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Abstract—In this paper, we propose to leverage end-to-end
automatic speech recognition (ASR) systems for assisting deep
neural network-hidden Markov model (DNN-HMM) hybrid ASR
systems. The DNN-HMM hybrid ASR system, which is composed
of an acoustic model, a language model and a pronunciation
model, is known to be the most practical architecture in ASR
field. On the other hand, much attention has been paied in recent
studies to the end-to-end ASR systems that are fully composed
of neural networks. It is known that they can yield comparative
performance without introducing heuristic operations. However,
one problem is that the end-to-end ASR systems sometimes
suffer from redundant generation and ommission of important
words in text generation phases. This is because these systems
cannot explicitly consider the connection between the input
speech and the output text. Therefore, our idea is to regard
the end-to-end ASR systems as neural speech-to-text language
models (NS2TLMs) and to use them for rescoring hypotheses
generated in the DNN-HMM hybrid ASR systems. This enables
us to leverage the end-to-end ASR systems while avoiding the
generation issues because the DNN-HMM hybrid ASR systems
can generate speech-aligned hypotheses. It is expected that the
NS2TLMs improve the DNN-HMM hybrid ASR systems because
the end-to-end ASR systems correctly handle short-duration
utterances. In our experiments, we use state-of-the-art DNN-
HMM hybrid ASR systems with convolutional and long short-
term memory recurrent neural network acoustic models and end-
to-end ASR systems based on attetional encoder-decoder. We
demonstrate that our proposed method can yield a better ASR
performance than both the DNN-HMM hybrid ASR system and
the end-to-end ASR system.

I. INTRODUCTION

In modern automatic speech recognition (ASR) technolo-
gies, deep neural network-hidden Markov model (DNN-
HMM) hybrid ASR systems are known to be the most practical
implementation [1]. The DNN-HMM hybrid ASR systems
are composed of an acoustic model, a language model and a
pronunciation model, each of which is individually represented
as an isolated architecture. Various studies have examined the
possibility of enhancing the acoustic models and the language
models. In the acoustic modeling, various DNN topologies
including convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) have been studied for accurately
converting the input speech into a phonetic sequence [2]–
[5]. In language modeling, neural language models have been
developed in order to improve the traditional n-gram models
[6], [7]. Among the neural language models, recurrent neural

network based language models (RNNLMs) [8], [9] have
been largely studied as they can capture variable length word
contexts, which help to improve ASR performance.

On the other hand, much attention has been paid to the
end-to-end ASR systems that are fully composed of neural
networks [10]–[14]. These systems have shown competitive
ASR performance compared to the DNN-HMM hybrid ASR
systems. In fact, the end-to-end ASR systems simultaneously
learn the acoustic and the language models from the acoustic
data and its transcriptions. They model generative probabilities
of words or characters conditioned on the acoustic features
extracted from speech. Therefore, end-to-end ASR systems
can directly generate texts from speech without introducing
heuristic operations.

However, end-to-end ASR systems sometimes suffer from
redundant generation and omission of important words in
text generation phases. This is because they cannot explicitly
consider the connection between the input speech and the
output text. In fact, these generation issues appear in relatively
long-duration utterances, while end-to-end ASR systems can
correctly transcribe short-duration utterances. In other words,
the end-to-end ASR systems have great potential to improve
ASR performance if we can address the generation issues.

In this paper, we propose to leverage the end-to-end ASR
systems for rescoring hypotheses generated by the DNN-
HMM hybrid ASR systems. To this end, we regard the
end-to-end ASR systems as neural speech-to-text language
models (NS2TLMs), which are language models conditioned
on the input acoustic features. We then use these models for
rescoring. This removes the generation issues in the end-to-end
ASR systems because DNN-HMM hybrid ASR systems can
generate speech-aligned hypotheses. In other words, we expect
that ASR performance of long-duration utterances will be
improved by eliminating the generation issues. Furthermore,
the NS2TLMs can be positioned as RNNLMs with rich
auxiliary features extracted from the input speech, so we can
also improve ASR performance of short-duration utterances
by leveraging valid properties of the NS2TLMs.

We use a Japanese ASR lecture task of the Corpus of
Spontaneous Japanese (CSJ) [15] to conduct the evaluation.
We verify that the NS2TLMs yield better ASR performance
than state-of-the-art DNN-HMM hybrid ASR systems with
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convolutional and long short-term memory recurrent neural
network-based acoustic models. Furthermore, we investigate
the relationship between ASR performance and the length of
utterances.

This paper is organized as follows. Section II describes re-
lated work. Section III explains the RNNLMs, as our proposed
method is based on the RNNLM rescoring. Section IV gives
the details of the NS2TLMs. Experiments are shown in Section
V and the analysis of the experimental results is written in
Section VI. Section VII concludes the paper.

II. RELATED WORK

NS2TLMs are based on end-to-end ASR systems [10]–
[14] which directly estimate the text from the input speech.
They are conditional language models conditioned by the input
speech. End-to-end ASR systems based on attentional encoder-
decoder were reported to outperform systems based on the
connectionist temporal classification (CTC) [16], so we focus
on the encoder-decoder based systems in this study. End-to-
end ASR systems and DNN-HMM hybrid ASR systems have
been studied separately in previous works. In this study, we
try to combine the DNN-HMM hybrid ASR system with the
end-to-end ASR system to rescore the hypotheses generated
by DNN-HMM hybrid ASR system.

NS2TLMs are related to neural language models. RNNLMs
in particular [8], [9] have been shown to improve significantly
ASR performance. RNNLMs can efficiently capture long-
term dependencies of words by embedding long-term contexts
into hidden representations in RNNs. Furthermore, LSTM-
RNNLMs (LSTMLMs) [17] can further enhance ASR perfor-
mance due to their ability to reduce the vanishing gradient
problem [18]. NS2TLMs estimate probability distributions
which are conditioned not only on hidden representations of
the word contexts but also on hidden representations composed
of the input acoustic features.

RNNLMs conditioned by additional information improve
language modeling and speech recognition performance. In
[19], latent Dirichlet allocation-based feature extracted from
the text is used for additional input in RNNLMs. Bag-of-words
representation is used with the same motivation [20]. Shi et al.
used part-of-speech tags and conversation related information
[21]. In addition, it is reported that integrating acoustic features
for input in RNNLMs improves ASR performance [22]–[24].
Prosody features, such as fundamental frequency and pitch, are
used for RNNLMs [22], [24]. In [23], global acoustic feature
OpenSMILE and i-vector extracted from speech are used for
RNNLMs adaptation. NS2TLM is also one of the conditional
language models and can directly use richer acoustic informa-
tion than the other language models.

III. RECURRENT NEURAL NETWORK BASED
LANGUAGE MODELS

This section describes RNNLMs [8]. Fig. 1 shows an exam-
ple of a RNNLM. RNNLMs estimate generative probabilities

si�1

wi�1

di

si

oi

P (wi|wi�1, si�1;⇥)

Fig. 1. Example of recurrent neural network language model.

of w = {w1, w2, · · · , wi, · · · , wI} as

P (w|Θ) =
I∏

i=1

P (wi|wi−1, si−1;Θ), (1)

where Θ represents the model parameter. In RNNLMs, each
word wi is mapped to 1-of-K representation and embedded in
distributed representation by affine transformation as

di = EMBED(wi, θd), (2)

where EMBED(·) is a function that converts a word into a
distributed representation and θd is a trainable parameter. The
hidden state is calculated by nonlinear activation function f(·)
as

si = f(di−1, si−1, θs). (3)

where si is the hidden state in the decoder and θs is the
trainable parameter. Finally, the decoder estimates the word
probability in a target hypothesis with a conditional probability
as

P (wi|wi−1, si−1;Θ) = SOFTMAX(si, θo), (4)

where θo is the trainable parameter.

IV. NEURAL SPEECH-TO-TEXT LANGUAGE MODELS

In this section, we explain our approach in which end-to-
end ASR systems are used as language models. NS2TLMs
are based on attentional encoder-decoder models which read
variable length inputs in the encoder and predict variable
length outputs in the decoder. NS2TLMs are part of the
RNNLMs with an additional acoustic feature.

A. Modeling

Figure 2 illustrates an example of NS2TLM. We use a bi-
directional LSTM with an attention mechanism [25], [26] as
an encoder and a uni-directional LSTM as a decoder. Given
the acoustic feature sequence x = {x1, x2, · · · , xj , · · · , xJ},
NS2TLMs estimate the generative probability of w =
{w1, w2, · · · , wi, · · · , wI} as

P (w|x;Λ) =
I∏

i=1

P (wi|wi−1, si−1, s̄i;Λ), (5)

where Λ represents the model parameters.
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Fig. 2. Example of neural speech-to-text language models.

In the NS2TLM, the acoustic feature is input in the encoder
based on bi-directional LSTM as

−→
h j =

−−→
LSTM(xj ,

−→
h j−1, λlf ), (6)

←−
h j =

←−−
LSTM(xj ,

←−
h j+1, λlb), (7)

where
−−→
LSTM(·) and

←−−
LSTM(·) represent LSTM functions of

forward and backward LSTM. λlf and λlb are the trainable
model parameters. The encoder hidden state hj is calculated
by concatenating

−→
h j and

←−
h j as

hj = [
−→
h⊤

j ,
←−
h⊤

j ]
⊤. (8)

The context vector s̄i is constructed in each time-step when
estimating generative word probabilities in the decoder as

s̄i =

J∑
j=1

αj,ihj , (9)

where αj,i is calculated as

αj,i =
exp(ej,i)∑J
j=1 exp(ej,i)

, (10)

where ej,i is calculated previous α and matrix F as

fj = F ∗αj−1, (11)
ej,i = tanh(si,hj ,fj,i, λe), (12)

where si is the hidden state in the decoder, “·” indicates the
dot product function and F and λe are the trainable model
parameters. In the decoder, the distributed representation di−1

is calculated by the weight matrix as

di−1 = EMBED(wi−1, λd). (13)

The hidden state in the decoder is calculated by LSTM
function as

si = LSTM([di−1, s̄i−1], si−1, λs). (14)

Then, oj is calculated by concatenating the decoder hidden
state with a context vector as and the hyperbolic tangent
function as

oi = tanh([si, s̄i]
⊤, λt), (15)

TABLE I
DETAILS OF DATA FOR TRAINING, DEVELOPMENT AND TEST

Data # of characters # of words Hours
Training 12,573,004 7,798,998 644.84
Development 110,616 68,315 5.67

Test
Task1 45,169 27,651 2.28
Task2 44,915 28,424 2.42
Task3 29,610 18,238 1.71

where si is the hidden state in the decoder, s̄i denotes
the context vector generated from the input acoustic features.
Finally, the decoder estimates the word probability in the target
hypothesis with a conditional probability as

P (wi|wi−1, si−1, s̄i;Λ) = SOFTMAX(oj , λo). (16)

where λo is the trainable model parameter.
The trainable model parameters Λ =
{λlf , λlb,F , λe, λd, λs, λt, λo} in a NS2TLMs are updated to
maximize conditional generative probabilities of transcriptions
in the decoder when the acoustic feature is given as a context
in the encoder. Thus, the model parameters are updated with
minimizing cross entropy loss function:

L(Λ) = −
∑

(x′,w′)∈D

logP (w′|x′;Λ), (17)

where D represents pairs of the input speech and manual
transcriptions. The training data D is described as

D = {(x1,w1), (x2,w2), · · · , (xN ,wN )} . (18)

B. Rescoring Hypotheses

NS2TLMs are utilized for rescoring ASR hypotheses gen-
erated from DNN-HMM hybrid ASR systems. The ASR
score calculated by DNN-HMM hybrid ASR system is lin-
early interpolated with a log generative probability obtained
by NS2TLMs. Given the acoustic feature sequence x =
{x1, x2, · · · , xj , · · · , xJ}, 1-best ASR result ŵ is determined
by

ŵ = arg max
w

{β logP (w|x;Λ)

+ (1− β) logP (w|x;η)}, (19)

where P (w|x;η) denotes the ASR score calculated by DNN-
HMM hybrid ASR system with their parameters η and β is
the interpolation weight of NS2TLM.

V. EXPERIMENTS

A. Setups

All experiments were performed on CSJ [15], which is
a Japanese lecture corpus. Table I shows the details of the
data for training, development and test. End-to-end and DNN-
HMM ASR system were trained with 40 mel-scale filter-bank
features.
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TABLE II
%CERS ON THREE CSJ EVALUATION SETS IN DIFFERENT MODELS

Model Task1 Task2 Task3 AVG.
End-to-end system (NS2TLM) 13.49 9.96 12.25 11.90
DNN-HMM hybrid system 11.85 9.25 9.84 10.31

+ LSTMLM 11.12 8.49 9.21 9.61
+ NS2TLM 10.38 7.56 8.24 8.73
+ LSTMLM + NS2TLM 10.20 7.38 7.96 8.51

We prepared an acoustic-to-character based end-to-end ASR
system (NS2TLM). The end-to-end ASR systems had bi-
directional LSTM with 4 hidden layers and 320 units in each
layer and direction in the encoder and uni-directional LSTM
with 1 hidden layer and 320 LSTM units in the decoder.
The vocabulary size was 3251 symbols corresponding to the
dimensions of the output target. The beam size was set to 20
for the beam search decoding and the candidates hypotheses
were re-ranked based on the length normalized scores [27].

We used a CNN-LSTM acoustic model in DNN-HMM
the hybrid ASR system. In the CNN-LSTM acoustic model,
each static and dynamic component was sliced within 11
frames, which was composed as 3 feature maps. We used 1
convolutional layer with 128 features maps in which 5×11
frequency-time filters. For pooling, 2×1 frequency-time max
pooling was performed. In addition, CNN output was fed into
2 LSTM layers, each of which had 1024 cells. LSTM output
was fed into a softmax layer. We prepared a 3-gram language
model. The speech recognizer included a weighted finite state
transducer based decoder [28].

LSTMLM had 2 hidden layers and 520 LSTM units in each
layer. The vocabulary size was 67780 words corresponding to
the dimensions of the input and output. The dropout ratio was
set to 0.3 in each hidden layer.

We used the 100-best list generated from each utterance
to rescore with NS2TLMs and LSTMLMs. The DNN-HMM
hybrid ASR system was used for the hypotheses generation
in all experiments. The NS2TLM score was interpolated with
the ASR score in accordance with Eq. (19). In the case of
using LSTMLM, the score was interpolated with the 3-gram
language model score.

B. Results

Table II reports the character error rates (CERs) in three CSJ
evaluation sets. The DNN-HMM hybrid ASR system shows
lower CER than the attention-based end-to-end ASR system
in these setups. The NS2TLM gave larger CER reduction
than the LSTMLM rescoring in all evaluation sets. Acoustic
features can help achieving significant improvement in ASR
performance. In addition, a combination of NS2TLM and
LSTMLM shows further improvement, achieving best CER
of 8.73% on average in all three tasks in our experiments.

We show the relationship between the additional language
model weights of NS2TLM and LSMTLM and the CER in
Fig. 3. NS2TLM shows the lowest CER compared with other
systems even when the additional language model weight was
set to large values of 0.5-1.0.
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Fig. 3. Average CER in evaluation sets and additional language model weight

VI. ANALYSIS

We analyzed the effects of NS2TLMs from the point of
view of the length of utterances. Figure 4 demonstrates the
relationship between the reduction of CER and the length of
utterances: orange plots represent CER differences between the
end-to-end ASR system and the DNN-HMM hybrid ASR sys-
tem; blue plots represent CER differences between the DNN-
HMM hybrid ASR system and rescored by NS2TLM (DNN-
HMM hybrid system + NS2TLM) with respect to the number
of characters in utterances. The orange plots show that the end-
to-end ASR systems were inferior to the hybrid systems when
handling long-duration utterances but yielding comparative
performance when handling short-duration utterances with a
number of characters 20 or less. This indicates that the end-to-
end ASR systems have difficulty dealing with long-duration ut-
terances. In addition, the blue plots show that the DNN-HMM
hybrid ASR systems with NS2TLM attained comparatively
higher performance when handling short-duration utterances
than when handling long-duration utterances. This is because
the NS2TLM was good at capturing short-duration utterances.
These results confirm that our proposed method is effective in
compensating for weaknesses and in leveraging the strength
of the end-to-end ASR systems.

VII. CONCLUSIONS

In this paper, we proposed to leverage end-to-end ASR
systems for assisting DNN-HMM hybrid ASR systems. Ex-
perimental results showed that NS2TLM rescoring gave larger
CER reduction than LSTMLM rescoring in a Japanese lecture
task. The best CER was obtained by rescoring with a combina-
tion of NS2TLM and LSTMLM scores, which reduces CER of
the state-of-the-art DNN-HMM hybrid ASR system including
CNN and LSTM acoustic model by 17.5%. Analysis revealed
a relationship between ASR performance and utterance length
in end-to-end ASR systems, DNN-HMM hybrid ASR systems
and NS2TLMs rescored systems. Rescoring by NS2TLMs is
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highly effective for short-duration utterances because end-to-
end ASR systems perform better than DNN-HMM hybrid ASR
systems for short-duration utterances.
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