hypotheses
of the baseline and class (reading) models. Bold letters indicate
low-frequency characters.

As shown in Table III, unnecessary low-frequency char-
acters were inserted in the baseline hypothesis. The noise
portion after the utterance was erroneously recognized as
words including a low-frequency character ‘ぇ’. Such insertion
errors of low-frequency characters in the non-speech part were
observed in many places. We assume this is one of the causes
of WER degradation with the baseline. With the class (reading)
model trained with our proposed method, on the other hand,
this unnecessary output was suppressed. This indicates that
the acoustic features of low-frequency characters are properly
learned. When estimating the recognition hypothesis some-
where in the non-speech segment, the acoustic feature of noise
is erroneously estimated as a low-frequency character that was
not well learned.

As shown in Table IV, a low-frequency character ‘瓶’ was
correctly restored with the class (reading) model trained with
our proposed method. By applying a language model, we
correctly recognized the characters with insufficient learning
data. This indicates that labels with which it is difficult to

TABLE III
EXAMPLE1: RECOGNITION HYPOTHESES

Model Hypotheses
reference 祭り と 呼ば れ て い ます　
baseline 祭り と 呼ば れ て い ます ねぇ ねぇ ねぇ
class (reading) 祭り と 呼ば れ て い ます

TABLE IV
EXAMPLE2: RECOGNITION HYPOTHESES

Model Hypotheses
reference そして 花瓶 に 生け られ た　
baseline そして 鼻 に 抜け られ た
class (reading) そして 花瓶 に 生け られ た

learn acoustic features can be estimated correctly using a
language model. From these results, the proposed method
not only suppresses unnecessary generation of low-frequency
characters but also restores low-frequency characters to correct
positions depending on contexts.

V. CONCLUSION

We proposed a label-designing and restoration method for
tasks with many output labels in end-to-end speech recogni-
tion. Although CTC-based end-to-end ASR systems handling
thousands of output labels cause data-sparsity problems, we
solved this problem by replacing low-frequency labels with
class labels. Our method reduces the occurrence of two types
of misrecognition errors insertion errors of low-frequency
characters and the other is substitution errors of low-frequency
characters, which are suppressed using a language model. The
trained models are considered to be smoothed by introducing
class labels. We experimentally showed that the discriminative
ability degraded by smoothing is restored using the WFST of
the proposed method. It is considered that the paradigm of the
class-label smoothing is similar to the state tying of an HMMs.
Experimental results indicate that our method is on a par
with conventional state-based methods. Our method improves
the WER even if the criterion of clustering is not strict on
pronunciation. The best criterion of our method was syllable-
based clustering. However, since approximation is used to
assign each kanji to a syllable-based class, a large performance
difference from random clustering was not observed. Future
work will involve data-oriented label designing for more
appropriate clustering.
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