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Abstract—In this paper, we propose a new method for clas-
sifying a 3D scene. A 3D scene consists of a large collection
of 3D shape objects. The complexity of a 3D scene makes it
hard for us to classify which 3D scene we are dealing with.
For instance, a 3D scene of a ‘“room” may be an office, a
kitchen, a living room, or a bed room. Here we propose a novel
approach to classifying a 3D scene with Tri-projection Voxel
Splatting (TVS), taking into account the voxel density along
the depth direction. In TVS we first normalize a 3D scene in
terms of position and size, followed by converting data into
point clouds, via voxelization, and by projecting the scene on
three perpendicular planes, reflecting the voxel density along
the depth direction. Subsequently, we merge the three projected
images, and we finally apply deep learning to predict the class of
each 3D scene. To demonstrate the effectiveness of our proposed
method (TVS), we conducted experiments with 3D indoor scene
dataset extracted from Princeton University’s SUNCG dataset.
From the experiments, our proposed method outperformed the
previous methods.

I. INTRODUCTION

With the spread of VR technology, demand for applications
using scenes (3D scenes) composed of a collection of 3D
objects has been increasing. In recent years 3D scenes have
been utilized not only for games and movies but also for
educational systems and real estate businesses. It is expected
that 3D scenes will be used for various potential applications
in the future. Research on creating 3D scenes has begun [18].
Accordingly, more and more 3D scenes have spread and are
available on the Internet.

Given a large amount of 3D scenes, it is highly important
to automatically recognize what kind of 3D scenes they are.
For instance, a 3D scene might be a “kitchen,” it might be
a “living room,” or it might be “bathroom.” This is where
automatic labeling technology to an arbitrary 3D scene plays
an important role. Indeed, in 2018, SHREC (Shape Retrieval
Contest) has organized a track with 3D scenes retrieval [1][27],
which demonstrates that 3D scene recognition is of interest
academically.

Deep learning has attracted attention in recent years, and
research using deep learning has been popular in classification
and retrieval of 3D data. Quite a few researchers have begun
using deep learning to classify and retrieve 3D data. However,
to our knowledge, no previous methods have dealt with a 3D
scene consisting of a collection of 3D objects when applying
deep learning.

In this paper, we propose Tri-projection Voxel Splatting
(TVS), which is a novel method for generating images that
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help to classify 3D scenes based on the depth density of 3D
scenes via voxel representation. In addition, we describe in-
door 3D scene classification applying deep learning to images
generated by TVS.

In the following, we first survey related work in Section II,
followed by introducing TVS in Section III. In Section IV, we
describe experiments we have carried out, and conclude this
paper in Section V.

II. RELATED WORK

The classification of scenes represented by still pictures such
as “kitchen” and “bedroom” has been studied for years by
many researchers, where they employed hand-crafted features
[13][16][30]. Recently end-to-end features with DNN has also
been popular [7]. On the other hand, along with the spread
of RGB-D cameras, research has also progressed, aiming at
classifying scenes with RGB-D data [6][20].

3D shape classification and retrieval research has focused on
feature extraction. Examples of 3D shape feature extraction
include a method of utilizing histograms based on global
features (e.g. [15]) and a method of computing feature vectors
with multi-view rendering [28].

With the popularity of deep learning, research on 3D
shape classification as well as 3D shape search has adopted
deep learning approaches. Voxel-based methods include
3DShapeNets of the method applying Convolutional Deep
Belief Network to 3D data [26], VoxNet of the method
applying 3DCNN [14], OctNet of the method using octree
space partitioning structures [17]. There is also a method [2]
that applies deep networks such as ResNet [8] to 3D data.
Image-based methods include MVCNN of the method learning
CNN with multi-view depth images [23] and DeepPano of the
method learning CNN with panoramic view images [19]. Point
cloud-based methods include PointNet [3]. They have high
classification performance for a single 3D object. However,
since 3D scene has a property that it is larger in scale as
compared with a single 3D object, contains a plurality of
different objects, and is arranged in various layouts, it is
unclear whether it is effective for classification of 3D scenes.

In this research, we describe a new 3D scene classification
method as described in Section III.
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Fig. 1.

III. TRI-PROJECTION VOXEL SPLATTING
A. Overview of 3D scene classification with TVS

Fig. 1 illustrates the overall flow of our 3D scene classifica-
tion with our proposed Tri-projection Voxel Splatting (TVS).
First, the position and size of the 3D scene is normalized to
generate voxel data. A voxel represents a value on a regular
grid in three-dimensional space. In TVS, a shape is represented
by binary voxels, where each voxel is expressing the presence
or absence of an object with a value of 0 or 1. Next, the 3D
scene is converted into voxel data by means of “imaging” with
TVS, which will be elaborated later. Then, we train the DNN
with images generated by TVS. Finally we classify 3D scenes
using the trained DNN.

B. Normalization of 3D scene and voxelization

In this research, we deal with 3D scenes made of multiple
objects defined by 3D meshes.

TVS needs to normalize the position and size of the
3D scene as preprocessing for voxelization. First, we apply
normalization of the position by translating the 3D scene so
that the center of gravity becomes the origin. Then, we apply
normalization of the size, taking the division of the value of
each vertex coordinate by the maximum distance from the
origin to the vertex.

We apply voxelization of the normalized 3D scene. TVS
first converts 3D scenes into point clouds by creating points
on Osada’s method [15] on each side of 3D scene. Then, by
quantizing the coordinate value of each point in conformity
with the size of the voxel expression, point clouds convert to
voxel representation.

C. Imaging

First, we generate a map expressing the depth density of
the voxel data on the projection plane with the x, y and z
axes as the depth (Fig. 2). For the sake of clarity, the size of
voxel representation is 4 x4 x4 in Fig. 2. Y Z is the projection

3D Scene
(Image)

Flow of 3D scene classification with TVS

surface whose x axis is the depth, X Z is the projection surface
whose y axis is the depth, assuming that the projection surface
with the depth of z axis is XY, the map M generated on each
projection plane is expressed as follows:

Pyz@,1)  Pyz(221) Py z(N,1)
Pyza,2) Pvyz22) Py z(N,2)
Myz = : : .
Pyz@a,N) PyZz(2,N) Py Z(N,N)
Pxz@1,1) Pxz2,1) PXZ(N,1)
Pxz@1,2) Pxz2,2) Pxz(N,2)
Mxz = . ) .
Pxz@1,N) PXZ(2,N) PXZz(N,N)
Pxy(,1) PXy(2,1) Pxy(n,1)
Pxv(1,2) PXY(22) PXY(N,2)
Mxy = . . }
Pxy(@1,N) PXY(2,N) PXY(N,N)

where, p represents the pixel value of each coordinate in map
M, and N represents the resolution of projected images from
voxels. Assuming that the abscissa of the projection plane is ¢
and the ordinate is j, the pixel value p is expressed as follows:

N
.., 255
Py z(i5) = Ceﬂ(w Z V(a,ig))

r=1
N
255
Pxz(ij) = Ceﬂ(W Z Vi,p.5))
y=1
N
255
PXY (i,j) = Cell(ﬁzv(i,j&))
z=1

where, v(; , ) is the voxel value of 1 (object exists) or 0
(empty). Next, each map M generated on the three projection
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Fig. 2.

Tllustration of how a map is generated by considering the density along the depth axis. The figure on the right is an example of a projection plane

with the z axis as the depth. In this example, pxy (1,1) = 0,Pxy(4,1) = 128,Pxy (4,4) = 255.

Fig. 3. An example of the images generated by TVS. For the sake of clarity,
we show brighter images here than those of the original.

planes is fitted to 3ch (R, G, B) of the color image, and it is
combined into one image. Finally, the image I generated by
TVS is expressed as follows:

I={Myz,Mxz, Mxy}
Fig. 3 is an example of the images generated by TVS.

IV. EXPERIMENTS

In this section, we first describe the 3D indoor scene dataset
we have used for experiments, followed by a DNN architecture
comparison. We then describe the comparison of our proposed
method with previous methods. Finally, we describe the results
of the comparisons, respectively.

A. Dataset

In this experiment, we have divided the 3D house scene
published in the SUNCG dataset [22] into rooms. We removed
scenes of 10 or fewer elements constituting a scene such as
a floor and a desk. Among the rooms after noise removal,
we extract 7 categories (Bathroom, Bedroom, Dining Room,
Hall, Kitchen, Living Room, Office), each of which is divided
into 3,800 pieces of training data and 1,000 pieces of test data,
taken from the benchmark dataset of the indoor 3D scene. The

Kitchen Living Room Office

Fig. 4. 7 categories of 3D indoor scene benchmark dataset

total number of training data is 26,600 and the total number
of test data is 7,000. Fig. 4 shows an example of data included
in the benchmark dataset.

B. DNN Architecture Comparison

We conducted experiments to see which DNN architecture
best fitted TVS. Specifically, we compared 9 different neural
network architectures including AlexNet [12], ResNet50 [8],
Xception [4]. We adopted the method with the highest accu-
racy as the proposed method. Next, we compared our proposed
method with the previous methods such as VoxNet [14] and
PointNet [3].

In the training of the model, the size of the input image was
unified with 224 x 224 and 80 epoch learning was done. At this
time, Adam [11] was used as an optimization algorithm, and
the learning rate was set to 0.01. Cross entropy was applied
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to the loss function during training.
E=- Z Tk log(yk)
k

Data augmentation was performed on training data and the
training was performed using extended data. In this experi-
ment, we generated 80 pieces from one image by randomly
shifting horizontally and vertically in the range of 10% the
length of the image, and in addition, randomly inverted it in
the horizontal direction.

C. Comparison with Previous Methods

In the previous methods for comparison, VoxNet [14] as a
voxel-based method, MVCNN [23] as an image-based method,
PointNet [3] as a point cloud-based method were chosen.
VoxNet [14] converts 3D data to voxel representation and
accepts 3DCNN as input. In the experiment, we set the input
size of VoxNet to 64 x 64 x 64. MVCNN [23] is a method
for extracting the features from the multi-view depth images
with the trained CNN, integrating all the views with the view-
pooling layer. In the experiment, we set the depth image
rendered in 18 directions from the center of gravity of the 3D
scene for the MVCNN. For the CNN of feature extraction from
the MVCNN, we applied the pre-trained model with ImageNet
[5] and used the features extracted from the second to the last
layer. At this time, the model to be applied is the same as the
model used in the proposed method. PointNet [3] is a method
that learns by inputting 3D data represented by a point cloud
as an input. In the experiment, we used the method of Osada
et al. [15] to represent the 3D scene of PointNet expressed by
2,048 points as input.

D. Results

1) Result of DNN Architecture Comparison: The result of
comparison among different neural network architectures is
shown in TABLE I. TABLE I is a summary of the F-measures
of the 7 categories with the average F measures across all the
categories. In TABLE 1, the largest value in each category is
indicated in bold. From TABLE 1, it is confirmed that among
the compared models, Xception [4] has the highest accuracy
in all categories. On the other hand, it is confirmed that the
learning is not well performed on AlexNet [12] and VGG19
[21] with relatively few layers. We speculate that the DNN
with fewer layers is not appropriate for classifying 3D scenes
with TVS.

2) Result of Comparison of Our Proposed Method with
Previous Methods: The results of experiments comparing our
method with the previous methods are shown in TABLE II.
From TABLE II, we can confirm that the proposed method
outperforms the previous methods in all categories. It is
observed that VoxNet [14] cannot learn 3D scenes, yielding
single class collapse.

With the 3D scene voxelize whose is a feasible size for
training, the shape information of each object in a 3D scene
is likely to be lost . Therefore, it is presumed that the method
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of directly inputting voxels such as with VoxNet [14], into the
classification of 3D scenes is not suitable.

Since the proposed method maintains detailed shape infor-
mation of the objects to be kept in the voxels, which are
converted to the image by TVS, it is possible to train the
DNN.

An example of successful classification of the proposed
method is shown in Fig. 5. In Fig. 5, the matched categories
between the predicted and the ground truth are denoted by
bold letters such as Bedroom and Office.

From Fig. 5, we have confirmed the proposed method
correctly classified 3D scenes that could not be properly
classified by previous methods. In addition, we have confirmed
that the images generated by TVS emphasize the shape of 3D
scenes and objects in the scene such as chairs and shelves.

When the training is performed using these images as input,
we speculate that the DNN learns the shape of the 3D scene
and the tendency of the type and the number of the objects
through the contours of the objects. As far as our experiment
goes, since there is no tendency peculiar to categories in the
outline of the 3D scene, we believe that it is important to
observe the tendency of the type and the number of objects in
order to recognize the 3D scene.

Since MVCNN [23] extracts the features for each image for
multi-view depth images, and performs pooling, it may fail to
capture the tendency of the number of objects. PointNet [3]
can grasp the presence or absence of an object by looking at
the density of point clouds, but it may fail to specify the type
of the object included in the scene if the object is represented
by a sparse point. On the other hand, our proposed method
grasps the tendency of the type and the number of objects by
training the images generated by TVS, so that it is possible to
accurately classify 3D scenes where previous methods fail to
do so.

3) Result of Comparison in terms of Category: Fig. 6 shows
the confusion matrix of our proposed method. From Fig. 6 it is
observed that the misclassification of Bathroom and Bedroom
categories is small. This is because there are specific objects
such as bathtubs in Bathrooms and beds in Bedrooms. On the
other hand, there are observed a few misclassifications of Hall
and Living Room. This is because the tendency of the type of
the object is similar and the scene categories are determined
by the position of the object, it is necessary to grasp not only
the kind of object but also the position of the object.

V. CONCLUSION

In this paper, we proposed Tri-projection Voxel Splatting
(TVS), which is a novel method for generating images that
help to classify 3D scenes based on the depth density of 3D
scenes via voxel representation. In addition, we described in-
door 3D scene classification applying deep learning to images
generated by TVS.

We conducted classification experiments with 3D indoor
scene dataset extracted from SUNCG dataset [22], where the
problem was formulated by a 7 class classification problem. As
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TABLE I
COMPARISON RESULT WITH DIFFERENT DNN ARCHITECTURES

F-measure
Dining . Living

Method Bathroom Bedroom Room Hall Kitchen Room Office Average
AlexNet [12] 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.04
VGGI19 [21] 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.04
ResNet50 [8] 0.91 0.89 0.76 0.62 0.84 0.69 0.79 0.79
InceptionV3 [25] 0.92 0.90 0.77 0.63 0.83 0.72 0.81 0.80
Inception ResNetV2 [24] 0.90 0.89 0.77 0.62 0.83 0.71 0.80 0.78
Xception [4] 0.92 0.91 0.79 0.65 0.85 0.74 0.83 0.81
MobileNet [9] 0.90 0.89 0.75 0.64 0.83 0.71 0.78 0.79
DenseNet201 [10] 0.90 0.88 0.76 0.59 0.85 0.72 0.80 0.79
NASNet (Mobile) [29] 0.88 0.86 0.75 0.60 0.83 0.69 0.77 0.77

TABLE 11
COMPARISON RESULT WITH PREVIOUS METHODS
F-measure
Dining . Living

Method Bathroom Bedroom  poom Hall Kitchen Room Office Average
VoxNet [14] 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.04
MVCNN [23] 0.80 0.70 0.70 0.48 0.73 0.60 0.57 0.65
PointNet [3] 0.78 0.70 0.58 0.45 0.82 0.72 0.47 0.65
Proposed (TVS + Xception [4]) 0.92 0.91 0.79 0.65 0.85 0.74 0.83 0.81

the result, our proposed TVS method outperformed previous
methods. Specifically, on the average TVS outperformed the
best previous method by 16%.
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An example of successful classification of the proposed method. The matched categories between the predicted and the ground truth are denoted in
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show brighter images here than those of the original image generated by TVS.
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