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Abstract—In this paper, we consider a method for improving
the accuracy of the foreground segmentation based on the
Gaussian mixture model (GMM) under low light environments.
We utilize the GMM foreground segmentation in a system which
enables fingertip gesture-input for a wearable device equipped
with camera. In this system, one can operate the device with the
fingertip by tapping the icons virtually projected on the space
displayed through the glasses. However, in the low light environ-
ments, the number of segmentation errors of the GMM method
would tend to increase due to the narrower range of change in
the foreground region. In this paper, to reduce the segmentation
errors, we consider applying the image enhancement based on
the Retinex theory. Using an actually captured video sequence,
we examine the effect of the proposed method.

I. INTRODUCTION

In this paper, we consider improving the foreground seg-
mentation based on the Gaussian mixture model (GMM) [1]–
[3] in the low light environments. The proposed method uses
the image enhancement based on the Retinex theory [4], [5]
for the improvement.

To realize more flexible mobile computing, a wearable
device controlled by the fingertip gesture is one of the possible
solutions in the near future. To capture the movement of
the fingertip from the video sequence taken by a mobile
camera equipped to the wearable devices, foreground seg-
mentation is required. In this paper, we consider using the
GMM foreground segmentation because our target devices
are wearable ones whose computational power is limited.
The GMM assumes the variation of the pixel value can
be modeled as a mixture of the Gaussian distributions, and
it requires comparatively small amount of computation for
implementation.

The problem we consider is that, when the target video is
captured under low light environments, the accuracy of the
foreground segmentation will be degraded. Because in those
environments, variation of the pixel values will be narrower
so that the variance of each Gaussian distribution will also
become smaller. This makes it difficult to select the appropriate
value for the threshold value used to decide the foreground or
background region.

In this paper, we consider developing a method to improve
the accuracy of the foreground segmentation in low light
environments. For that purpose, instead of optimizing the
threshold value, a method based on the image enhancement
is investigated. By enhancing the image, the variance of the
amplitude variation of each pixel can be controlled so as to

relax the selection of the appropriate threshold value. Besides,
as the image enhancement method, we use the Retinex theory
because we can expect that the color of the image is less
affected at enhancement process. We consider an implementa-
tion of the image enhancement based on the Retinex with small
amount of calculation. The results of applying the proposed
method to a video sequence are provided and we can confirm
the effectiveness.

II. BASICS OF THE GMM FOREGROUND SEGMENTATION

Here, we briefly describe the GMM foreground segmenta-
tion [1] and shadow and reflection removal method [2], [3],
[6] which are used in our system.

A. Foreground segmentation using GMM

In the following, we assume that the image is divided into
blocks of 4× 4 pixels. It is also assumed that each pixel has
three components, or colors, i.e., R (red), G (green) and B
(blue) of the range from 0 to 255 (i.e., 24-bit color format).

As the characteristic values, the average values of 4 × 4
pixels in a block of each color are used. Those three values are
applied directly to the GMM foreground segmentation instead
of transforming those values.

By denoting the total number of blocks in each frame
image as NB , the characteristic values of i-th block (i ∈
{1, 2, . . . , NB}) at time t is expressed as fR,t(i), fG,t(i), and
fB,t(i) for R, B, G components respectively. Because the same
process is applied to each block, in the following description,
we omit the block number i, e.g., fR,t is used for showing the
R component at time t.

Let us briefly describe the GMM foreground segmentation
using fR,t, and the same process will be applied to G and B
components. It is assumed that the probability density function
(PDF) of fR,t is expressed as a weighted sum of multiple
Gaussian distributions, i.e.,

p(fR,t) =
K∑

k=1

ωk,t ×N(µk,t, σk,t) (1)

where p(·) shows the PDF of fR,t, and N(µk,t, σk,t) the Gaus-
sian distribution of the mean µk,t and the standard deviation
σk,t. In this model, K weighted Gaussian distributions are
summed, and ωk,t shows the weight for the k-th distribution.
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For p(fR,t) to be a valid PDF, the weights ωk,t must satisfy

K∑
k=1

ωk,t = 1 (2)

to ensure that the total probability is one. In the following, it
is assumed that ωk,t and corresponding distributions are sorted
according to their amplitudes, i.e.,

ω1,t ≥ ω2,t ≥ · · · ≥ ωK,t (3)

and the first B (B < K) distributions will be used as the
background model.

At time t+ 1, fR,t+1 is calculated, and we decide whether
it belongs to the background model. For that, the following
equation will be evaluated,

|fR,t+1 − µk,t| < T k = 1, · · · , B (4)

where T is a predefined threshold value.
We use the following equation as T [7], [8]:

T = δ × µk,t + 2.5× σk,t (5)

where δ is an adjustable parameter. When fR,t+1 does not
satisfy the relation (4), the block will be classified as the
foreground. The same procedure will be repeated for fG,t,
and fB,t.

Then, Gaussian models will be updated as below. When
fR,t+1 is classified as the background, µk,t, σk,t, and ωk,t are
updated by

µk,t+1 = (1− γ) + γfR,t+1 (6)

σ2
k,t+1 = (1− γ)σ2

k,t + γ(fR,t+1 − µk,t)
2 (7)

where γ is a forgetting factor ({0 < γ ≤ 1}). Also, the weight
will be slightly increased by

ωk,t+1 = (1− ζ)ωk,t + ζ (8)

where ζ is called the learning rate [1].
When fR,t+1 is not included in the background model, only

the weight ωk,t is updated by

ωk,t+1 = (1− ζ)ωk,t (9)

and µk,t and σk,t are unchanged. Note that we need to adjust
the values of ωk,t (k = 1, . . . ,K) to satisfy the relation (2).

B. shadow and reflection removal

When the GMM foreground segmentation is used, we
consider the effect of the shadow casted by the hand, or
reflections from it on the accuracy of the detection of the
foreground objects. To reduce the detection errors due to the
shadows or reflections, we proposed a method to remove them
[7]. The method uses the similar formula as those of the GMM
segmentation.

Here, let us describe the idea of the the shadow removal.
When a block is decided as the foreground by the GMM,
then it is checked that whether the block is shadow or not

by the following steps. At first, we denote the maximum
characteristic value of the block as fc1, namely,

fc1 = max fC (10)

where C is one of R, G, or B, i.e., C ∈ {R,G,B}. Besides,
fc2, and fc3 denote the other ones. Then, we calculate the
following value βc1, i.e.,

βc1 = fc1/µc1 (11)

where µc1 is the mean value of one of the Gaussian distribution
which is nearest to fc1. Hereafter, we omit to denote k to show
the k-th distribution of the GMM model for the mean and the
standard deviation by always assuming that the appropriate
distribution is selected. Similarly, we can define βc2, and βc3

as

βc2 = fc2/µc2, βc3 = fc3/µc3. (12)

In the conventional method, it is assumed that, when the block
is in the shadow, characteristic value fC are attenuated at the
same ratio in RGB components. In other words, if βc2 and βc3

are close to βc1, then the method decide the block is shadow.
Instead of directly calculating (12), we calculate the follow-

ing for fc2

f ′
c2 = fc2 × βc1. (13)

Then, we evaluate the condition similar to the GMM as

|f ′
c2 − µc2| < TC (14)

where TC is the threshold value. If the condition (14) is
satisfied then the block is decided to be shadow and it will
be classified as the background. The same process will be
repeated for c3.

To determine the threshold TC , originally in [3], the follow-
ing equation simmilar to equation (5) is proposed, namely,

TC = 2.5× σc2 + µc2 × δ. (15)

However, we found that there are environmetns where this
setting of TC does not work, so that, in [3], we considered
and proposed four equations to determine TC . For details of
methods for detemining TC , please refer to the reference [3].

C. Problem of the conventional method

Although the conventional method achieves good separation
performance in most cases, we can observe the increase in
false detection of a foreground region as the background under
some specific conditions. Especially, we confirmed that the
performance of the method decreases for the videos captured
under low light environments. Here, we show an example of
such situations.

In Fig. 1 and Fig. 2, we show frame images taken from video
sequences captured at the same place under different light con-
ditions. Namely, Fig. 1 is captured under brighter condition,
and, on the other hand, Fig. 2 under darker condition.

In Figs 3 and 4, we show the result of the foreground
segmentation applied to the video sequences of Figs 1 and
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Fig. 1. Frame image captured under the brighter light condition.

Fig. 2. Frame image captured under the darker light condition.

2 respectively. From these figures, we can confirm that, for
the image taken under brighter condition, the foreground
segmentation can separate the hand region. On the other hand,
the large part of hand and finger region were lost in Fig. 4.

The accuracy of the GMM foreground segmentation de-
pends on the selection of the threshold values in the equations
(4) or (15) as we considered in [7]. However, we cannot
know the environment where the device is used in advance,
so that it is rather difficult to assign the appropriate values to
the thresholds. Therefore, in this paper, we consider another
approach, i.e., the application of image enhancement before
the GMM segmentation for relaxing the selection of the
threshold values.

III. RETINEX FOREGROUND SEGMENTATION

Let us consider applying the image enhancement for re-
laxing the selection of the threshold values of the GMM
foreground segmentation.

Fig. 3. Result of the GMM foreground segmentation applied to Fig. 1.

Fig. 4. Result of the GMM foreground segmentation applied to Fig. 2

A. Retinex image enhancement

For processing the images captured in low light environ-
ments, we consider applying the image enhancement before
the GMM foreground segmentation.

In that process, the following points are required
1) Characteristics values fC,t of background region of the

same block shall be within a Gaussian distribution of
the background model. In other words, if fC,t largely
changes from time to time due to the image enhance-
ment, the block may be classified as foreground.

2) For real time processing, additional computational cost
shall be small.

Based on these requirements, we consider applying the
image enhancement based on the Retinex theory. The Retinex
theory is originally considered by Land for the treatment
of color constancy [4]. The theory of Retinex has been
continuously developed [9], [10] and one of its applications
to image processing is the image enhancement [11]. Although
there are several model of the Retinex theory, in this paper,
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we use a formula proposed in [5] which is derived based on
the expression of [11] for ease of implementation.

The formula of the Retinex used in the proposed method is
given as

Ri(x, y) = log Ii(x, y)− log [F (x, y) ∗ Ii(x, y)] (16)

where Ii is the image distribution in the i-th spectral band.
Besides, F (x, y) is called the surround function, and “∗”
shows the convolution operation. As the surround function
F (x, y), the Gaussian function is suggested in [11].

As an extension of (16), [5] proposes an implementation
method of the Retinex based on the multi-rate signal process-
ing . The method uses multiple low pass filters as F (x, y)
instead of the Gaussian function and, so that, it can be
implemented with reduced amount of computation.

In the method of [5], for each pixel, the following equation
is calculated

IR,i(x, y) = log Ii(x, y)− log Īa(x, y) (Ii(x, y) < 127)
− log(255− Ii(x, y)) + log(255− Īa(x, y))

(127 < Ii(x, y))
(17)

where Īa is the output of the low pass filter. After the
calculation of the equation (17), the output signal IR,i(x, y)
is multiplied and truncated to be fit to the 8-bit color repre-
sentation [5].

B. Proposed Retinex implementation

Our objective is to apply the image enhancement based on
the Retinex theory into real-time finger gesture input system.
For that purpose, the amount of calculation should be reduced
as possible.

As compared in [5], the implementation using low pass
filters instead of the Gaussian filter can reduce the number
of required calculation. However, it still needs filtering for
each pixel adding to the Retinex operation of the equation
(17). Besides, the method implements the multi scale Retinex
(MSR) using the multi rate processing and it requires addi-
tional computation.

Hence, we think of using the single scale Retinex (SSR)
as the basic in the proposed method for reducing the compu-
tation. Although the MSR can achieve better color constancy
than SSR, this selection is done because our purpose is the
segmentation of the hand and fingertip from the background,
and exact color of objects are not required.

Let us show the expression of the Retinex in the proposed
method. At first, because we use SSR, there is only one I(x, y)
instead of multiple Ii(x, y) in (17). Then, we slightly change
the equation (17) as

IR(x, y) = log I(x, y)− log Ia (I(x, y) < 127)
− log(255− I(x, y)) + log(255− Ia)

(127 < I(x, y))
(18)

where we use Ia instead of Īa(x, y) in the equation (17). Ia
is the average of a frame image calculated as

Ia =
1

WH

W∑
x=1

H∑
y=1

I(x, y) (19)

where W and H are the width and the height of the image.
We note that calculation of Ia corresponds to use the low pass
filter of the size of the image size and whose coefficients are
all one. From this point of view, we can regard the equation
(18) as a special case of (17). The process will be repeated
for three color components, i.e., R, B, and G.

We note that the proposed approximation of the Retinex
calculation may change the color of the objects. However, we
consider that this may not affect the accuracy of the foreground
segmentation in the proposed method. Because in out problem,
the purpose is to extract the hand or finger region, and exact
color constancy is not required.

C. Gain normalization

As the final step, the pixel values IR(x, y) are magnified
and then clipped into the range 0 to 255.

We use the following equation for magnification, i.e.,

Io(x, y) = αIR(x, y) + β (20)

where α and β are predefined constants. After some trials
with varying the values, we set α = 64, and β = 128, in the
simulation shown in the next section. Note that these values
shall be adjusted according to the lightning conditions.

Finally, the pixel value is clipped using the following
equation:

Ī(x, y) =

 255 Io(x, y) > 255
Io(x, y) 0 ≤ Io(x, y) ≤ 255

0 Io(x, y) < 0
(21)

In Fig. 5, a diagram of the proposed procedure for calcu-
lating the Retinex is shown.

Fig. 5. Flow of the proposed Retinex implementation

IV. SIMULATION RESULTS

Here, we provides results of simulations to show the ef-
fectiveness of the proposed method. We applied the proposed
method to the video sequence whose one frame is shown in
Fig. 6 which was captured under the same conditions as Fig.
2.
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Fig. 6. A frame of the original video sequence for processing

Fig. 7. Result of image enhancement by applying the proposed Retinex
processing to the image in Fig. 6.

A. Effect of the Retinex

First, we conform the image enhancement ability of the
proposed Retinex processing by showing a result of applying
it. In Fig. 7, the enhanced image is shown. By comparing Fig.
6 and Fig. 7, we can confirm that the method enhances the
image.

At the same time, we notice that the colors of the some parts
changes unnaturally, e.g., part of finger, or objects on the right
side. These changes of colors are due to the approximation in
the proposed calculation of the Retinex.

B. Results of foreground segmentation

In Fig. 8 and Fig. 9, the results of applying the GMM
foreground segmentation are shown. As the threshold values
for the GMM and the shadow/reflection removal, we used the
type IV equation proposed in [7].

The result of applying the image in Fig. 6 is shown in Fig.
8. From this figure, we can see that almost all of the hand and

finger region were deleted by the foreground segmentation,
and the shadow/reflection removal.

On the other hand, Fig. 9 shows the result of applying the
proposed method to Fig. 7. We can confirm that, in this case,
the shape of hand and figure are clearly segmented. Besides,
the color change mentioned in the previous subsection do not
affect the results of the segmentation.

Fig. 8. Result of the GMM foreground segmentation.

Fig. 9. Results of the GMM foreground segmentation

V. CONCLUSION

In this paper, we considered a method to improve the GMM
foreground segmentation under low light environments. As
a method for reducing the false background decision, we
proposed to use image enhancement based on the Retinex
theory. The proposed method uses an approximation of the
exact Retinex operation to reduce the required amount of
calculation. The possibility of reducing the decision errors
by the proposed method was confirmed by the results of
simulation.
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As a future work, the theoretical analysis of the effectiveness
of the proposed Retinex implementation shall be considered.
Based on the results of the analysis, conditions for the pro-
posed method to reduce the false decision shall be shown.

REFERENCES

[1] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models
for real-time tracking,” in Computer Vision and Pattern Recognition,
1999. IEEE Computer Society Conference on., 1999, vol. 2, p. 252 Vol.
2.

[2] Y. Yamashita, T. Nishitani, T. Yamaguchi, and B. Oh, “Software
implementation approach for fingertip detection based on color multi-
layer gmm,” in The 18th IEEE International Symposium on Consumer
Electronics (ISCE 2014), June 2014, pp. 1–2.

[3] K. Nakagami, T. Shiota, and T. Nishitani, “Low complexity shadow
removal on foreground segmentation,” in 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), May
2011, pp. 1081–1084.

[4] E. H. Land, “An alternative technique for the computation of the
designator in the retinex theory of color vision,” Proceedings of the
National Academy of Sciences of the United States of America, vol. 83,
no. 10, pp. 3078–3080, May 1986.

[5] T. Okuno and T. Nishitani, “Efficient multi-scale retinex algorithm
using multi-rate image processing,” in 2009 16th IEEE International
Conference on Image Processing (ICIP), Nov 2009, pp. 3145–3148.

[6] T. Shiota, K. Nakagami, and T. Nishitani, “Transform domain shadow
removal for foreground silhouette,” IEICE Trans. on Fundamentals, vol.
E96-A, no. 3, pp. 667–674, March 2013.

[7] K. Nishikawa, Y. Yamashita, T. Yamaguchi, and T. Nishitani, “Consid-
eration on performance improvement of shadow and reflection removal
based on gmm,” in 2016 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA), Dec 2016, pp.
1–7.

[8] J. Zhu, S. C. Schwartz, and B. Liu, “A transform domain approach to
real-time foreground segmentation in video sequences,” in Proceedings.
(ICASSP ’05). IEEE International Conference on Acoustics, Speech, and
Signal Processing, 2005., March 2005, vol. 2, pp. 685–688.

[9] D. Zosso, G. Tran, and S. J. Osher, “Non-local retinex—a unifying
framework and beyond,” SIAM Journal on Imaging Sciences, vol. 8, no.
2, pp. 787–826, 2015.

[10] S. O. Dominique Zosso, Giang Tran, “A unifying retinex model based
on non-local differential operators,” 2013.

[11] D. J. Jobson, Z. Rahman, and G. A. Woodell, “Properties and per-
formance of a center/surround retinex,” IEEE Transactions on Image
Processing, vol. 6, no. 3, pp. 451–462, Mar 1997.

290

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii


		2018-10-19T10:54:31-0500
	Preflight Ticket Signature




