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Abstract—In this paper, we analyze the properties of a fixed
point of a certain mapping that is implicitly used in each of
the regularized dual averaging (RDA) and projection-based RDA
(PDA) algorithms. It turns out that, if the loss function has a
nonexpansive (1-Lipschitz) gradient such as in the case of a half
squared-distance function, RDA converges to a minimizer of the
penalized loss function under a restrictive condition. Meanwhile,
the fixed point for PDA gives a minimizer of the ‘unpenalized’ loss
function. Some simulation studies are also presented to support
the theoretical findings.

I. INTRODUCTION

The regularized dual averaging (RDA) algorithm [1] and the
adaptive proximal forward-backward splitting (APFBS) algo-
rithm [2] (or FOBOS [3]) are two major lines of research on
regularized stochastic optimization algorithms. APFBS, or FO-
BOS, is an adaptive/online extension of the proximal forward-
backward splitting method (also known as the proximal gra-
dient method), which is a particular case of the Krasnoselskii-
Mann (KM) iterate and of which the convergence mechanism
is thus transparent based on the fixed-point characterization
of nonexpansive mapping (see [4] for instance). On the other
hand, RDA is motivated by the dual averaging algorithm of
Nesterov [5], and its convergence properties have been studied
only in the stochastic sense. Motivated by the success of
the projection-based methods for adaptive filtering [6–9], the
projection-based RDA (PDA) algorithm has been proposed
[10, 11], employing a half squared-distance loss together with
a variable-metric. It has been shown that, when applied to
sparse system identification, PDA exhibits better convergence
behaviours as well as a better sparsity-seeking property. To
understand the basic principle of RDA/PDA, it is of great
interest to study how those algorithms can be seen from the
fixed-point theoretic viewpoint in the static scenario.

In this paper, we analyze the properties of a fixed point of
a certain mapping that is implicitly used in each of RDA and
PDA. It turns out that, if the loss function has a nonexpansive
(i.e., 1-Lipschitz) gradient such as in the case of the half
squared-distance function, RDA converges to a minimizer
of the penalized loss function under a restrictive condition.
Meanwhile, the fixed point for PDA gives a minimizer of the
‘unpenalized’ loss function, which is independent from the
regularizer. Simulation results support the theoretical findings.

II. PRELIMINARIES

A. Mathematical Tools
Let (H, 〈·, ·〉) be a real Hilbert space equipped with inner

product 〈·, ·〉. We denote its induced norm by ‖·‖. A convex
function f satisfying domf := {x ∈ H | f(x) < ∞} �= ∅
is called a proper convex function.1 A function f : H →
(−∞,∞] is said to be lower semicontinuous on H if the level
set lev≤af := {x ∈ H : f(x) ≤ a} is closed for every a ∈ R.
We denote by I : H → H the identity operator which maps
any vector x ∈ H to the x itself.

Definition 1 (Lipschitz continuity and nonexpansivity). A
mapping T : H → H is called Lipschitz continuous with
constant κ > 0 (or κ-Lipschitz for short) if for any x, y ∈ H

‖T (x)− T (y)‖ ≤ κ ‖x− y‖ . (1)

A 1-Lipschitz mapping is specially called nonexpansive.

Lipschitz continuity implies continuity in the ordinary sense
since ‖x− y‖ → 0 clearly implies ‖T (x)− T (y)‖ → 0 by
definition.

Definition 2 (Fixed point). A point that is “fixed” under the
operation of T : H → H (i.e. a point x ∈ H such that
T (x) = x) is called a fixed point of T . We denote the set of
all fixed points of T by Fix(T ).

Definition 3 (Averaged nonexpansivity). A mapping T : H →
H is called α-averaged nonexpansive for a constant α ∈ (0, 1)
if there exists a nonexpansive mapping N : H → H such that
T = (1− α)I + αN .

Definition 4 (Proximity operator [4, 12]). Given any proper
lower-semicontinuous convex function f : H → (−∞,∞], the
proximity operator of f of index γ > 0 is defined as

proxγf (x) := argmin
y∈H

(
f(y) +

1

2γ
‖x−y‖2

)
, x ∈ H.

Definition 5 (Subdifferential [4, 13]). Given x ∈ H and proper
lower-semicontinuous convex function f : H → (−∞,∞],

∂f(x) := {z ∈ H | 〈y − x, z〉+f(x) ≤ f(y), ∀y ∈ H} (2)

1A subset S ⊂ H is said to be convex if αx + (1 − α)y ∈ S for all
(x, y, α) ∈ S × S × [0, 1]. A function f : H → (−∞,∞] := R ∪ {∞} is
said to be convex on H if f(αx+(1−α)y) ≤ αf(x)+(1−α)f(y) for all
(x, y, α) ∈ domf×domf× [0, 1], where domf := {x ∈ H | f(x) < ∞}.
The function f is called strictly convex if the inequality of convex function
holds with strict inequality whenever x 	= y.
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is called the subdifferential of f at x. If f is continuous, it is
ensured that ∂f(x) �= ∅.

Definition 6 (Indicator function). Given a nonempty closed
convex set C ⊂ H, define the indicator function ιC(x) :={

0 if x ∈ C
∞ if x �∈ C.

The function ιC is lower semicontinuous

because lev≤aιC = C if a ≥ 0 and lev≤aιC = ∅ if a < 0,
although it is clearly discontinuous at the boundary of C.

Fact 1 (On proximity operator [4, 13]).
1) proxγf = (I + γ∂f)−1 [13].
2) proxιC = PC : H → C, x �→ argminy∈C ‖x−y‖ is

the metric projection operator onto the closed convex
set C �= ∅.

3) The proximity operator is firmly nonexpansive; i.e.,
1/2-averaged nonexpansive, with Fix(proxf ) =
argminx∈H f(x). In the case of metric projection, in
particular, Fix(PC) = argminx∈H ιC(x) = C.

Fact 2 (On nonexpansive mapping [4, 13]).
1) T is nonexpansive if and only if −T is nonexpansive.
2) Given any nonexpansive mappings T1 : H → H and T2 :

H → H, their composition T2◦T1 is also nonexpansive.
3) The following three statements are equivalent: (a) T is

firmly nonexpansive, (b) I − T is firmly nonexpansive,
(c) 2T − I is nonexpansive.

Theorem 1 (Special case of KM iterate [4, 13]). Let T : H →
H be a nonexpansive mapping with Fix(T ) �= ∅. Also let
(αt)t∈N is a sequence in [0,1] such that

∑
t∈N

αt(1 − αt) =
∞. Then, for any initial point w0 ∈ H, the sequence (wt)t∈N

generated by

wt+1 := (1− αt)wt + αtT (wt) (3)

converges weakly to a point w∗ ∈ Fix(T ).2

B. Regularized Stochastic Optimization Problem
We consider the following regularized stochastic optimiza-

tion problems:

min
w∈Rn

Ez [f(w, z)] + ψ(w), (4)

where the first term is the expectation of the convex loss
function f(w, z) with respect to the pair z := (x, y) ∈ R

n×R

of input x and output y drawn from an unknown underlying
distribution, and ψ(w) is the proper convex regularizer which
is assumed lower-semicontinuous. In practice, the following
empirical loss at each time instant t ∈ N is commonly
considered:

min
w∈Rn

1

t

t∑
τ=1

[ϕτ (w)] + ψ(w), (5)

where ϕτ (w) := f(w, zτ ) is assumed differentiable with
the observation zτ := (xτ , yτ ) ∈ R

n × R of z at time

2A sequence (wt)t∈N is said to be weakly convergent to w∗ ∈ H if
limt→∞ 〈wt − w∗, y〉 = 0 for any y ∈ H. In the finite dimensional
case, the weak convergence coincides with the strong convergence (i.e.,
limt→∞ ‖wt − w∗‖ = 0 ⇔ limt→∞ 〈wt − w∗, y〉 = 0 for any y ∈ H).

instant τ = 1, 2, · · · , t.3 In this case, domϕτ = R
n. The

estimate of an optimal w at time τ is denoted by wτ :=
[wτ,1, wτ,2, · · · , wτ,n]T ∈ R

n.

III. CONVERGENCE ANALYSIS OF RDA ALGORITHM
UNDER STATIC SCENARIO

A. RDA Algorithm for βt = t

Define the sum of the history of the gradients as

st :=

t∑
τ=1

∇ϕτ (wτ−1) = st−1 +∇ϕt(wt−1), t ∈ N, (6)

with s0 := 0. Let (βt)t∈N ⊂ (0,∞) be a nondecreasing
sequence. Also let h(w) be a strongly-convex continuous func-
tion (called a prox-function) satisfying argminw∈Rn h(w) ⊂
argminy∈Rn ψ(y). The RDA algorithm is then given by [1]

wt := argmin
w∈Rn

(〈st
t
,w

〉
+
βt
t
h(w) + ψ(w)

)
. (7)

In the present study, we consider the case of βt := t and
h(w) := ‖w‖2 /2 = 1

2

∑n
i=1 w

2
i , which is a typical choice

for ψ(w) := ‖w‖1 :=
∑n

i=1 |wi|. In this case, (7) reduces to

wt = argmin
w∈Rn

(〈st
t
,w

〉
+

1

2
‖w‖2 + ψ(w)

)

= argmin
w∈Rn

(
1

2

∥∥∥w +
st
t

∥∥∥2 + ψ(w)

)

= proxψ

(
−st
t

)
. (8)

B. Convergence Analysis
To make the analysis tractable, we consider the static

scenario in which the loss function ϕτ does not change in
time. We thus drop the time index of the loss function and
denote it by ϕ. Define the mapping

Tt :=

(
1− 1

t

)
I +

1

t
(−∇ϕ ◦ proxψ). (9)

Then, the following proposition holds.

Proposition 1. The sequence (wt)t∈N generated by

wt := proxψ(ζt)

ζt := Tt(ζt−1), ζ0 := 0, (10)

coincides with the one generated by (8), which is the RDA
algorithm for h(w) := ‖w‖2 /2 and βt := t.

Proof: One can verify that

ζt =

(
1− 1

t

)
ζt−1 −

1

t
∇ϕ(proxψζt−1)

=
t− 1

t
ζt−1 −

1

t
∇ϕ(wt−1)

= − 1

t

(−(t− 1)ζt−1 +∇ϕ(wt−1)
)

= − st
t
. (11)

3Although a time-dependent regularizer is considered in [10, 11], we solely
consider the fixed regularizer in the present study for the sake of tractability.
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Now, the question is what is the characterization of the fixed
point. The hope is that its associated point w∗ = proxψ(ζ

∗)
is a solution to the minimization problem in (5), which in
the current static case is a minimizer of ϕ(w) + ψ(w). This
however holds only in a restrictive condition, as clarified in
the theorem below together with its following arguments.

Theorem 2 (Fixed point of Tt). The following statements hold.
1) Fix(Tt) = Fix(−∇ϕ ◦ proxψ).
2) Assume that Fix(−∇ϕ◦proxψ) �= ∅. Then, given a fixed

point ζ∗ ∈ Fix(−∇ϕ◦proxψ), the following statements
are equivalent.

a) proxψζ
∗ ∈ argminw∈Rn ϕ(w) + ψ(w).

b) ζ∗ ∈ ∂ψ(proxψζ
∗).

c) proxψ
(
ζ∗ + proxψζ

∗) = proxψζ
∗.

Proof: Item 1 can be verified by observing that

Tt(ζ
∗) = ζ∗ ⇔ ζ∗ − 1

t
(ζ∗ +∇ϕ ◦ proxψ(ζ∗)) = ζ∗

⇔ −∇ϕ ◦ proxψ(ζ∗) = ζ∗. (12)

Item 2 can be verified as follows:

proxψζ
∗ ∈ argmin

w∈Rn

ϕ(w) + ψ(w)

⇔ 0 ∈ ∂(ϕ+ ψ)(proxψζ
∗) = ∇ϕ(proxψζ∗) + ∂ψ(proxψζ

∗)

⇔ −∇ϕ ◦ proxψ(ζ∗) ∈ ∂ψ(proxψζ
∗)

⇔ ζ∗ ∈ ∂ψ(proxψζ
∗)

⇔ ζ∗ + proxψζ
∗ ∈ (I + ∂ψ)(proxψζ

∗)

⇔ proxψ
(
ζ∗ + proxψζ

∗) = proxψζ
∗. (13)

Here, ∂(ϕ + ψ) = ∇ϕ + ∂ψ because domϕ = R
n due

to its differentiability,4 the third equivalence comes from the
assumption, and the final equivalence is due to Fact 1.1.

Proposition 2 (A sufficient condition). A fixed point ζ∗ ∈
R
n of Tt satisfies proxψζ

∗ ∈ argminw∈Rn ϕ(w) + ψ(w) if
proxψζ

∗ = 0.

Proof: Clear from the equivalence between (a) and (c) of
Theorem 2.2.

Example 1.
1) We consider the case of ψ(w) = |w|, w ∈ R, for n = 1.

In this case, proxψζ
∗ = max{|ζ∗| − 1, 0}sign(ζ∗).

If proxψζ
∗ �= 0, then ζ∗ �∈ ∂ψ(proxψζ

∗) because
ζ∗ < −1 or ζ∗ > 1 while ∂ψ(ζ∗) = {−1} or
∂ψ(ζ∗) = {1}. This implies, from Theorem 2, that
proxψζ

∗ �∈ argminw∈R ϕ(w) + ψ(w). Therefore, to-
gether with Proposition 2, proxψζ

∗ = 0 is a nec-
essary and sufficient condition to satisfy proxψζ

∗ ∈
argminw∈R

ϕ(w) + ψ(w) in this specific case. It is

4In the finite dimensional case, a sufficient condition for having ∂(ϕ+ψ) =
∂ϕ + ∂ψ is 0 ∈ int(domψ − domϕ), In the present case, domϕ = Rn

and domψ 	= ∅ so that int(domψ − domϕ) = domψ − domϕ = R
n. A

weaker sufficient condition [13] is 0 ∈ ri(domψ−dom ϕ), where ri(C) :=
{x ∈ Rn | cone(C − x) = span(C − x)}, where given any set A ⊂ Rn

coneA := {αx | α > 0, x ∈ A} and spanA := {αx | α ∈ R, x ∈ A}.

straightforward to generalize this result to the �1 norm
ψ(w) = ‖w‖1 in a general Euclidean space R

n:
proxψζ

∗ ∈ argminw∈Rn ϕ(w) + ψ(w) if and only if
proxψζ

∗ = 0.
2) We consider the case of ψ(w) = ιC(w), w ∈ R

n, for a
closed convex set C �= ∅. In this case,

∂ψ(w)=

⎧⎨
⎩
{
u ∈ R

n | sup
y∈C

〈y −w,u〉 ≤ 0

}
if w ∈ C

∅ if w �∈ C
(14)

which is the normal cone to C at w [13].
• When C is a closed subspace M , ∂ψ(proxψζ

∗) =
∂ιM (PMζ∗) = M⊥ := {u ∈ R

n | 〈m,u〉 =
0, ∀m ∈ M}; note here that PMζ∗ ∈ M . Hence,
by Theorem 2, proxψζ

∗ ∈ argminw∈Rn ϕ(w) +
ψ(w) if and only if ζ∗ ∈ M⊥ (⇔ proxψζ

∗ =
PMζ∗ = 0). This implies that proxψζ

∗ ∈
argminw∈Rn ϕ(w) + ψ(w) only in a trivial case.

• When C is a closed ball B := {ζ ∈ R
n | ‖ζ‖ ≤ ε}

of an arbitrary radius ε > 0,

∂ψ(proxψζ
∗) =

{ {δζ∗ | δ ≥ 0} if ζ∗ �∈ int(B),
{0}, if ζ∗ ∈ int(B),

(15)
where int(B) is the interior of the ball B. Hence, it
holds that proxψζ

∗ ∈ argminw∈Rn ϕ(w) + ψ(w)
either when ζ∗ ∈ R

n \ int(B) or when ζ∗ = 0.

We finally present our convergence analysis below.

Theorem 3 (Convergence analysis). Assume that (i) ∇ϕ is
nonexpansive and (ii) −∇ϕ ◦ proxψ has a fixed point. Then,
the sequence (ζt)t∈N generated by (10) converges to a fixed
point ζ∗ ∈ Fix(−∇ϕ ◦ proxψ), while (wt)t∈N converges to
proxψζ

∗.

Proof: Combining the assumption with Facts 2.1 and
2.2, one can verify that the composition operator −∇ϕ ◦
proxψ is nonexpansive. Since

∑∞
t=1

1
t

(
1− 1

t

)
=

∑∞
t=1

1
t −∑∞

t=1

(
1
t

)2
= ∞, KM fixed-point theorem [4, 13] (see

Theorem 1) can be applied to (ζt)t∈N to verify the asser-
tion. The convergence of (wt)t∈N can be verified by using
the nonexpansivity of proxψ as 0 ≤ ∥∥wt − proxψζ

∗∥∥ =∥∥proxψζt − proxψζ
∗∥∥ ≤ ‖ζt − ζ∗‖ → 0, t→ ∞.

IV. FIXED-POINT PROPERTY OF PDA ALGORITHM UNDER
STATIC SCENARIO

A. Algorithm Related to PDA and Its Fixed Point Property

We consider the algorithm that generates the sequence
(wt)t∈N by

wt := proxψ(zt)

zt := Tϕ(zt−1), z0 := 0, (16)

where
Tϕ := I − η∇ϕ ◦ proxψ , η > 0. (17)
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This algorithm is closely related to PDA, as shown in the fol-
lowing subsection. This algorithm has the following property:

Tϕ(z) = z ⇔ z − η∇ϕ(proxψz) = z

⇔ ∇ϕ(proxψz) = 0

⇔ proxψz ∈ argmin
y∈Rn

ϕ(y). (18)

Suppose that the sequence (zt)t∈N converges to some point
z ∈ R

n. In this case, (wt)t∈N converges to proxψz due to the
continuity of the operator proxψ. Since the limit point z of
(zt)t∈N will be a fixed point of Tϕ (i.e., Tϕ(z) = z will be
satisfied), (18) indicates that the limit point proxψz of (wt)t∈N

is a minimizer of the function ϕ, which is independent of the
regularizer ψ. This will be shown by simulation in Section V.

B. Reproduction of PDA Algorithm

Define the specific instantaneous-loss function

ϕt(w) :=
1

2
d2(w, Ct), (19)

where Ct(�= ∅) is the closed convex set accommodating
the information acquired at time instant t. A typical design
example for online regression is given as

Ct :=
{
w ∈ R

n | wTxt = yt
}
. (20)

In this case, the loss function reduces to the following nor-
malized squared-error:

ϕt(w) :=
(yt −wTxt)

2

2 ‖xt‖2
. (21)

For online classification,

Ct :=
{
w ∈ R

n | ytwTxt ≥ 1
}

(22)

is typically used, where yt ∈ {−1, 1}; xt �= 0 is assumed
implicitly here. The gradient of ϕt at wt−1 is given by

∇ϕt(wt−1) = wt−1 − PCt(wt−1). (23)

Note here that the firm nonexpansivity of the metric-projection
operator PCt implies the firm nonexpansivity of ∇ϕt = I −
PCt (see Facts 1 and 2.3).

We now consider the algorithm that generates (wt)t∈N by

wt := proxψ(zt)

zt := Tϕt(zt−1), z0 := 0, (24)

with ϕt defined in (19). It then follows that

zt = zt−1 − η∇ϕt(proxψzt−1)

= zt−1 − η∇ϕt(wt−1)

= − ηst, (25)

where by (23) st =
∑t

τ=1∇ϕτ (wτ−1) =
∑t

τ=1wτ−1 −
PCτ (wτ−1). By (24) and (25), we obtain the PDA algorithm
wt = proxψ(−ηst). We remark here that the original PDA
algorithm explicitly uses a time-varying metric.

0 2000 4000 6000 8000 10000
Iteration Number

10-10

10-5

100

Er
ro

rs

‖wt −wopt‖2 / ‖wopt‖2

∥∥ζt − (−∇ϕ ◦ proxψ)(ζt))
∥∥2
/ ‖ζt‖2

Fig. 1. Simulation results for Theorem 3: (ζt)t∈N converges to a fixed
point ζ∗ of the mapping −∇ϕ ◦proxψ , but w∗ = proxψζ

∗ is far from the
minimizer wopt of ϕ+ ψ.

0 2000 4000 6000 8000 10000
Iteration Number

10-30

10-20

10-10

100

Er
ro

rs

∥∥wt −A−1b
∥∥2
/
∥∥A−1b

∥∥2

Fig. 2. Simulation results for (18): (wt)t∈N converges to the minimizer
A−1b ∈ argminw∈Rn ϕ(w) of ϕ.

V. SIMULATION STUDIES

We conduct simple simulations to support the theoretical
findings of the current work. We consider the quadratic func-
tion ϕ(w) := 1

2 ‖Aw − b‖2 and the regularizer ψ(w) :=

0.1 ‖w‖1 for w ∈ R
100, where A := Ã/σmax(Ã). Here,

σmax(Ã) is the largest singular value of Ã, and each element
of Ã ∈ R

100×100 and b ∈ R
100 are generated randomly from

the i.i.d. normal distribution of zero mean and unit variance.
The step size for PDA is set to η = 0.1.

Figure 1 plots the learning curves of two quantities for
the RDA algorithm. One is ‖wt −wopt‖2 / ‖wopt‖2 to see
how close the generated solutions are to the optimal point
wopt ∈ argminw∈Rn ϕ(w) + ψ(w). Note here that the
minimizer exists uniquely due to the strict convexity of ϕ (due
to the full-rankness of A) and the coercivity of both ϕ and ψ.
The other quantity is

∥∥ζt − (−∇ϕ ◦ proxψ)(ζt)
∥∥2
/ ‖ζt‖2 to

illustrate the convergence to a fixed point of −∇ϕ ◦ proxψ.
One can see that the second quantity decays, and this is
consistent with Theorem 3. Note here that the gradient ∇ϕ
is nonexpansive because ATA has a unit spectral norm due
to the normalization. We remark that the limit point is not the
optimal point wopt, as seen by referring to the first quantity.
This is consistent with the arguments in Example 1 (see also
Theorem 2).
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Figure 2 plots the errors
∥∥wt −A−1b

∥∥2 / ∥∥A−1b
∥∥2 for

the PDA algorithm. One can see that (wt)t∈N converges to
the minimizer A−1b ∈ argminw∈Rn ϕ(w) of ϕ, which is
independent from the regularizer ψ. This is consistent with
(18).

VI. CONCLUSION

We presented the fixed-point theoretic analyses of the RDA
and PDA algorithms in the static scenario. If the loss function
has a nonexpansive gradient, RDA converges to a fixed point
of the mapping −∇ϕ◦proxψ (if exists), and the limit point is
a minimizer of the penalized loss function under a restrictive
condition. Meanwhile, the fixed point of I − η∇ϕ ◦ proxψ
(which is used in PDA implicitly) gives a minimizer of the
‘unpenalized’ loss function, which is independent from the
convex regularizer. The new findings presented in this paper
were supported by simulations.
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