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Abstract—Principles of adaptive filtering and signal processing
are useful tools in machine learning. Nonlinear adaptive filtering
techniques, though often are analytically intractable, are more
suitable for dealing with complex practical problems. This paper
develops a nonlinear online learning algorithm with a kernel set-
membership filtering (SMF) approach. One of the main features
in the SMF framework is its data-dependent selective update
of parameter estimates. Accordingly, the kernel SMF algorithm
can not only selectively update its parameter estimates by making
discerning use of the input data, but also selectively increase the
dimension of the kernel expansions with a model sparsification
criterion. This results in more sparse kernel expansions and
less computation in the update of parameter estimates, making
the proposed online learning algorithm more effective. Both
analytical and numerical results are presented in this paper to
corroborate the above statements.

I. INTRODUCTION

Learning algorithms have received much attention, espe-
cially in the last decade or so, due to much increased interest
in artificial intelligence and machine learning. This increased
interest is attributable, in part, to the greatly increased data
processing power and, in part, to the improved modeling and
algorithmic development in recent years. Most of the learning
algorithms, however, are developed with linear models, see,
e.g., [1]. Perceptron networks [2], such as those used in deep
learning, are perhaps a good example of nonlinear learning
mechanism. Since most data processors have much more
powerful computational power these days, time may be ripe
that nonlinear learning schemes can be employed to solve
more complex and realistic problems. Over the years, many
nonlinear learning algorithms have been developed, see, e.g.,
[3], [4], [5], [6], [7], [8]. This paper presents a nonlinear online
learning algorithm based on set-membership filtering (SMF).

The SMF framework is an adaptive filtering paradigm that
features data-dependent selective update of the estimates for
the filter coefficients [9], [10]. A key assumption in the SMF
framework is that the filtering error is bounded in magnitude.
Accordingly, if the filtering error is less than the presumed
magnitude bound, no update of the parameter estimates is
needed. Checking on whether or not the filtering error ex-
ceeds the presumed magnitude bound is sometimes termed
innovation check in the SMF literature. Since its inception, the

SMF algorithms have been shown to be viable alternatives to
the traditional adaptive filtering algorithms such as recursive
least squares (RLS) and least mean squares (LMS). Instead
of updating the parameter estimates at every iteration, i.e.,
at every new data point, the SMF algorithms update only
when there is sufficient innovation, which is measured by
the filtering/prediction error. Though using only a fraction
of the data to update the parameter estimates, the SMF
algorithms perform (at least) comparably to their counterparts
of traditional algorithms, namely, RLS and LMS. This feature
opens up many avenues for further exploration, see, e.g., [11].
To date, however, most of the SMF algorithms have been
developed using linear models, see, e.g., [9], [10], [11], [12].

This paper derives a kernel-SMF algorithm, namely, the K-
DH-OBE algorithm, for nonlinear online learning based on one
of the SMF algorithms, i.e., DH-OBE algorithm [10]. The DH-
OBE algorithm can be viewed as a weighted RLS algorithm
with a data-dependent forgetting factor. Our results show that
the K-DH-OBE algorithm has good performance in terms
of steady-state mean squared error (MSE) and convergence
rate, as compared to other kernel algorithms [13], [14]. It is
shown in this paper that a major advantage of the K-DH-OBE
algorithm is that it results in more sparse kernel expansions
and less frequent update of parameter estimates, thus less
computation.

This paper is organized as follows: Section II provides the
background of kernel based online learning. Section III shows
the derivations of the K-DH-OBE algorithm, and Section
IV presents some simulation results. Conclusion and a short
discussion on future work are given in Section V.

II. BACKGROUND

This section presents the basics of kernel based online
learning. The kernel trick is a commonly used approach to
extend linear algorithms to nonlinear ones [15], [16], [17].
Assume xi and xj are in space X , a reproducing kernel [18]
of a Hilbert space H is a function

κ(xi,xj) = 〈φ(xi),φ(xj)〉H

that maps from X × X to R. So for any pair of points xi
and xj in X that are mapped to H by φ(·), the kernel can
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evaluate the inner product of φ(xi) and φ(xj) without explicit
knowledge of either φ(·) or H.

One example of using the kernel trick to solve nonlinear
least squares problems is to find a function f(·) of H to
minimize the sum of n squared errors, given a set of data
pairs Dn = {xi, yi}ni=1. Specifically

min
f∈H

n∑
i=1

|yi − f(xi)|2, (1)

where yi is the desired output and f(xi) is the model output.
The representer theorem [19], [20] shows that the solution f(·)
of (1) can be expressed as

f(·) =
n∑
j=1

wjκ(·,xj). (2)

Then (1) can be rewritten as minw ||y −Kw||2, where K is
the Gram matrix with [Kij ] = κ(xi,xj). The weights w can
be further found by solving Kw = y.

In the online learning scenario where data become available
sequentially, at time instant k, the prediction of yk given
Dk−1

⋃
{xk} can be expressed as

fk(xk) =
k−1∑
j=1

wjκ(xk,xj). (3)

However, the complexity of the problem grows every time
when a new data point arrives, which poses a challenge for the
real-time operation for online algorithms. Therefore, one needs
to control the dimension of the model so that the computation
complexity would not keep increasing as the number of data
points increases. Specifically, in the following form

fk(xk) =

m∑
j=1

wjκ(xk,xαj ), (4)

where Jk = {αj}mj=1 is a subset of {i}ki=1, the dimension
m of the dictionary {κ(·,xαj

)}mj=1 should stop increasing at
some point in time.

In the literature, Engel et al. proposed the kernel recursive
least squares (KRLS) algorithm [13] that adopted an approx-
imate linear dependence (ALD) criterion as a sparsification
rule to control the model dimension and used RLS algorithm
to update the weights. The ALD-based sparsification rule
suggests inserting the new data point into the dictionary
only if it is not approximately linearly dependent on the
dictionary vectors. The major criticism is that it leads to
costly computations. To reduce the computational complexity
at each iteration, Richard et al. proposed the kernel normalized
least mean squares (KNLMS) algorithm [14] that adopted
the coherence-based sparsification rule to control the model
dimension. Specifically, at time instant k, the coherence-
based sparsification rule suggests inserting κ(·,xk) into the
dictionary only if the coherence is smaller than a pre-specified
threshold µ, i.e.,

max
αj∈Jk−1

|κ(xk,xαj
)| ≤ µ. (5)

It was shown that the model dimension under the coherence-
based sparsification rule remains finite as k goes to infinity.

III. K-DH-OBE ALGORITHM

In this section, we employ the kernel trick with the SMF
principles to solve nonlinear online learning problems. Set-
membership filtering algorithms aim to update the unknown
parameters such that the output estimation error is upper
bounded in magnitude over a model space, see, e.g., [10], [12].
To illustrate this, consider the following nonlinear model that
characterizes the input-output relationship

yk = fk(xk) + nk, (6)

where yk ∈ R, the set of real numbers, and xk ∈ RN×1, the
set of N -dimensional vectors, denote, respectively, the output
signal and input signal vector. Also, nk ∈ R denotes the model
uncertainty (or noise) and fk(xk) is as shown in (4).

At time instant k − 1, denote the weights as wk−1 and the
dictionary as {κ(·,xαj

)}mj=1. According to (4), the model can
be expressed as fk−1(xk−1) = wT

k−1uk−1 with

uk−1 = [κ(xk−1,xα1) · · · κ(xk−1,xαm)]T.

At the next time instant k, the K-DH-OBE algorithm updates
the estimates of the weights to satisfy that

Ck = {w ∈ RN : |yk −wTuk|2 ≤ γ2}, (7)

where Ck is called the constraint set and it is a degenerate
ellipsoid in the parameter space; while γ2 is a prescribed
estimation error bound.

Given a sequence of data pairs Dk = {xi, yi}ki=1, if the
parameter vector to be estimated remains constant, it must lie
inside the intersection of all the constraint sets, namely,

w ∈ Ωk
∆
= ∩ki=1Ck = Ωk−1 ∩ Ck. (8)

The set Ωk in the above equation is termed the exact member-
ship set. Clearly, every point in the exact membership set is a
legitimate estimate for w as it is consistent with the presumed
model and the received data. We note that Ωk is a sequence of
monotone non-increasing sets, i.e., Ωk ⊆ Ωk−i for any i ≥ 1.

Intuitively, if the data pairs {xi, yi}ki=1 are rich enough, Ωk
will be smaller when k grows larger. It is thus likely that,
at some point in time k, Ωk = Ωk−1. The key point is that
whenever a constraint set is not useful in reducing the size of
the exact membership set, it can be discarded and its associated
data pair is not used for updating the parameter estimates.
This results in the so-called data-dependent selective update
for the parameter estimates. In essence, the SMF algorithms
adapt only when necessary.

For the purpose of analysis, it is desirable to obtain an
effective analytical description of the exact membership set
Ωk. In practice, however, it is usually more convenient to find
some analytically tractable outer bounding sets for Ωk. One
good candidate for such bounding sets is ellipsoid.
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Let Ek−1 be an ellipsoid that, at time instant k − 1, outer
bounds the exact membership set Ωk−1, i.e., Ek−1 ⊃ Ωk−1.
This bounding ellipsoid can be formulated as

Ek−1 = {w ∈ RN : [w −wk−1]
T
P−1
k−1 [w −wk−1] ≤ σ2

k−1}
(9)

where wk−1 is the center of the ellipsoid and Pk−1 is a pos-
itive semi-definite matrix that characterizes the size (namely,
the lengths of the semi-axes) of the ellipsoid. Then, given
Ek−1, and the constraint set Ck obtained at time k, we shall find
an ellipsoid Ek that outer bounds the following intersection

Ek ⊃ Ek−1 ∩ Ck. (10)

The family of optimal bounding ellipsoid (OBE) algorithms
[10], [12], [21] have been proposed to approximate the exact
membership set. DH-OBE algorithm [10] recursively com-
putes wk, Pk, and σ2

k defining Ek ⊃ Ek−1 ∩ Ck through a
linear combination of (9) and (7), specifically, Ek = (1 −
λk)Ek−1 + λkCk with λk ∈ [0, 1). At each time instant k,
each value of λk yields a corresponding bounding ellipsoid
and λk is chosen such that σ2

k is minimized.
In this paper, we shall use the kernel trick to derive the

K-DH-OBE algorithm to recursively update the parameters of
Ek for our nonlinear algorithm. Essentially, the K-DH-OBE
algorithm needs to address two issues:
• whether or not the new data pair (xk, yk) is innovative

enough to necessitate an update for the parameter esti-
mates, which can be determined by the innovation check,
i.e., check if e2

k + σ2
k−1 > γ2 holds as shown in (15);

• whether or not κ(·,xk) should be inserted into the
existing dictionary, which can be determined by the
coherence-based sparsification rule as shown in (5).

In our proposed K-DH-OBE algorithm, we shall first conduct
the innovation check. We adopt the coherence criterion to
check if it should be inserted into the dictionary only when
the new data pair necessitates an update for the parameter
estimates. Depending on whether or not the dimension of the
dictionary increases, the algorithm should have two cases for
the weights update, which are discussed separately as follows.

A. Case 1: Dimension Remains The Same

When the innovation check indicates that the new data pair
(xk, yk) necessitates an update for the parameter estimates
but the coherence-based sparsification rule does not suggest
inserting κ(·,xk) into the existing dictionary, the dimension
remains the same. Thus the model is fk(xk) = wT

k uk with

uk = [κ(xk,xα1
) · · · κ(xk,xαm

)]T. (11)

Similarly to the linear DH-OBE algorithm, the recursive
updating formulas can be obtained by finding an ellipsoid Ek
that outer bounds Ek−1 ∩ Ck. The following theorem provides
the recursive updating formulas for the parameters of Ek.

Theorem 1: Let ellipsoid Ek−1 be the optimal bounding
ellipsoid which is characterized by wk−1, Pk−1 and σ2

k−1

as shown in (9). At time instant k, the following recursive
expressions for wk, Pk, and σ2

k defining Ek ⊃ Ek−1 ∩ Ck

are obtained through a linear combination of (9) and (7),
specifically, Ek = (1 − λ∗k)Ek−1 + λ∗kCk with λ∗k ∈ [0, 1)
being defined in [10] such that σ2

k is minimized:

wk = wk−1 + λ∗kPkukek (12a)

P−1
k = (1− λ∗k)P−1

k−1 + λ∗kuku
T
k (12b)

ek = yk −wT
k−1uk (12c)

σ2
k = (1− λ∗k)σ2

k−1 + λ∗kγ
2 − λ∗k(1− λ∗k)e2

k

1− λ∗k + λ∗kGk
(12d)

Gk = uT
kPk−1uk, (12e)

In addition, by employing the matrix inversion lemma, the
computation of Pk can be simplified as

Pk =
1

1− λ∗k

[
Pk−1 −

λ∗kPk−1uku
T
kPk−1

1− λ∗k + λ∗kGk

]
(13)

and the computation of wk can be simplified as

wk = wk−1 +
λ∗kPk−1ukek

1− λ∗k + λ∗kGk
. (14)

Proof: The proof is provided in the Appendix.
With Pk positive semi-definite and define βk , (γ2 −

σ2
k−1)/e2

k, the optimal λ∗k is computed by

λ∗k =

{
min(ξ, νk), if e2

k + σ2
k−1 > γ2

0, otherwise,
(15)

where

νk =


ξ, if e2

k = 0
1−βk

2 , if Gk = 1
1

1−Gk

[
1−

√
Gk

1+βk(Gk−1)

]
if βk(Gk − 1) + 1 > 0

ξ if βk(Gk − 1) + 1 ≤ 0

and ξ ∈ (0, 1) is a design parameter.
Notice that if, at any iteration k, e2

k + σ2
k−1 ≤ γ2, then the

optimal λ∗k = 0, which results in wk = wk−1,Pk = Pk−1,
and σ2

k = σ2
k−1 according to (12). In other words, if e2

k +
σ2
k−1 ≤ γ2 holds, then the computation of (12) is not required.

In essence, the data-dependent selective update feature of SMF
algorithms still holds, which reduces computation cost by
skipping the parameters update at such iterations.

B. Case 2: Dimension Increases

When the innovation check indicates that the new data pair
(xk, yk) necessitates an update for the parameter estimates
and the coherence based sparsification rule suggests insert-
ing κ(·,xk) into the existing dictionary, then the dimension
increases and the model is fk(xk) = wT

k ũk with

ũk = [κ(xk,xα1
) · · · κ(xk,xαm

) κ(xk,xk)]T

=
[
uT
k uak

]T
.

(16)

The dimensions for the weight wk−1 and the correspond-
ing shaping matrix Pk−1 before the update should also be
increased by one to match the dimensions of ũk, i.e.,

w̃k−1 =
[
wT
k−1 0

]T
, (17)

220

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



P̃k−1 =

[
Pk−1 0m+1

0T
m+1 δ−2

]
. (18)

In essence, the above equations are implemented to add a new
semi-axis to the previous optimal bounding ellipsoid, resulting
in a new ellipsoid in the higher dimension. Accordingly, the
parameter δ in (18) must be chosen properly to ensure that
the higher dimension bounding ellipsoid will outer bound
the exact membership set in the next iteration. The recursive
updating formulas can then be obtained by finding an ellipsoid
Ek that outer bounds the intersection between the enlarged
Ek−1 and Ck. Specifically, the weights update is given by

wk =w̃k−1 + λ∗kPkũkek (19a)

P−1
k =(1− λ∗k)P̃−1

k−1 + λ∗kũkũ
T
k (19b)

ek =yk −wT
k−1uk (19c)

σ2
k =(1− λ∗k)σ2

k−1 + λ∗kγ
2 − λ∗k(1− λ∗k)e2

k

1− λ∗k + λ∗kG̃k
(19d)

G̃k =ũTk P̃k−1ũk = uT
kPk−1uk + u2

ak/δ
2, (19e)

where λ∗k is computed according to (15) with Gk replaced by
G̃k.

In addition, the computation of the shaping matrix Pk can
be simplified. Substituting (16) and (18) to (19b) yields

P−1
k = (1−λ∗k)

[
P−1
k−1 0m+1

0T
m+1 δ2

]
+λ∗k

[
uku

T
k ukuak

uaku
T
k u2

ak

]
.

(20)
Applying the matrix inversion lemma to (20) gives

Pk =

[
P11 p1

pT
1 r

]
, (21)

where

P11 =
1

1− λ∗k

[
Pk−1 −

λ∗kPk−1uku
T
kPk−1

1− λ∗k + λ∗k(u2
ak/δ

2 +Gk)

]
,

p1 = − λ∗k
1− λ∗k

1

δ2

uakPk−1uk
1− λ∗k + λ∗k(u2

ak/δ
2 +Gk)

,

r =
1

δ2

1− λ∗k + λ∗kGk
1− λ∗k + λ∗k(u2

ak/δ
2 +Gk)

.

Furthermore, the weights updated (19a) can be computed by

wk =

[
wk−1

0

]
+

[ λ∗
kekPk−1uk

1−λ∗
k+λ∗

k(Gk+u2
ak/δ

2)

1
δ2

λ∗
kekuak

1−λ∗
k+λ∗

k(Gk+u2
ak/δ

2)

]
.

The pseudocode that summarizes the K-DH-OBE algorithm
is as shown in Algorithm 1.

IV. SIMULATIONS

This section presents a simulation study that compares the
proposed K-DH-OBE algorithm with the KNLMS algorithm
[14] and the KRLS algorithm [13] using the same nonlinear
model
yk =[0.8− 0.5 exp(−y2

k−1)]yk−1

− [0.3 + 0.9 exp(−y2
k−1)]yk−2 + 0.1 sin (yk−1π) + nk,

where yk is the desired output corrupted by Gaussian mea-
surement noise nk ∼ N (0, 0.01). The initial condition is

Algorithm 1 K-DH-OBE algorithm
1: Initialization

Initiate σ2
1 , γ, ξ, δ, µ

Insert κ(·,x1) into the dictionary, set m = 1
Denote the dictionary as [κ(·,xα1

)]
Compute u1 = [κ(x1,xα1

)], set w1 = [1]
2: For k > 1, repeat

Get (xk, yk)
Compute uk = [κ(xk,xα1

) · · ·κ(xk,xαm
)]

Compute ek = yk −wT
k−1uk

if e2
k + σ2

k−1 > γ2 . Innovation check
if maxj=1,··· ,m |κ(xk,xαj

)| ≤ µ . Case 2
m← m+ 1
Insert κ(·,xk) into the dictionary
Denote κ(·,xk) as κ(·,xαm

)
Update wk using (19)

else . Case 1
Update wk using (12)

end
end

y1 = y2 = 0.1. Each online algorithm is used to learn a
nonlinear model ŷk = fk(xk) at every time instant k, where
xk = [yk−1 yk−2]T . In this study, we use the same Gaussian
kernel κ(xi,xj) = exp(−3.73||xi − xj ||2) as that used in
[14], and the threshold µ in the coherence criterion is set to
be 0.5. Other details of the experiment setup for the KNLMS
algorithm and the KRLS algorithm can be found in [14].

For the K-DH-OBE algorithm, we set the initial value
σ2

1 = 100 and ξ = 0.005, while other design parameters,
namely, γ and δ, are determined by a grid search based on
the MSE averaged over 10 independent experiments. Each
experiment includes a sequence of 5000 samples, and the MSE
is evaluated on the last 3000 iterations (after the algorithm con-
verged), i.e.

∑5000
k=2001(yk−wT

k−1uk))2/3000. The parameters
that yield smallest MSE are γ = 5 and δ = 0.2. Fig. 1 shows
the learning curves of K-DH-OBE, KNLMS and KRLS, which
are obtained by averaging over 200 independent experiments
for each time instant and smoothing with a moving average
window that averages over 20 consecutive samples. A plot
of σ2

k in the K-DH-OBE algorithm obtained from one of the
experiments is shown in Fig. 2.

Another two hundred 10,000-sample independent experi-
ments are conducted to test the performance of the model. As
reported in Table I, the MSE for K-DH-OBE is 0.0103, which
is achieved with only 1,659 iterations of weights update by
virtue of the inherent selective update property of SMF algo-
rithms. In addition, K-DH-OBE algorithm yields more sparse
dictionary. An example of increase of the dimensions for K-
DH-OBE, KNLMS and KRLS obtained from one experiment
is shown in Fig. 3.

V. CONCLUSION

This paper has derived a nonlinear online learning algorithm
based on the SMF framework and kernel method. In addi-
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Fig. 1. Learning curves of K-DH-OBE, KNLMS and KRLS obtained by
averaging two hundred 5,000-sample independent experiments.
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Fig. 2. σ2
k versus iterations in K-DH-OBE obtained from one experiment.

TABLE I
PERFORMANCE TESTED ON TWO HUNDRED 10,000-SAMPLE

INDEPENDENT EXPERIMENTS

Algorithm MSE∗ Dimension Update Times
K-DH-OBE 0.0103 20.11 1,659

KNLMS 0.0105 22.16 10,000
KRLS 0.0091 22.91 10,000

*MSE is averaged over the last 5000 iterations.
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Fig. 3. Increase of the dimension for K-DH-OBE, KNLMS and KRLS
obtained from one experiment.

tion to the coherence-based sparsification rule that controls
the size of kernel expansions, the data-dependent selective
update property embedded in the SMF framework results in a
more sparse model and, more importantly, much less frequent
updates of the parameter estimates. Simulation experiments
showed that K-DH-OBE algorithm achieved smaller MSE and
faster convergence than KNLMS algorithm, and had many
fewer iterations that update the parameter estimates. Future
work will include more theoretical analysis on the convergence
properties.
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APPENDIX

Proof of Theorem 1: Linear combination of (9) and (7)
yields the bounding ellipsoid at time instant k, i.e.,

Ek = {w ∈ RN : [w −wk]
T
P−1
k [w −wk] ≤ σ2

k}
= {w ∈ RN : (1− λk) [w −wk−1]

T
P−1
k−1 [w −wk−1]

+ λk|yk −wTuk|2 ≤ (1− λk)σ2
k−1 + λkγ

2}.
(22)

The following relations are directly obtained via identification-
by-terms of the expanded expressions in (22)

P−1
k = (1− λk)P−1

k−1 + λkuku
T
k (23)

wk = Pk
[
(1− λk)P−1

k−1wk−1 + λkykuk
]

(24)

σ2
k = (1− λk)σ2

k−1 + λkγ
2
k − λky2

k

−(1− λk)wT
k−1P

−1
k−1wk−1 + wT

kP
−1
k wk.(25)

After premultiplying (23) with Pk, we obtain, after rearrang-
ing the terms, the relation (1−λk)PkP

−1
k−1 = I−λkPkukuT

k,
which after substitution in (24) together with (12c) gives (12a).
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Relation (14) is obtained by rewriting the correction terms
for the parameter update in (12a), i.e., λkPkukek, using the
matrix inversion lemma as follows

λkPkukek = λk
[
(1− λk)P−1

k−1 + λkuku
T
k

]−1
ukek

=
λk

1− λk

[
Pk−1 −

Pk−1uku
T
kPk−1

1−λk

λk
+ uT

kPk−1uk

]
ukek

=
λkPk−1ukek

1− λk + λkuT
kPk−1uk

Finally, relation (12d) is obtained by substituting (23) and (14)
into (25).
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