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Abstract—In this study, we propose efficient the number of
computational iteration method of MNMF for speech recogni-
tion. The proposed method initializes and estimates the MNMF
algorithm with respect to the estimated spatial correlation matrix
reducing the number of iteration of update algorithm. This
time, mask emphasis via Expectation Maximization algorithm
is used for estimation of a spatial correlation matrix. As an-
other method, we propose a computational complexity reduction
method via decimating update of the spatial correlation matrixH.
The experimental result indicates that our method reduced
the computational complexity of MNMF. It shows that the
performance of the conventional MNMF was maintained and
the computational complexity could be reduced.

I. INTRODUCTION

The use of voice-activated electronic devices has recently
become widespread. However, voice recognition deteriorates
in the presence of background noise, because sound, other than
the target sound, enters the microphone. Research regarding
sound source separation technology is underway to solve this
problem.

In particular, nonnegative matrix factorization (NMF)[1] is a
method that decomposes and analyses a matrix of nonnegative
values. This can be applied to data such as sound, images, and
sentences. In the field of acoustics, a multichannel extension
has been proposed to consider spatial information of sound
sources (MNMF)[2]. However, the computational complexity
of MNMF increases with an increasing number of channels
and it requires a long time to separate. In this study, we
evaluate MNMF for speech recognition and propose a method
for reducing computational complexity using an estimated
spatial correlation matrix. In addition, we conducted a speech
recognition experiment to demonstrate the effectiveness of this
method.

II. MNMF ALGORITHM

MNMF decomposes an observation matrix X into four
matrices (H, Z, T, and V) to realize source separation without
prior learning. MNMF clusters spectral bases into L sources
using spatial information[2].

A. Formuration
An observation vector was defined as x̃ = [x̃1, · · · , x̃M ]⊤,

M the number of channels and ⊤ the transpose of the matrix.

Fig. 1. Example of a decomposed matrix using MNMF (Gray denotes complex
values)

Here, x̃m is the complex spectrum of the short-time Fourier
transform at the mth microphone. At the frequency bin i (1 ≤
i ≤ I) and the time frame j (1 ≤ j ≤ J), an observation
matrix X is represented as

Xij = x̃mx̃H
m =

 |x̃1|2 · · · x̃1x̃
∗
M

...
. . .

...
x̃M x̃∗

1 · · · |x̃M |2

 (1)

where ∗ denotes the complex conjugate and H the Hermitian
transpose. Matrix X is a hierarchical Hermitian positive semi-
definite matrix whose elements are M×M complex matrices.
Fig.1 shows that this matrix X is decomposed into four
matrices. The basis matrix T(∈ RI×K) consists of K bases,
and the activation matrix V(∈ RK×J) of the activation of
each basis. The spatial correlation matrix H indicates the
spatial information of sources of the sound, and the latent
variable matrix Z(∈ RL×K) associates the spatial information
of the sources of the sound with each basis. Similar to X,
the matrix H is a hierarchical Hermitian positive semi-definite
matrix whose elements are M × M complex matrices. This
decomposition is defined as

X ≈ X̂ = (HZ ◦T)V (2)

where, ◦ denotes the Hadamard product. The right-hand side
of the Eq.2 can be represented as

X̂ij =
K∑

k=1

(
L∑

l=1

Hilzlk

)
tikvkj (3)

Ideally, X̂ whose elements are X̂ij matches with X. However,
in general, an error causes a discrepancy between them. To
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calculate the difference between them, the Itakura–Saito (IS)
divergence DIS(X, X̂) is employed as

DIS(Xij , X̂ij) = tr(XijX̂
−1
ij )− log detXijX̂

−1
ij −M

where tr(·) is the trace of a matrix.

III. PROPOSED METHOD

In this study, we propose a method to set up the number
of computational iterations efficiently using spatial correlation
matrix estimation and a method to decimate updates of the
spatial correlation matrix, and subsequently reduced computa-
tional complexity.

A. Efficient iteration setting

In the first method, separation performance improves when
using an initial value that estimates the spatial information in
advance with regard to the spatial correlation matrix[3], [4].
Therefore, the conventional MNMF required approximately
500 updates to obtain the sufficient separation performance.
However, performance is considered satisfactory with efficient
iteration via setting the initial value to the spatial correlation
matrix. Here, we improve the accuracy of the mask via setting
the initial value of the mask emphasis using the Expectation
Maximization algorithm (EM algorithm) by Nakatani et al. [5]
as the mask of the target sound and noise generated by the
binary mask. The steering vector (SV) of the target sound
was estimated from the emphasized mask and the spatial
correlation matrix was obtained and used as the initial value
of MNMF.

B. Decimating update spatial correlation matrix

The second method estimates the spatial correlation
matrix beforehand. It reducing computational complexity by
decimating updates of the matrix H, which are expected to
require the longest update times among the four matrices. The
algorithm is shown in Fig.2.

C. Binary Mask

The binary mask[6] is a method of performing sound
source separation by masking the time frequency based on the
arrival time difference of each sound source. For example, the
phase difference between the microphones is zero when the
target sound source is directed forward. The phase difference
becomes large when the noise arrives from zero degrees. The
source of the target sound can be emphasized by masking the
power of the time frequency bin where the phase difference
between the microphones is away from zero. The mask M is
set using a threshold value as follows:

Wω, t =

{
ϵ if |θω, t| > θc,
1 if |θω, t| ≤ θc,

where, ω is a frequency bin, t the time frame, ϵ a sufficiently
small constant, θω, t the phase difference of a time frequency
bin, and θϵ is a threshold value predetermined in advance.

Fig. 2. Algorithm of reducing computational complexity

D. Mask Emphasis Based on EM Algorithm

Clustering of mask estimation is performed using complex
GMM (CGMM)[7]. In CGMM, the observation signal vector
x̃ij has a complex Gaussian distribution. It is modelled as a
mixture distribution

P (x̃ij ; θ) =
∑
n

w
(n)
j Nc(x̃ij ; 0, σ

(n)
i,j B

(n)
j ) (4)

where n is an index that distinguishes the noise class (n = v)
from the speech + noise class (n = x+ v), Nc(x̃;µ,Σ) is the
mean µ, the complex Gaussian distribution of the covariance
matrix Σ, and w

(n)
j is the mixture ratio. It is assumed that the

covariance dispersion matrix of each class can be decomposed
into the product of the scalar value σ

(n)
i,j and the matrix

B
(n)
j . where, θ represents a set of all model parameters. The

maximum likelihood estimation is made the model parameters
of CGMM based on the EM algorithm using the observation
signal vector x̃ij at all times for each frequency f . The
following E-step and M-step were repeatedly applied to get
an estimate.

1) E-step: Based on the estimated values of the model pa-
rameters of the CGMM obtained in M-step, the posterior
probability that each time frequency point belongs to
each class n is calculated as follows:

M̂
(n)
i,j =

ŵ
(n)
j Nc(x̃ij ; 0, σ̂

(n)
i,j B̂

(n)
j )∑

n′ ŵ
(n′)
j Nc(x̃ij ; 0, σ̂

(n′)
i,j B̂

(n′)
j )

(5)

the estimated value M̂
(n)
i,j of the mask is updated.

2) M-step: Based on the estimated value M̂
(n)
i,j of the mask

obtained in the E-step, the estimated value of the model
parameter of CGMM is updated as follows:

B̂
(n)
j =

1∑
t M̂

(n)
i,j

∑
t

M̂i,j

x̃ijx̃
H
ij

σ̂
(n)
i,j

(6)
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σ̂
(n)
i,j =

1

N
x̃H
ij (B̂

(n)
j )−1x̃ij (7)

ŵ
(n)
j =

∑
t M̂

(n)
i,j

T
(8)

where, N represents the number of microphones.
In the proposed method,we use the M i,j obtained by E-step.

E. SV Estimation Based on Binary Mask

Under the assumption that the target speech and noise are
uncorrelated when the spatial correlation matrix R

(x+v)
j of the

observation signal and the spatial correlation matrix R
(v)
j of

the noise are known, the spatial correlation matrix R
(x)
j of the

target speech can be obtained as follows:

R
(x)
j = R

(x+v)
j −R

(v)
j (9)

Also, each spatial correlation matrix using a mask can be
obtained as follows:

R
(x+v)
j =

1

J

J∑
j=1

x̃ijx̃
H
ij (10)

R
(v)
j =

1∑J
j=1 M

(v)
t,v

J∑
j=1

M
(v)
t,v x̃ijx̃

H
ij (11)

where, M (v)
t,v is a mask indicating whether each time frequency

point belongs to noise. SV can be approximated as the first
eigenvector by obtaining the spatial correlation matrix R

(x)
j

of the speech signal. Calculate the spatial correlation matrix
from SV and use it as initial value of MNMF.

IV. SPEECH RECOGNITION

A. Experimental condition

The effectiveness of the proposed method be confirming
by speech recognition experiment. This time we used CHiME
Challenge4[8] , which is a voice recognition task with speech
recorded by 6 channel tablets equipped with 6 microphones in
four noise environments (BUS, CAF, PED, STR). We used the
word error rate (WER) to evaluate the performance of speech
recognition. We used data recorded by six microphones.
In addition, the target sounds of three types are prepared:
learning set, development set, and evaluation set. There are
real environment data (REAL) and virtual environment data
(SIMU) in each. Here, we used a SIMU of development set.
In the development set, data of 410 speech by four speakers
are prepared in each environment. Parameters are shown in
Table I. We compare the following methods.

1) Untreated (Noisy)
2) Delay sum array with weight (Baseline)
3) MNMF of 500 iterations with initial value random

(500-Random)
4) MNMF of 500 iterations with initial value setting

(500-EM)
5) MNMF of 200 iterations with initial value setting

(200-EM)

TABLE I
EXPERIMENTAL CONDITIONS

Speech recognition system Kaldi
Acoustic model GMM

Vocabulary 5000
Language English

Sampling frequency 16kHz
Frame size 1024
Shift size 256

Number of basis 30
Number of sound source 2

Fig. 3. Cost functions converges

6) MNMF of 200 iterations with initial value setting dec-
imate the spatial correlation matrix at once every two
times
(200-EM-2)

7) MNMF of 200 iterations with initial value setting dec-
imate the spatial correlation matrix at once every four
times
(200-EM-4)

B. Efficient Iteration

We considered setting an efficient number of iterations
based on the convergence curve of the cost function when
separating the 500 iterations. We observed that it converges
with approximately 200 iterations from Fig.3. In addition, it is
conceivable that it will result in a local optimal solution if the
initial value is random. Therefore, we believe that a sufficient
performance can be obtained with 200 iterations using the EM
algorithm.

C. Computation time with increasing number of channels

Separation is conducted from 2-ch to 6-ch for a 14-
s signal; the result is shown in Fig.4. We observed that
the computation time increases exponentially with increasing
number of channels (2 ch to 6 ch).
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TABLE II
RESULT OF SPEECH RECOGNITION WER[%] (BOLDFACE IS THE BEST WER IN EACH ENVIRONMENTS)

- BUS CAF PED STR AVE Time
Noisy-1ch 20.38 29.81 20.49 27.30 24.49 -

Baseline-2ch 16.14 23.55 15.49 21.42 19.15 -
500-Random-2ch 23.0 32.1 25.2 29.9 27.5 301 s

500-EM-2ch 13.9 19.8 14.4 18.7 16.7 304 s
Baseline-6ch 12.74 17.29 11.80 15.56 14.35 -

500-Random-6ch 82.23 72.52 67.49 74.34 74.14 1966 s
500-EM-6ch 9.04 11.81 8.55 10.72 10.03 1971 s

(proposed 1) 200-EM-6ch 9.19 11.96 8.66 10.32 10.03 774 s
(proposed 2) 200-EM-2-6ch 8.92 12.91 9.00 10.86 10.42 640 s
(proposed 2) 200-EM-4-6ch 9.73 13.01 9.32 11.39 10.86 574 s

Fig. 4. Computation time with increasing number of channels

D. Recognition Experiment Result

Table II shows the results of MNMF with 2-ch and 6-ch as
a comparison[9]. Time is the processing of MNMF for speech
data of 6 seconds. Increasing the number of channels generally
improves the WER based on the experimental results. The
computation time was reduced to less than half compared with
the 500 iterations case (500-EM-6ch), and the WER was not
significantly affected because of reducing the number of iter-
ations to 200. Regarding the thinning out method, the once in
two updates WER was 0.39% worse but the computation time
was 640 s. However, WER did not significantly deteriorate
with respect to different environments. Similarly, the once in
four updates WER was 0.83% worse but the computation time
decreased to 574 s.

It shows that the performance of the conventional MNMF
was maintained and the computational complexity could be
reduced.

V. DISCUSSION

We confirmed that MNMF using the estimation regard-
ing the spatial correlation matrix owing to EM algorithm
is effective for improving speech recognition rate in noisy
environments. It was observed that the method of decimating
once every two times updates is effective only for a specific
environment. It is believed that the difference between the
results is that the difference between what should be optimized
using the update formula of MNMF and what was estimated
using EM algorithm depends on the environment.

VI. CONCLUSION

In this study, we examined the reducing computational
complexity of MNMF using estimation of the spatial corre-
lation matrix and confirmed its effectiveness through speech
recognition experiments. It was confirmed that the estimation
of the spatial correlation matrix using EM algorihtm is ef-
fective for improving the speech recognition rate in various
noisy environments, and that speech recognition performance
is not significantly affected even if fewer iterations are used
for reducing computational complexity. It has been observed
that reducing computational complexity using the method of
decimating updates of the spatial correlation matrix is effective
only in a specific environment. That is the performance of the
conventional MNMF was maintained and the computational
complexity could be reduced.
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