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Abstract—An image recognition method based on convolu-
tional neural networks (CNNs) using features generated from
separable lattice hidden Markov models (SLHMMs) is proposed.
A major problem in image recognition is that the recognition
performance is degraded by geometric variations in the size
and position of the object to be recognized. To solve this
problem, SLHMMs have been proposed as an extension of HMMs
with size and locational invariances based on state transitions.
Although SLHMMs are generative models that can represent the
generation processes of observations well, there is a possibility
that they are not specialized for discrimination compared to
discriminative models. Our method integrates SLHMMs that
extract features invariant to geometric variations with CNNs that
build an accurate classifier based on discriminative models with
the extracted features. Face recognition experiments showed that
the proposed method improves recognition performance.

I. INTRODUCTION

Recently, statistical methods using large-scale datasets have
been increasing. In the field of image recognition, statistical
methods such as eigenface methods [1] and subspace methods
[2] have achieved good recognition performance. However,
such statistical methods have a problem in terms of geometric
variations, i.e., the size, position, and rotation of the target
objects. One solution to this problem is to normalize geometric
variations using heuristic normalization techniques in the pre-
processing part of the classification process. However, this
is very expensive and is task-dependent. Therefore, it is
necessary to use the same criterion for both normalization and
training classifiers.

Hidden Markov model (HMM)-based methods have been
proposed as such an approach to geometric variations [3], [4].
In these methods, the geometric normalization is represented
by discrete hidden variables, and the normalization process is
performed through the calculation of probabilities. However,
the extension of HMMs to multiple dimensions generally leads
to an exponential increase in the computational complexity,
and some efficient approximations of likelihood calculation
and model structures have therefore been proposed [5]–[10].
To reduce the computational complexity while retaining the
good properties for modeling multiple dimensional data, sep-
arable lattice HMMs (SLHMMs) have been proposed [11].
An SLHMM is a feasible model that can perform elastic
matching in both the horizontal and vertical directions, making

it possible to model invariances to the size and location
of target objects. Although SLHMMs are generative models
and can represent the generation processes of observations
well, there is possibility that they are not specialized for
discrimination compared to discriminative models. In other
words, the recognition performance of generative models is
likely to be inferior to that of discriminative models because
discriminative models are specialized to discrimination.

Recently, discriminative models have been intensively stud-
ied, and neural networks in particular have shown great success
in many applications. In image recognition, convolutional neu-
ral networks (CNNs) have successfully been used as discrim-
inative models because of their robustness against geometric
variations based on multiple convolutional and pooling layers
[13]. Further, the network structure of CNNs has a feature-
extraction process that is simultaneously optimized by train-
ing the classifier using the discriminative criterion. However,
in terms of invariances of geometric variations, CNNs still
have a weakness in that it is difficult to represent global
geometric variations over an entire image because pooling
is independently performed in each local window. Therefore,
a structure that represents explicit image variations as in
generative models should be useful to construct discriminative
models with higher invariance to geometric variations.

In this work, we propose image recognition based on
CNNs using features generated from SLHMMs. Combining
an SLHMM that can consider the geometric variations of
target objects and a CNN that is specialized for discrimination
should be able to compensate for the disadvantages of both
models. We recently proposed a method using log linear
models (LLMs) as a discriminator to input features based on
derivatives [14] with respect to the parameters of SLHMMs
[15]. We expect that using CNNs as discriminative models
will result in higher recognition rates than using LLMs.
Furthermore, we investigate the optimal structure of CNNs
under the assumption of combining them with SLHMMs. In
the proposed model, invariances to geometric variations are
dealt with by SLHMMs, so CNNs would no longer need
to have the ability to perform invariances, which are mainly
performed by pooling layers.

In sections 2 and 3 of this paper, SLHMMs and CNNs are
briefly explained. Section 4 describes the flow of the proposed
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method and the features generated from SLHMMs. Section 5
presents the face recognition experiments using the XM2VTS
database [16]. We conclude with a brief summary in section
6.

II. SEPARABLE LATTICE HIDDEN MARKOV
MODELS

Separable lattice hidden Markov models (SLHMMs) are
defined for modeling multi-dimensional data. In the case that
observations are 2D data, e.g., pixel values of an image,
observations are assumed to be given on a 2D lattice as

O = {Ot|t = (t(1), t(2)) ∈ T }, (1)

where t denotes the coordinates of the lattice in 2D space
T and t(m) = 1, . . . , T (m) is the coordinate of the m-th
dimension for m ∈ {1, 2}. In 2D HMMs, observation Ot is
emitted from the state indicated by hidden variable St ∈ K.
The hidden variables St ∈ K can take one of K(1)K(2)

states, which are assumed to be arranged on a 2D state lattice
K = {(1, 1), (1, 2), . . . , (K(1),K(2))}. K(1) and K(2) are the
states of the HMM in the vertical and horizontal directions.

In SLHMMs, the hidden variables are constrained to be
composed of two Markov chains in order to reduce the number
of possible state sequences, as

S =
{
S(1),S(2)

}
, (2)

S(m) =
{
S
(m)

t(m) |1 ≤ t(m) ≤ T (m)
}
, (3)

where S(m) is the Markov chain along with the m-th coordi-
nate and S

(m)

t(m) ∈ {1, 2, . . . ,K(m)}. The composite structure
of hidden variables in SLHMMs is defined as the product of
hidden state sequences: St = (S

(1)

t(1)
, S

(2)

t(2)
) ∈ K. This means

that the segmented regions of observations are constrained to
be rectangles, which allows an observation lattice to be elastic
in both the vertical and horizontal directions. Figures 1 and 2
show a graphical model of an SLHMM and the model structure
of an SLHMM in face-image modeling. The joint probability
of observation vectors O and hidden variables S can be written
as

P (O,S|Λ) = P (O,S(1),S(2)|Λ)

=
∏
t

P (Ot|St,Λ)×
2∏

m=1

{
P (S

(m)
1 |Λ)

　

T (m)∏
t(m)=2

P (S
(m)

t(m) |S
(m)

t(m)−1
,Λ)

}
, (4)

where Λ = {π(m),a(m),µk,Σk} is a set of model parame-
ters, k is the 2D state index in the 2D state lattice K,π(m)

is the initial state probability, a(m) is the state transition
probability, and µk and Σk are the mean vector and the
covariance matrix of the Gaussian distribution that is an output
probability distribution on a 2D state lattice.
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Fig. 1. Graphical model of an SLHMM. The rounded boxes represent a group
of variables, and the arrow to each box represents the dependency in regard
to all variables in the box instead of drawing arrows to all variables.
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Fig. 2. Model structure of SLHMMs in face-image modeling

III. CONVOLUTIONAL NEURAL NETWORK

A CNN has a structure in which a convolutional layer and
a pooling layer are repeated. In a convolutional layer, the
coordinates ui,j in the feature map can be written as

u
[k]
i,j = f

(∑
c

m−1∑
s=0

n−1∑
t=0

w
[k,c]
s,t x

[c]
(i+s),(j+t) + b[k]

)
, (5)

where u[k] is the feature map, k is the index of the filter, x[c] is
the previous feature map, c is a channel, w[k,c] is the weight,
and b[k] is the bias. The size of the filter is m×n and f is an
activation function. A convolutional layer is the core building
block of CNNs and does most of the computational heavy
lifting. In a pooling layer, the spatial size of the representation
is reduced progressively, so the amount of parameters and
computation in the network are reduced.
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IV. IMAGE RECOGNITION USING FEATURES GENERATED
FROM SLHMMS

SLHMMs make it possible to model invariances to the size
and location of a target object. However, there is possibility
that SLHMMs are not specialized for discrimination compared
to discriminative models because SLHMMs are generative
models representing the generation processes of observations.

In generative models, the posterior probability in the multi-
nomial classification is transformed by Bayes’ theorem as

P (C|O) =
P (O|C)P (C)

P (O)
, (6)

where C is a class, O is an observation data, and P (O) ̸= 0.
Therefore, the posterior probability is indirectly estimated
by estimating P (O|C)P (C). Then, P (O|C)P (C) indicates
the generation processes of observations. By estimation these
processes, it is possible to model distribution shapes. How-
ever, it is difficult to obtain true generative processes and
distribution shapes of observations because training data is
finite. Hence, there is a problem in recognition accuracy
in discrimination using generative models based on (6). To
solve this problem, methods using discriminative models that
learn with criteria specialized for discrimination by directly
estimating the posterior probability have been proposed, and
the effectiveness of these methods has been confirmed.

CNNs have successfully been used as discriminative models
due to their robustness against geometric variations based
on multiple convolutional and pooling layers. However, it
is difficult to represent global geometric variations over an
entire image because pooling is independently performed in
each local window. Therefore, we propose image recognition
based on CNNs using features generated from SLHMMs. The
proposed method can extract features invariant to geometric
variations by using SLHMMs and build an accurate classifier
based on CNNs with the extracted features.

A. Features based on SLHMMs

Some of the features based on generative models are
derivative feature, which are defined by derivatives of the log-
likelihood function with respect to the model parameters. Log-
likelihood features for the image data are defined as

f [i] =


lnP (O[i]|Λ[1])

...
lnP (O[i]|Λ[I]),

(7)

where O[i] is the i-th image data and Λ[i] is the i-th model
parameter. The derivative features of means that are a model
parameter are thus represented as

∇µk
f [i] =


∇µk

lnP (O[i]|Λ[1])
...

∇µk
lnP (O[i]|Λ[I]),

(8)

∇µk
lnP (O[i]|Λ[i]) =

∑
t

⟨Sk,t⟩Q(S)Σ
−1
k (Ot − µk), (9)

TABLE I
EXAMPLES OF DERIVATIVE FEATURES

Models
(40× 40)

Images
(64×64)

Derivative
features

Database

Training
SLHMMs

CNNsSLHMMs

Training
CNNs

Extracting
features

Input
image

result
Extracting
features

Images
Derivative
features

Derivative
features

Training part

Testing part

Recognition

Fig. 3. Overview of proposed method

where ⟨Sk,t⟩Q(S) is the posterior distribution of state k at
coordinate t and Q(S) is the approximate posterior probability
of P (S|O,Λ). The derivative features of state k are derived
using the statistics related to the model parameters of state k.

Table I lists examples of the visualization of derivative
features when inputting an image to SLHMMs. The number
of pixels of the visualization matches that of the states of
the SLHMMs. The white area indicates that the gradient is
small and close to the maximum likelihood point. It can be
confirmed that the visualization between the image and each
model is the whitest.

B. Image recognition based on CNNs with features generated
from SLHMMs

Figure 3 shows an overview of the proposed method. First,
SLHMMs are trained from training data in the training part,
and second, derivative features described in Section IV-A are
extracted by using the trained SLHMMs. Third, CNNs are
trained from the extracted derivative features. Then, derivative
features of all classes are superimposed as channels and input
to CNNs. In the testing part, features corresponding to the
testing data are extracted by the same procedures as the feature
extracting in the training part. Recognition is executed by
calculating the posterior probabilities of all classes from the
trained CNNs and the extracted features.
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TABLE II
EXAMPLES OF IMAGES IN EXPERIMENTS

Dataset1
Training data Testing data

Dataset2
Training data Testing data

V. EXPERIMENTS
A. Experimental conditions

To evaluate the effectiveness of the proposed method, face-
recognition experiments on the XM2VTS database [16] were
conducted. We prepared 8 images of 100 subjects for ex-
periments; 6 images were used for training and 2 images
were used for testing. Face images composed of 64 × 64
grayscale pixels were extracted from the original images. The
example images are shown in Table II. We prepared two
datasets for the experiments: Dataset1, which was size and
location normalized, and Dataset2, which contained randomly
generated size and location variations.

Three methods were compared: SLHMM, CNN, SLHMM-
LLM, and SLHMM-CNN (proposed method). The details of
SLHMM, CNN, and SLHMM-CNN are shown below. For
the parameters of SLHMM and CNN, the optimum one with
the highest recognition rate in the preliminary experiment was
selected.
SLHMM:

Experimental conditions for SLHMM are shown in
Table III below.

TABLE III
EXPERIMENTAL CONDITIONS FOR SLHMM.

The number of states 40× 40

Estimation method The maximum posteriori (MAP) estimation [17]

Training algorithm Deterministic annealing EM (DAEM) algorithm

CNN:
The architecture for CNN was as follows:

• I (64, 1)− F (250)−O(100).
• I (64, 1)− C (5, 8, 1)− F (250)−O(100).
• I (64, 1)− C (5, 8, 1)− P(4, 2)− F (250)−O(100).
• I (64, 1)− C (5, 8, 1)− C (2, 16, 1)− F (250)−O(100).
• I (64, 1) − C (5, 8, 1) − P(4, 2) − C (2, 16, 1) − P(4, 2) −

F (250)−O(100).

The presentation of the CNN parameters is shown in
Table IV

TABLE IV
PRESENTATION OF CNN PARAMETERS

I (i, d) An input layer with d dimensional i× i sized image

C (f, w, s)
A convolutional layer with f filters of a w × w sized

window with a stride of s

P(w, s) A pooling layer

F (n) A fully connected layer with n units

O(c) An output layer with c classes

When using Dataset2, the first convolutional layer
was C (5, 16, 1) and the second convolutional layer
was C (5, 32, 1). The ReLU function and dropout with
probability 0.5 were used in the convolutional and fully-
connected layers.

SLHMM-CNN:
The architecture for SLHMM-CNN was as follows:

• I (40, 100)− F (1000)−O(100).
• I (40, 100)− C (2, 8, 1)− F (1000)−O(100).
• I (40, 100)− C (2, 8, 1)− P(4, 2)− F (1000)−O(100).
• I (40, 100)−C (2, 8, 1)−C (2, 16, 1)−F (1000)−O(100).
• I (40, 100)−C (2, 8, 1)−P(4, 2)−C (2, 16, 1)−P(4, 2)−

F (1000)−O(100).

When using Dataset2, the first convolutional layer was
C (5, 32, 1) and the second convolutional layer was
C (5, 64, 1). The sigmoid function and dropout with
probability 0.5 were used in the convolutional and fully-
connected layers.

B. Results

Figure 4 shows the results of the face recognition exper-
iments on Dataset1 with size and location normalized. It is
confirmed from Fig. 4 that the recognition rates of CNN were
lower than those of SLHMM. It seems that learning was not
performed sufficiently in CNN due to the small amount of
training data. SLHMM-CNN achieved a higher performance
than SLHMM because an SLHMM-part in SLHMM-CNN
dealt with a small amount of training data. This suggests that
the effective feature extraction based on SLHMMs would help
the training of CNNs. Comparing SLHMM-CNN, SLHMM-
LLM and SLHMM, structures with a fully connected layer
and convolutional layers obtained higher recognition rates than
SLHMM-LLM and SLHMM. SLHMM-CNN is effective
for discrimination because neural networks are specialized for
discrimination. Hence, it is confirmed that recognition rates
improve by adding a convolutional layer. In contrast, recog-
nition rates decrease by adding the pooling layer. It seems
that the effect of geometric invariances made no additional
improvement due to the invariances of the feature extraction
based on SLHMMs. Moreover, the negative aspect of max-
pooling, which simply discarded information, appeared. We
conclude that variations by the pooling layer are not effective
for variations, and recognition rates decreased due to the loss
of data information.
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Fig. 4. Recognition rates on Dataset1 with size and location normalized

24.5 

33.0 35.5 
30.5 

42.0 

83.5 

93.5 

85.0 
89.5 

67.5 

20

40

60

80

100

I-F-O I-C-F-O I-C-P-F-O I-C-C-F-O I-C-P-C-P-F-O

Re
co

gn
iti

on
 ra

te
 [%

]

Network structure

Dataset 2

CNN SLHMM-CNN

SLHMM-LLM  89.5 SLHMM  81.0

Fig. 5. Recognition rates on Dataset2 with size and location randomly
generated.

Figure 4 shows the results of the face recognition experi-
ments on Dataset2 with size and location randomly generated.
It is confirmed from Figs. 4 and 5 that SLHMM-CNN and
SLHMM obtained high recognition rates even on Dataset2.
This is because SLHMMs represent global geometric varia-
tions over an entire image. However, in CNN, recognition
rates in Dataset2 were lower than those in Dataset1. This
is likely because it is difficult for pooling layers to deal with
global geometric variations.

VI. CONCLUSION

We proposed image recognition based on convolutional
neural networks (CNNs) using features generated from separa-
ble lattice hidden Markov models (SLHMMs). The proposed
method can obtain features by account geometric variations
using SLHMMs as a feature generator. The results obtained
in this study indicate that features extracted from SLHMMs
are effective for classification and robust against geometric

variations. Furthermore, the proposed method enables highly
accurate recognition even when the amount of training data
is small. For future work, we will construct SLHMMs with
CNNs to generate features more discriminatively.
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