
Log-based Anomalies Detection of MANETs
Routing with Reasoning and Verification

Teng Li∗, Jianfeng Ma∗, Qingqi Pei∗, Yulong Shen§ and Cong Sun∗
§School of Computer Science
∗School of Cyber Engineering

Xidian University, Shaanxi, China
Email: litengxidian@gmail.com

Abstract—Routing security plays an important role in Mobile
Ad hoc Networks (MANETs). Despite many attempts to im-
prove its security, the routing procedure of MANETs remains
vulnerable to attacks. Existing approaches offer support for
detecting attacks or debugging in different routing phases, but
many of them have not considered the privacy of the nodes
during the anomalies detection, which depend on the central
control program or a third party to supervise the whole network.
In this paper, we present an approach called LAD which uses
the raw logs of routers to construct control a flow graph and
find the existing communication rules in MANETs. With the
reasoning rules, LAD can detect both active and passive attacks
launched during the routing phase. LAD can also protect the
privacy of the nodes in the verification phase with the specific
Merkle hash tree. Without deploying any special nodes to assist
the verification, LAD can detect multiple malicious nodes by
itself. To show that our approach can be used to guarantee the
security of the MANETs, we deploy our experiment in NS3 as
well as the practical router environment. LAD can improve the
accuracy rate from 2.28% to 29.22%. The results show that LAD
performs limited time and memory usages, high detection and
low false positives.

Keywords—MANETs; Syslog; Verification; Privacy; Diagnos-
tics

I. INTRODUCTION

The Mobile Ad hoc Networks (MANETs) [1] are continu-
ously self-configuring, infrastructure-less networks of mobile
devices connected without wires. In such a network, all the
mobile nodes collaborate with each other and establish routing
in a self-organized way. The primary goal of routing in
MANETs is to establish a correct and efficient path where
data can be efficiently and securely transmitted [2]. One
particular challenge for MANETs is problem diagnosis. That
is, when problems occur, quickly detecting the anomalies and
identifying the root causes is of utmost importance. Recent
efforts in diagnosing MANETs problems have focused on
using problem tickets [3] and network provenance [4]. Besides,
others [5] [6] have used packets trace to diagnose problems.
Although they can detect the problems, they will use all
of the information of the nodes which can be difficult to
use in a distributed network environment. However, network
device logs are straightforward and a common source of
information for anomalies detection. Log data are printed by
various applications to record the conditions or events on the

equipment, which are initially used for code debugging for the
developers. As the logs can record the past events and attack
clues, they have become the first choice of the developers to
diagnose the systems or devices.

Despite the potential benefits, syslogs, unlike most other
readily available troubleshooting data (e.g. problem tickets,
traceroutes), are not embedded with sufficient information
to not only diagnose anomalies but also point out the root
cause of the problems. The raw syslog messages are originally
used for debugging purposes and pose many challenges in
equipment diagnosis. First, syslogs are massive in volume
which contain complex kinds of messages [7], posing as a
computational challenge. Second, they are unstructured data
and lack homogeneity posing as a semantic challenge for
analysis [8]. Third, log data are too low-level [9] and rarely
contains explicit information for anomaly detection which
cannot be used directly.

There are also a lot of works using syslogs to diagnose the
problems of network devices [10] [11]. However, they all use
raw syslogs to detect the anomalies on a sole network device.
In MANETs, devices (e.g. routers) connect and communicate
with each other using certain protocols. To diagnose the
MANETs, we should not only consider one network device but
the relationship among them. For example, when the network
suffers a black hole attack [12], every node behaves well and
the logs on the devices seem benign individually. However,
when we diagnose all nodes involved in the event with the
communication rules then we can find out the fabricated
behaviors [13]. Thus, diagnosing sole devices is not adequate
enough and we should consider all of the devices in the
network.

In the MANETs environment, mobile devices communicate
with each other in a self-organized way. Therefore, introducing
a third party to diagnose the network is inadequate as this will
violate the intrinsic distribution characteristic of the MANETs
and bring extra security problems. During the self-diagnosis
process, the devices will exchange information of the devices,
which is prone to leaking privacy data (e.g. disclosing all
the plain text of the syslogs). Thus, the approach should also
protect the privacy of the devices during the diagnosing phase
in MANETs, otherwise the diagnosis itself is not secure and
will bring in new problems to the network devices.

240

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018

In this work, we concentrate on two main goals: (1) detect
anomalies in MANETs (such as active and passive attacks
[14]) based on syslogs of the network devices; (2) protect the
network devices’ privacy (e.g. conceal the plain-text syslogs)
during the diagnosis phase. However, there is an inherent
tension between these two goals because the diagnosis usually
requires revealing private log entries or packets of nodes
[15]. To mitigate the above problems, we present LAD (Log-
based Anomalies Detection) which uses syslogs of the network
devices to diagnose the anomalies in MANETs. First, LAD
transfers the raw unstructured syslogs to high level structured
log entries. Second, LAD uses a Control Flow Graph [16] [17]
combined with association rules to determine the relationship
of the communication rules among the devices. Then, with the
rules, LAD deduces the expected logs on the devices. Finally,
with the help of a specific Merkle Hash Tree, LAD can achieve
the privacy preserving goal while verifying the real logs on
the devices and the expected ones. We have applied LAD in
MANETs anomalies detection and it can detect both active
and passive attacks. LAD can also detect multiple attacks in
practical routers and it can achieve more stable results.

In summary, our key contributions are:
1. A novel log template extraction method is proposed combin-
ing regular expression and Jaccard similarity (Section II-A).
2. We construct a Control Flow Graph and find three different
models among the templates. In this way, we can find the
relations among the log templates instead of making them
(Section II-B).
3. With the communication rules coded in NDlog, the reason-
ing process can be accomplished in a distributed way without
introducing a third party (Section II-D).
4. The specific Merkle Hash Tree is constructed containing
the syslogs to do confidential verification without leaking the
privacy of the routers (Section II-E).

II. METHODOLOGY OF LAD

In this section we elaborate LAD in detail. We explain how
to transfer the raw logs to the reasoning rules with CFG and
how to do the reasoning and verification.

A. Extracting the Log Templates

There are huge amounts of logs and various forms of
unstructured logs with a large number of parameters in the
syslogs. With the template-extracting, we can transfer the
raw unstructured syslogs to structured high-level information.
Then, finding the relationship among the logs can be launched.

To extract the template correctly, we propose a novel
method. According to the practical experiment, a large number
of parameters in log entries are IP, MAC and some explicit
combination of numbers and words. To accelerate the pro-
cessing time and efficiency, we use the regular expression to
first filter out the numbers, IP addresses, MAC addresses, the
mixture of numbers and letters (such as eth1, vlan3), and the
content between some symbols (such as [], (), ””). With the

TABLE I: Examples of Regular Expression

Text Example Regular Expression

[1-9]|[1-9]\\d|1\\d2|2[0-4]\\d|
192.168.1.1 25[0-5])(\\.(\\d|[1-9]\\d|1\\d2

|2[0-4]\\d|25[0-5]))3|[a-fA-F0-9]8

[a-fA-F0-9]2+:[a-fA-F0-9]2+:[a-fA-F0-9]2+:[a

70:48:0F:36:79:0F -fA-F0-9]2+:[a-fA-F0-9]2+:[a-fA-F0-9]2|[a-fA

-F0-9]1,2+:[a-fA-F0-9]1,2+:[a-fA-F0-9]1,2+:[a

-fA-F0-9]1,2+:[a-fA-F0-9]1,2+:[a-fA-F0-9]1,2

eth1 [a-zA-Z]+\\d+|\\d+[a-zA-Z]

+|\\d+|(̂-)?[1-9][0-9]∗$

udhcpd[725] .*[\\d+].*

TABLE II: Primary logs by regular expression

Message

udhcpd[*]: sending ACK to *

udhcpd[*]: received REQUEST from *

udhcpd[*]: sending OFFER to *

udhcpd[*]: received DISCOVER from *

* add * mcast address to master interface

* Setting MAC address to *

process of regular expression, the primary templates are shown
in Table II.

Then, we also need to extract the template from some lexical
variables without numeric ones. As shown in Table II, the
words, ACK, REQUEST , OFFER and DISCOV ER,
are also parameters. As is done in work [11], we first pick
the messages with the same beginning words with the same
length and the two same primary templates will only be used
once. First, we use Jaccard similarity [18] to calculate the two
templates’ similarity as shown in Equation 1:

SIM(S, T) =
|S ∩ T |
|S ∪ T |

(1)

We use the Jaccard similarity (>0.9) to cluster the log
templates together. Then, LAD finds the other words by
eliminating the same ones in every template.

lϵ{Li −Lsame}, i is the sequence of the template. (2)

For each l in every template, LAD finds the position of l
in the template and creates a position vector. LAD compares
the position vector. If the vectors are the same, it can tell that
the different words appear in the same position and we can
know that the parameters are in these places. Due to the above
approach, LAD can find out the templates of the log correctly.

241

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

B. Finding the Rules in MANETs
In MANETs, the equipment links and communicates with

each other in certain rules which have been set before they
send the messages. We need to find these communication
rules instead of making them. Many approaches [4] [19] relied
on rule-based processing which has improved the routers’
debugging ability, but it requires the operator to have domain
knowledge and involves a human operator to make the rules
for the detection. For our black-box approach for anomaly
diagnosis, we cannot know the communication rules except
for finding them.

We use the Apriori algorithm to find the relations between
the two log templates and construct these relations into CFG
(control flow graph) [20] [21]. A control flow graph of a
program flow P is a directed graph G = (N,E, ns, ne). N
is the node set that contains all of the basic blocks of the
flow. E is the edge set among the nodes. ns is the start node
of the flow and ne is the end point (ns ϵ N and ne ϵ N). Each
time the first block is executed, the following instructions must
also be executed in order. Thus, with CFG, we can get the
relationships and sequence order of the logs. As is shown in
Figure 1, we need to convert the log templates into CFG.

Fig. 1: Logs and CFG

We denote FS as the Following Sequence and PS as the Prior
Sequence. FS(T) of the template T means that the following
templates emerge when T shows up. PS(T) of the template
T means the prior templates of T . Then, we can calculate the
possibility of FS(T) and PS(T).

Fig. 2: Three types of sub-structures of CFG

C. The Deduction Rules for LAD

We transfer the raw syslogs to the structured log entries. For
example, when a sender wants to find a route, it first broadcasts
a routing request, sendRequest(@C,S,D,SEQ), to its
neighbors. The request means S wants to find a routing path to
D whose sequence number is in SEQ and this request is logged
at C. C and R represent the sender’s and receiver’s storage
place respectively. S represents the sender, D is the receiver
and SEQ represents the destination sequence number which is
used to determine the freshness of the routing information. IP
means the destination’s plain IP address. R is the intermediate
router, and it stores its messages in the place of M. MSG is the
message that the source node wants to send to the destination
host.

With the help of CFG, we can get the relations of the
syslogs and LAD can use these rules for the reasoning. In the
routing environment, we only trust the sender and we think the
destination has the possibility to deceive the source node by
launching attacks such as a black hole attack [22] or worm hole
attack [23]. This attack scenario is more common in MANETs.

First, LAD uses syslogs on the trusted source node S to
deduce the information that should be held by destination node
D. The sender is not sure whether D is benign or it received the
messages the source node sent. LAD verifies D’s real log to
check whether it can provide evidence to prove its correctness
by using the Merkle Hash Tree. If the result is true, we can
know that the intermediated nodes forwarded the messages
correctly and there is no active attack.

Then, LAD uses the information from the source and
destination to verify whether the intermediated nodes are well-
behaved to check if there are passive attacks in the route. If the
result is false, it means that some nodes must launch the active
attacks and LAD just uses the logs of the source to deduce the
logs of the intermediated routers. In this way, we can finally
guarantee the security of the intermediated routers along the
routing path and make sure the whole path is healthy. We
use MHT for the verification and this can guarantee privacy
during the verification phase. Next, we elaborate the details of
the reasoning and verification.

D. Reasoning Approaches

First we use the sender’s information to infer the messages
on the receiver to identify the destination node. For conve-
nience, this phase is denoted by S→D (source node deduces
the destination node), which consists of the reasoning of the
following propositions:

getReply(@C,S,D,IP,SEQ) ∧ sendRequest(@C,S,D,IP,SEQ)

→ sendReply(@R,S,D,IP,SEQ) (3)
findDest(@C,S,D,IP,SEQ) ∧ getReply(@C,S,D,IP,SEQ)

→ getRequest(@R,S,D,SEQ) (4)
dataLink(@C,S,D,IP,SEQ,’YES’)

∧ msgRequest(@C,S,D,IP,SEQ,MSG)

→ authSend(@R,S,D,IP,SEQ,MSG) (5)

242

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

We use the messages of S stored at the place of C to infer the
information of the destination stored at R. Combined with the
basic rules and NDlog language [24], the expected information
of the receiver can be obtained. These messages should be on
the destination node according to the transmission mechanism.
Then, a significant problem is how to determine whether or
not the receiver has such information. Next, we will introduce
the Merkle Hash Tree into our method to realize the goal of
privacy protection.

E. Privacy-Preserving Verification

In this section, we introduce the mechanism of privacy-
preserving verification. We use the Merkle Hash Tree [25]
(MHT) to preserve privacy during verification. MHT is a tree
in which every non-leaf node is labeled with the hash value of
the labels of its children nodes, and every leaf node is labeled
with the hash value of real data. As a kind of binary tree, the
edges of MHT from every parent’s node to its two children
are tagged with 0 and 1 respectively; see Figure 3.

1 0

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

@M

getRequest(@M S1

D1 SEQ)

S1="10" , D1="1000",

SEQ="101"

reqForward(@M S2 D2

SEQ STAUS='NO')

S2="01" , D2="0110",

SEQ="010", STAUS="0"

S

D

STATUS1 0

01

1 0

01

SEQ

1 0

01

1 0

Fig. 3: Merkle Hash Tree

Before building the tree, we should first encode the infor-
mation. Take the following message encoding for example.
getRequest(@M,S1,D1,SEQ) can be encoded by spec-
ifying S1="10", D1="1000", SEQ="101". The message
reqForward(@M,S2,D2,SEQ,STAUS=’NO’) can be en-
coded by specifying S2="01", D2="0110", SEQ="010",
STAUS(NO)="0". How many bits the variables, such as S1

and S2, cost for the message encoding will depend on the
number of nodes and the number of variables. Our goal is to
distinguish each message on different nodes by encoding the
messages.

Next, it is the tree building. We built MHT with the same ap-
proach as in our previous work [13]. After we encode the mes-
sage reqForward(@M,S2,D2,SEQ,STAUS=’NO’) as a
string "0101100100", we use it to build the tree. Each
router will build a Merkle Hash Tree using its log information.

We label the node’s left child as 1 and right child as 0. With
the string, we can build up a tree, which is stored as an array.

Then, we can calculate the hash value of each node:
Hi=H(node_num∥bit_data∥parent_num∥string∥
parent_bit_data)∥ Hleft child∥ Hright child. As an index
of the node array, node_num specifies the array element
w.r.t the current node. Similarly, parent_num specifies the
array element w.r.t the parent of the current node. string
represents the IP address string or the value of DesIPhash.
Also bit_data and parent_bit_data are the value of
current node and parent node respectively, which can be either
0 or 1.

When a node is the root of Merkle Hash Tree, we define
parent_bit_data of this node as ’X’. Hleft child and
Hright child are the hash value of the left child and right child
respectively. They will be empty if the current node is a leaf
node. We can calculate the hash value from the leaf node to
the root, and this value will be published. That means every
node may know the root hash value of any other nodes. In the
verification phase, the sender has the destination’s published
hash value in advance and then calculates the root hash by
itself with the parameters that the destination provides. If the
latter hash value equals the published value, the verification
result is true.

After we have ensured that the destination node is the legal
host, we move to the intermediate router verification phase. To
make sure the whole routing path is healthy without malicious
nodes, we need to verify the forwarding nodes, ensure they
transmit the data according to the rules and eliminate the
possibility of launching attacks such as passive or active
attacks. We have proven that the information on the destination
node is correct, and we can use the information on both S and
D to conduct the following deduction. We call this process
as S+D→M (source node and destination node deduce the
intermediate routers). In this process we should reason the
following propositions:

sendRequest(@C,S,D,IP,SEQ)

→ getRequest(@M,S,D,IP,SEQ) (6)
getReply(@C,S,D,IP,SEQ) ∧ sendRequest(@R,S,D,IP,SEQ)

→ reqForward(@M,S,D,IP,SEQ,’NO’) (7)
getReply(@C,S,D,IP,SEQ) ∧ getRequest(@R,S,D,IP,SEQ)

→ findDest’(@M,S,D,IP,SEQ) (8)
sendMsg(@C,S,D,IP,SEQ,MSG)

∧ authSend(@R,S,D,IP,SEQ,MSG)

→ msgForward(@M,S,D,IP,SEQ,MSG) (9)

Then we use the Merkle Hash Tree to verify that the real log
of the intermediate routers comply with the expected log in-
formation, e.g. reqForward(@M,S,D,IP,SEQ,STAUS).

If the logs from the destination are false, we should find
out which intermediated routers influenced it and identify the
passive attacker. We call this process as S→M (source node
deduces the intermediate routers). In this process we should
reason the following propositions:

243

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

sendRequest(@C,S,D,IP,SEQ)

→ reqForward(@M,S,D,IP,SEQ) (10)
sendRequest(@C,S,D,IP,SEQ)

→ getRequest(@M,S,D,IP,SEQ,STAUS) (11)
findDest(@C,S,D,IP,SEQ)

→ findDest’(@M,S,D,IP,SEQ) (12)
dataLink(@C,S,D,IP,SEQ,’YES’)

∧ sendMsg(@C,S,D,IP,SEQ,MSG)

∧ msgRequest(@C,S,D,IP,SEQ,MSG)

→ authSend(@R,S,D,IP,SEQ,MSG) (13)

III. EVALUATION

In this section, we evaluate LAD through our experimental
results. Specifically, we show the performances of LAD in log
templates extraction, CFG construction, and attack detection.
We did our experiments on NS-3 and a real router environment
respectively.

A. Experiment Setup

In NS-3, we configured the nodes that ran the AODV
protocols and we injected few malicious nodes that dropped or
tampered with the logs of the nodes. As for the real routers, we
launched attacks towards the routers on the link. To evaluate
LAD’s performance, we set the former work CRVad [24],
PVad [26] and SyslogDigest [3] as the benchmark which does
not use the algorithm to find the rules and is handled by the
operators.

B. The Performance of Log Templates Extracting

We compare LAD’s templates extracting approach with
former methods: SyslogDigest [3] and STE [27]. SyslogDigest
first clusters the same beginning logs together and constructs
them as a sub-type tree. For the parameters in the tree, they
will present as the branches or children of a node. The key
process of SyslogDigest is pruning the tree until it has the
desired degree properties. If a parent node has more than k
children, it discards all of the children to make the parent
a leaf itself. STE takes another method using the following
features of log messages: parameters appear less frequently
than template words; and messages have similar structures
with the positions of the words. The approach gives each word
in the log a score but the word score may be inaccurate for
repeated words in several formats. The time and memory cost
comparisons are shown in Figure 4.

For using the regular expression to process the raw syslogs,
we can filter out most parameters in the raw logs, such as
IP addresses, MAC addresses and a mixture of numbers and
words. As for the STE approach, it is a time-consuming work
to give the score for each word and DBSCAN can cost lots of
memory as the number of logs increases. According to Figure
4(a) and Figure 4(b), LAD has less time and memory cost
than SyslogDigest and STE in the template extraction process.
Because SyslogDigest and LAD both need to construct the tree

(a) Time Cost

(b) Memory Cost

Fig. 4: Cost of Templates Extracting

and traverse each node’s sub-tree, both of them finally have
O(n2) in time complexity. Besides, the time complexity of
DBSCAN is also nlog(O(n2)).

C. Detection of the Active and Passive Attacks

We inject two kinds of errors into the MANETs which are
shown in Table III. We set the hops between the source and
destination from 4 to 12, and the malicious nodes are random
nodes of the intermediated routers in the link. F1is an active
attack which discards the packets during the transmission and
only one malicious node launches this attack. F2 is the passive
attack which does not influence the packets of the network but
tampers its own logs and there are two suspicious nodes doing
this.

Faults Attack Malicious Behavior Attacker
F1 Active Discard packets Single
F2 Passive Tamper syslogs Double

TABLE III: Injected faults in our experiments

In Figure 5, F2 is more time-consuming than F1. In passive
attack detection, LAD has to check all of the intermediated
routers and finishes all of the processes of reasoning, CFG
construction and MHT verification. Besides, in F2 there are
two malicious attackers and this will also cost more time than

244

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

detecting just one attacker in F1. From Figure 5(a) - 5(b), CFG
construction occupies the most time in the whole turnaround
time cost of the detection. Because LAD has to analyze the
three substructures and calculates the relations of each one,
this can cost a lot of time during this process. However, CFG
construction mitigates the burden of the reasoning, because
it provides the relations among the templates and LAD can
use these results for direct deduction. Comparing Figure 5(a)
and Figure 5(b), the reasoning cost of F2 is nearly double
that of F1, because F2 has two attackers while the single
reasoning time cost in these two faults detection phases is
almost the same. As for the Merkle Hash Tree verification, F2
has more intermediated nodes to verify. Thus, it will cost more
time in the MHT construction and root hash value calculation
processes, which is also shown in Figure 5.

(a) F1

(b) F2

Fig. 5: Time Cost of Detection Injected Faults

We also launched an experiment on the real router envi-
ronment, which consists of Cisco, Huawei, and Dlink. We
launched the attacks on these routers during three months and
the attacks could influence the sequences of the log orders. We
launched the attacks in the platform of Windows 7 and Ubuntu
12.07, which contain Violence Crack Login, IP Spoofing
Attack, SSL Attack, DOS Attack and ARP Spoofing Attack.
We used different tools and our own codes to realize these
attacks, which are shown in Table IV. We compare the results
of LAD with CRVad [24], PVad [26] and SyslogDigest [3],

which can also verify the correctness of the nodes in MANETs.
CRVad uses the reasoning and verification to check the nodes
but it does not use the algorithm to find the rules and the rules
are made by the operators. PVad uses the Apriori algorithm
to do the rule-mining among the routers and SyslogDigest
focuses on the syslog analyses to do the anomaly detection.

TABLE IV: Attacks and tools

No. Attack Name Tool or Method Platform

1 Violence Crack Login Java code Windows 7

2 IP Spoofing Attack Nmap Windows 7

3 SSL Attack THC-SSL Windows 7

4 DOS Attack HULK Ubuntu 12.07

5 ARP Spoofing Attack WinArpAttacker Windows 7

Precision =
Correctly detected attacks

Total inserted attacks
(14)

Recall =
Correctly detected attacks

Total detected attacks
(15)

Fig. 6: Comparison among LAD, PVad, CRVad and SyslogDi-
geston PR

We denote the precision and recall with Equation 14 and
Equation 15. We collected the key-value pairs of recall and
precision. Then, we select the points which range from 0.1 to
1 in the recall and draw the fitted curve in Figure 6. The error
sum of the squares of LAD, PVad, CRVad and SyslogDigest
are 0.0031, 0.0091, 0.0144, and 0.0257 respectively, which are
acceptable in our experiments. LAD and PVad can achieve
better results than CRVad and SyslogDigest. As the results
show, LAD can have more stable detection results than PVad.

IV. CONCLUSION

In this paper, we proposed an approach, LAD, to detect
anomalies of MANETs routing with reasoning and verifi-
cation. We transferred the raw syslogs to structured rules
with the control flow graph construction. We avoided just

245

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

analyzing the single router device with the raw log on the
router but combined the communication rules in the MANETs.
Thus, we achieved the goal of detecting anomalies of the
devices connected in the network. LAD uses the rules to
do the reasoning without introducing a third party. With the
construction of a specific Merkle Hash Tree, we can verify the
truth of the syslogs without disclosing privacy of the routers.
According to our experiment, LAD can detect the active and
passive attack in the MANETs and the approach is scalable
and practical for use in real MANETs.

ACKNOWLEDGMENT

This work was supported in part by National Natural
Science Foundation of China (61502368, 61602357 and
U1405255), the National High Technology Research
and Development Program (863 Program) of China
(No.2015AA017203, No.2015AA016007), Natural Science
Basis Research Plan in Shaanxi Province of China (Grant No.
2017JM6047 and 2016JM6034), the Fundamental Research
Funds for the Central Universities (XJS17077, JBX171507,
JB170303), China Postdoctoral Science Foundation Funded
Project(2016M592762).

REFERENCES

[1] Z. Wei, H. Tang, F. R. Yu, M. Wang, and P. Mason, “Security
enhancements for mobile ad hoc networks with trust management
using uncertain reasoning,” IEEE Transactions on Vehicular Technology,
vol. 63, no. 9, pp. 4647–4658, 2014.

[2] M. Conti and S. Giordano, “Mobile ad hoc networking: milestones, chal-
lenges, and new research directions,” IEEE Communications Magazine,
vol. 52, no. 1, pp. 85–96, 2014.

[3] T. Qiu, Z. Ge, D. Pei, J. Wang, and J. Xu, “What happened in my
network: mining network events from router syslogs,” in Proceedings of
the 10th ACM SIGCOMM conference on Internet measurement. ACM,
2010, pp. 472–484.

[4] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T. Loo, “Diagnosing
missing events in distributed systems with negative provenance,” in ACM
SIGCOMM Computer Communication Review, vol. 44, no. 4. ACM,
2014, pp. 383–394.

[5] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating root-cause
diagnosis of performance anomalies in production software.” in OSDI,
vol. 12, 2012, pp. 307–320.

[6] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace:
A pervasive network tracing framework,” in Proceedings of the 4th
USENIX conference on Networked systems design & implementation.
USENIX Association, 2007, pp. 20–20.

[7] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen, “Log clustering
based problem identification for online service systems,” in Proceedings
of the 38th International Conference on Software Engineering Compan-
ion. ACM, 2016, pp. 102–111.

[8] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li, “Mining invariants
from console logs for system problem detection.” in USENIX Annual
Technical Conference, 2010.

[9] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, “California
fault lines: understanding the causes and impact of network failures,”
in ACM SIGCOMM Computer Communication Review, vol. 40, no. 4.
ACM, 2010, pp. 315–326.

[10] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. ACM, 2017, pp. 1285–1298.

[11] T. Li, J. Ma, and C. Sun, “Dlog: diagnosing router events with syslogs
for anomaly detection,” The Journal of Supercomputing, vol. 74, no. 2,
pp. 845–867, 2018.

[12] S. Misra, K. Bhattarai, and G. Xue, “Bambi: Blackhole attacks mit-
igation with multiple base stations in wireless sensor networks,” in
Communications (ICC), 2011 IEEE International Conference on. IEEE,
2011, pp. 1–5.

[13] T. Li, J. Ma, and C. Sun, “Srdpv: secure route discovery and privacy-
preserving verification in manets,” Wireless Networks, pp. 1–17, 2017.

[14] D. Kapetanovic, G. Zheng, and F. Rusek, “Physical layer security
for massive mimo: An overview on passive eavesdropping and active
attacks,” IEEE Communications Magazine, vol. 53, no. 6, pp. 21–27,
2015.

[15] A. J. Gurney, A. Haeberlen, W. Zhou, M. Sherr, and B. T. Loo, “Having
your cake and eating it too: Routing security with privacy protections,”
in Proceedings of the 10th ACM workshop on hot topics in networks.
ACM, 2011, p. 15.

[16] M. H. Nguyen, T. B. Nguyen, T. T. Quan, and M. Ogawa, “A hybrid
approach for control flow graph construction from binary code,” in
Software Engineering Conference (APSEC), 2013 20th Asia-Pacific,
vol. 2. IEEE, 2013, pp. 159–164.

[17] T. Jia, L. Yang, P. Chen, Y. Li, F. Meng, and J. Xu, “Logsed: Anomaly
diagnosis through mining time-weighted control flow graph in logs,” in
Cloud Computing (CLOUD), 2017 IEEE 10th International Conference
on. IEEE, 2017, pp. 447–455.

[18] J. Ji, J. Li, S. Yan, Q. Tian, and B. Zhang, “Min-max hash for jaccard
similarity,” in Data Mining (ICDM), 2013 IEEE 13th International
Conference on. IEEE, 2013, pp. 301–309.

[19] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo, and M. Sherr,
“Secure network provenance,” in Proceedings of the Twenty-Third ACM
Symposium on Operating Systems Principles. ACM, 2011, pp. 295–
310.

[20] E. J. Schwartz, J. Lee, M. Woo, and D. Brumley, “Native x86 decompila-
tion using semantics-preserving structural analysis and iterative control-
flow structuring,” in Proceedings of the USENIX Security Symposium,
vol. 16, 2013.

[21] C. Dietrich, M. Hoffmann, and D. Lohmann, “Cross-kernel control-
flow–graph analysis for event-driven real-time systems,” in ACM SIG-
PLAN Notices, vol. 50, no. 5. ACM, 2015, p. 6.

[22] H. Deng, W. Li, and D. P. Agrawal, “Routing security in wireless ad
hoc networks,” IEEE Communications magazine, vol. 40, no. 10, pp.
70–75, 2002.

[23] T. Hayajneh, P. Krishnamurthy, D. Tipper, and A. Le, “Secure neigh-
borhood creation in wireless ad hoc networks using hop count discrep-
ancies,” Mobile Networks and Applications, vol. 17, no. 3, pp. 415–430,
2012.

[24] T. Li, J. Ma, and C. Sun, “Crvad: Confidential reasoning and verification
towards secure routing in ad hoc networks,” in International conference
on algorithms and architectures for parallel processing. Springer, 2015,
pp. 449–462.

[25] C. Liu, R. Ranjan, C. Yang, X. Zhang, L. Wang, and J. Chen, “Mur-dpa:
Top-down levelled multi-replica merkle hash tree based secure public
auditing for dynamic big data storage on cloud,” IEEE Transactions on
Computers, vol. 64, no. 9, pp. 2609–2622, 2015.

[26] T. Li, J. Ma, C. Sun, D. Wei, and N. Xi, “Pvad: Privacy-preserving
verification for secure routing in ad hoc networks,” in Networking
and Network Applications (NaNA), 2017 International Conference on.
IEEE, 2017, pp. 5–10.

[27] T. Kimura, K. Ishibashi, T. Mori, H. Sawada, T. Toyono, K. Nishimatsu,
A. Watanabe, A. Shimoda, and K. Shiomoto, “Spatio-temporal factor-
ization of log data for understanding network events,” in INFOCOM,
2014 Proceedings IEEE. IEEE, 2014, pp. 610–618.

246

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

		2018-10-19T10:54:30-0500
	Preflight Ticket Signature

