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ABSTRACT
Diffusion adaptation is a useful strategy for distributed es-
timation over networks. Though several information fusion
strategies for the diffusion adaptation have been proposed in
the literature, it can be restrictive to use a single strategy espe-
cially for networks operating in non-stationary environments.
Inspired by the convex combination of adaptive filters, in this
paper we propose to benefit the performance of two distinct s-
trategies by appropriately combining their fusion coefficients.
The combination coefficient on each node is determined by
minimizing the overall squared estimation error in a local and
online manner. Simulation results highlight favorable proper-
ties of the proposed combination scheme, with both static and
dynamic fusion components.

Index Terms— Distributed optimization, diffusion strat-
egy, convex combination, adaptive fusion strategy.

1. INTRODUCTION

Distributed adaptation algorithms endow networks with the a-
bility to estimate and track unknown parameters from stream-
ing data in a collaborative manner. Among various strate-
gies [1–6], diffusion adaptation [5, 7] is an efficient strategy
that is particularly attractive due to its enhanced adaptation
performance and wider stability ranges [8]. Diffusion-based
algorithms have been extensively studied, in respect of adap-
tation algorithms on agents, including diffusion LMS [9, 10],
diffusion APA [11], diffusion Kalman filtering [12], diffusion
RLS [13], and in respect of cooperation strategies among a-
gents [14–16].

A typical diffusion-based adaptation algorithm consists
of an adaptation step and a combination step. In the combi-
nation step, each agent collects intermediate estimates from
its neighbors and performs a fusion of the collected esti-
mates. Properly selecting the fusion weights can be crucial
to guarantee an enhanced performance of a diffusion-based
algorithm. While finding an optimal setting of these weight-
s can be non-trivial, several empirical strategies with fixed
coefficients have been proposed, including averaging rule,
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metropolis rule, relative-degree rule, etc [5]. In addition to
these static strategies, adaptive algorithms have also been de-
rived in consideration of noise levels across the network [17]
or parameter relations among agents [15]. However, it is
difficult to know the best algorithm to use a priori, and it is
also difficult to have an algorithm that always outperforms
the others, especially for networks operating in time-varying
environments. It is thus important to find a way to address the
limitation of using a single combination strategy.

Combination of adaptive filters inspired us with a solution
to this issue. Recall that utilizing convex combination [18,19]
or affine combination [20] of adaptive filters with diversity,
the resulting filters possess the advantages of all component
filters. Generally, the combination schemes are used to facil-
itate the selection of filter parameters, to increase robustness
against the unknown environment, as well as to possibly en-
hance performance beyond the range of each component [21].
Over the past years, several algorithms have been proposed to
adapt the combination coefficients of the component filters,
such as cvx-LMS [18] and cvx-PN-LMS [22]. In this paper,
we propose a convex combination algorithm for fusion coef-
ficients in diffusion strategies. Each agent is designed to run
two diverse diffusion strategies and combine their estimates
to generate the final estimates. The time-varying combination
coefficients are obtained by minimizing the overall squared
instantaneous errors. Simulation results show that the pro-
posed algorithm endows the networks with a significantly en-
hanced performance in the learning process.

Notation. Normal font x denotes scalars. Boldface smal-
l letters x and capital letters X denote column vectors and
matrices, respectively. The superscript (·)⊤ denotes the trans-
pose operator. The mathematical expectation is denoted by
E{·}. Nk denotes the neighbors of node k, including k.

2. NETWORK MODEL AND DIFFUSION LMS

2.1. Network Model

Consider a connected network consisting of N agents. The
problem is to estimate unknown parameter vectors w⋆

k of
length L× 1 at each agent k. Agent k has access to temporal
measurement sequences {dk,n,xk,n}, where dk,n denotes a
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reference signal, and xk,n denotes an L× 1 regression vector
with a covariance matrix Rx,k > 0. The data at agent k at
time instant n are characterized by the linear model:

dk,n = x⊤
k,nw

⋆
k + zk,n, (1)

where zk,n is a zero-mean, stationary, i.i.d. additive noise
with variance σ2

z,k, and independent of any other signals. To
determine the unknown parameter vectorw⋆

k, we consider the
following mean-square-error (MSE) cost at each agent k:

Jk(w) = E
{
|dk,n − x⊤

k,nw|2
}
. (2)

It is seen from (1) that Jk(w) is minimized atw⋆
k. For single-

task problems, each agent in the network estimate the same
parameter vector, while for multi-task problems, agents may
estimate distinct parameter vectors.

Note that the combination scheme to be presented will
fit in any diffusion adaptation algorithms. We use the linear
model (1) and MSE cost (2) for an ease of presentation of
main idea of this work.

2.2. Diffusion LMS

Diffusion LMS strategies for the distributed estimation ofw⋆
k

were derived in [5, 6, 9, 10] by seeking the minimizer of the
following aggregate cost function:

Jglob(w) =
N∑

k=1

Jk(w) (3)

in a cooperative manner in order to improve estimation accu-
racy. Our work will be presented with the adapt-then-combine
(ATC) diffusion LMS without raw data exchange, i.e.,

ψk,n+1 = wk,n + µk xk,n (dk,n − x⊤
k,nwk,n)

wk,n+1 =
∑
ℓ∈Nk

aℓk ψℓ,n+1
(4)

where {alk} are a group of coefficients satisfying:

aℓk ≥ 0,

N∑
ℓ=1

aℓk = 1, and aℓk = 0 if ℓ /∈ Nk. (5)

Namely fusion coefficients {aℓk} form to a left-stochastic ma-
trix A. Note that the steps in (4) can be written in a compact
form by:

wk,n+1 =
∑
ℓ∈Nk

aℓk
[
wℓ,n+µℓxℓ,n

(
dℓ,n−x⊤

ℓ,nwℓ,n

)]
. (6)

2.3. Motivation of combining multiple matricesA

Coefficient matrix A plays a crucial role in affecting the per-
formance of a diffusion LMS algorithm. Though we can se-
lect left-stochastic matrix A freely, either in a fixed or adap-
tive manner, it can be restrictive to use a single combination
matrixA for the following reasons:

+
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Fig. 1. Illustration of combination of two diffusion strategies.

• On one hand, it is difficult to know the best fusion strat-
egy to use a priori, especially for networks operating in
time-varying environments. For instance, an averag-
ing rule is frequently used for single-task networks and
usually outperforms the non-cooperative strategy with
A = IN . However, if parameters on agents drift to a
multitask case at some instant, the non-cooperative s-
trategy can then become preferable since an averaging
rule leads to a large estimation bias.

• On the other hand, it is often difficult to have an adap-
tive fusion coefficient adjusting algorithm that outper-
forms the others in all cases, since each algorithm has
its own working hypothesis, and has parameters to ad-
just with respect to applications.

We thus propose to consider several combination strategies
as components, then adjust strength of each component to
achieve a properly combined strategy. This component-based
combination scheme has been successfully used in convex
combination of adaptive filters, as well as in multi-kernel
learning [23, 24].

3. CONVEX COMBINATION OF DIFFUSION
STRATEGIES

In this work, we consider the convex combination of two dif-
fusion LMS strategies with distinct component fusion matri-
ces, while an extension to multiple components is possible.

The combination scheme consists of two concurrent adap-
tive layers: adaptation with individual diffusion strategies and
adaptation of the combination layer. The input of the combi-
nation layer is two groups of estimations of the same network
obtained by running two distinct diffusion strategies individ-
ually. This setting is also equivalent to combine two topolog-
ically identical networks with different diffusion strategies,
with the associated combination matrices denoted by A(1)

and A(2) respectively 1, as illustrated in Fig. 1. For network-
s A(1) and A(2), the corresponding agents have access to the
identical input and reference signals, then produce two group-

1Without ambiguity, A(1) and A(2) are also used to denote the networks
running corresponding diffusion strategies.
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s but individual estimations of the optimal weight vectors.
We then associate combination coefficients γk,n ∈ [0, 1], and
1 − γk,n respectively for two components at agent k at time
instant n. In total, a network of N agents is then associated
with N pairs of convex combination coefficients. The goal
of the combination layer is to learn which diffusion strategy
performs better at any particular instant n at each agent, to
assign them with weights that optimizes the overall network
performance.

We denote the (ℓ, k)-th entries of left-stochastic matrices
A(1) andA(2) as a(1)ℓk and a

(2)
ℓk respectively. Then we have:

w
(i)
k,n+1 =

∑
ℓ∈Nk

a
(i)
ℓk

[
w

(i)
ℓ,n + µ

(i)
ℓ xℓ,n

(
dℓ,n − x⊤

ℓ,nw
(i)
ℓ,n

)]
(7)

y
(i)
k,n = x⊤

k,nw
(i)
k,n (8)

e
(i)
k,n = dk,n − x⊤

k,nw
(i)
k,n (9)

with i = 1 and 2, denoting estimation quantities obtained by
using two diffusion strategies withA(1) andA(2) respective-
ly. Recall thatw(i)

k,n+1 is the estimate of the system coefficient

w⋆
k at time instant n+1, e(i)k,n is a priori output estimation er-

ror of agent k at instant n, and y
(i)
k,n is the estimation of the

reference signal at time instant n.
By combining the estimations of two diffusion strategies

at each agent k, we have the overall output yk,n, overall esti-
mation error ek,n and the overall system coefficients wk,n at
the combination layer for each agent k defined as follows:

yk,n = γk,ny
(1)
k,n + (1− γk,n)y

(2)
k,n (10)

ek,n = γk,ne
(1)
k,n + (1− γk,n)e

(2)
k,n (11)

wk,n = γk,nw
(1)
k,n + (1− γk,n)w

(2)
k,n, (12)

corresponding to convex combination of estimations on each
agent, with γk,n ∈ [0, 1]. To avoid using non-natural hard-
thresholding operations for γk,n to keep the convex constrain-
t, we utilize a nonlinear sigmoid function to calculate γk,n:

γk,n =
1

1 + e−αk,n
, (13)

where αk,n is an introduced auxiliary parameter.
Now the problem boils down to the selection of parameter

γk,n, or equivalently αk,n, based on certain criterions. We
consider the minimum mean-square-error (MMSE) criterion.
The MSE of the whole network at the combination layer at
instant n is defined as:

Jnet
n =

1

2

N∑
k=1

E
{
e2k,n

}
, (14)

which is the summation of the MSE over all agents. Then
we choose γk,n by minimizing (14). Observe from (11) that
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Fig. 2. Network topology and associated input variances and
noise variances. (a) Network topology; (b) Agent input and
noise variances.

the direct solution of γk,n would include an unsolvable term
E
{
e
(1)
k,n e

(2)
k,n

}
. To avoid this problem, we adopt an adaptive

scheme for the solution of γk,n. Due to the introduction of
the auxiliary parameter αk,n, we adopt an iteration for αk,n

instead of updating γk,n directly. Using a stochastic gradi-
ent search to minimize (14), and approximating the expecta-
tion terms with instantaneous values, it leads to the power-
normalized LMS (PN-LMS) iteration:

αk,n+1 = αk,n − µαk

ε+ pk,n

∂Jnet
n

∂αk,n

≈ αk,n +
µαk

ε+ pk,n
γk,n

(
1− γk,n

)
ek,n

× x⊤
k,n

(
w

(1)
k,n −w(2)

k,n

)
, (15)

where ε is a small positive number to ensure non-zero divi-
sion, µαk

is a positive step-size, and pk,n is a low-pass filtered
estimation of the power of x⊤

k,n

(
w

(1)
k,n −w(2)

k,n

)
:

pk,n = η pk,n−1 + (1− η)[x⊤
k,n(w

(1)
k,n −w(2)

k,n) ]
2
, (16)

with η being a temporal smoothing factor. We utilize pow-
er normalization trick [22] in (15) to simplify the selection
of step-size µαk

. Also, we observe that the adaptation (15)
would virtually stop if αk,n is allowed to grow unbounded, as
γk,n will get close to 0 or 1, which makes the term γk,n

(
1−

γk,n
)

be 0. To alleviate this problem, auxiliary parameter
αk,n is restricted to be in a symmetric interval [−α+, α+],
which ensures a minimum level of adaptation. A common
choice in the literature is to set α+ = 4 [21].

4. SIMULATION RESULTS

Now we present simulation results to illustrate the proposed
combination scheme. Consider a non-stationary system iden-
tification scenario with w⋆

k varied over time. The network
was consisted of N = 10 agents with connection topology
depicted in Fig. 2. The regressors were generated from multi-
variate Gaussian distribution with zero mean and covariance
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Fig. 3. Simulation results of experiments described in Sec. 4. (a) Network MSD learning curves associated to the combined
strategy and two fixed component fusion matrices; (b) The evolutions of convex combination coefficients γk,n of agent 4 and
9 in experiment 1 (top) and experiment 2 (bottom); (c) Network MSD learning curves associated to the combined strategy and
two dynamic fusion matrices.

matrix Rk = σ2
x,kIL, with L = 50. The noise signals were

generated from Gaussian distributions N (0, σ2
z,k). Besides,

σ2
x,k and σ2

z,k of each agent generated randomly are depicted
in Fig. 2. The evolutions of system coefficients w⋆

k were di-
vided into four stationary stages and three transient episodes.
For stationary stages, the system coefficients w⋆

k were gener-
ated from standard Gaussian distribution. During stationary
stages, we set w⋆

k of each agent so that from time instan-
t n = 1 to 1000 and from instant n = 4500 to 7000, the
whole network pursued the same target, while from instant
n = 1500 to 2500 and from n = 3000 to 4000, the network
split to pursue 2 and 3 targets respectively. The fragments be-
tween two adjacent stationary stages were so-called transient
episodes, which were designed by using linear interpolation
over 500 time instants. We consider two experiments to val-
idate the combination scheme and simulation results are ob-
tained by averaging over 100 Monte Carlo runs. In addition,
in all experiments, µαk

was set to 4, ε was set to 0.05, and η
was set to 0.95.

In the first experiment, we consider the combination of t-
wo fixed fusion matrices: non-cooperative ATC strategy with
A(1) = I and ATC strategy with a matrix A(2) defined by
the averaging rule. The resulting MSD learning curves are
illustrated in Fig. 3(a). Besides, the evolutions of the combi-
nation coefficients of agents 4 and 9 are depicted in Fig. 3(b).
We observe from Fig. 3(a) that the ATC strategy with matrix
A(2) outperforms ATC strategy withA(1) from instant n = 1
to 1100 and from n = 4400 to 7000, since the whole network
pursues the same target, cooperation between agents would
be beneficial. While from instant n = 1100 to 4400, informa-
tion fusion matrixA(2) with the averaging rule leads to a poor
performance due to large bias when estimating distinct tar-
gets. As expected, the proposed convex combination scheme
results in a MSD learning curve approaching the best of each
component strategies at different stages. Namely, it behaves
in a similar way to the non-cooperative algorithm when es-

timating multiple targets, while approaches the strategy with
A(2) when estimating the same target. Besides, the evolu-
tions of combination coefficients in Fig. 3(b) coincide with
the MSD behavior of combination scheme. Large weights are
assigned to put emphasize on the use of A(1) from n = 1100
to 4400, and on the use ofA(2) for the other instants.

We then combine two adaptive information fusion matri-
ces in the second experiment, with matrixA(1)

n derived in [15]
and matrix A(2)

n derived in [17], where subscript n is added
to emphasize the time-varying property of these fusion matri-
ces. The MSD learning curves are illustrated in Fig. 3(c), and
the evolutions of the combination coefficients are depicted in
the bottom subfigure of Fig. 3(b). Similar to the first exper-
iment, the proposed combination strategy successfully bene-
fits the performance of each component fusion matrix via an
appropriate combination of the two dynamic fusion matrices.
Interestingly, from time instant n = 1900 to 2500, the com-
bined curve outperforms each component. The behavior of
the combination coefficient on agent 4 during this stage is not
coincident with intuition, and this particular behavior howev-
er may contribute to the positive effect on the performance.
Similar favorable property is also reported in the study of the
convex combination of classical adaptive filters. These results
show the effectiveness of the proposed strategy when applied
to dynamic fusion matrices.

5. CONCLUSIONS

In this paper, we propose a scheme for the convex combi-
nation of two distributed diffusion strategies. By assigning
a group of convex combination coefficients to each nodes of
the network, and by minimizing the MSE of the whole net-
work, as well as utilizing the adaptation scheme to adjust the
convex combination coefficients, we obtain a combined strat-
egy maintaining the advantages of both component diffusion
strategies simultaneously, and sometimes even better.
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