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Abstract— It is important to measure an infant’s length 

regularly to estimate the growth velocity to make sure that the 

infant is growing normally. Traditionally, measuring an infant’s 

length is performed with an infantometer. However, the infant 

struggles and cries in the measuring process, and it often needs 

three persons to position the infant’s head, legs, and the boards of 

the infantometer during the process. Thus, it is not practical for a 

parent to perform this measurement at home regularly. In this 

paper, we propose a new approach which allows the measurement 

of an infant’s length using a cellphone picture without the need to 

position the infant. Our algorithm automatically calculates the 3D 

positions of the body parts and the total length of the infant with 

the help of round stickers. The round stickers can be put on the 

infant’s body easily in a few seconds, before the picture is taken. 

This new technology would make frequent measurements of the 

infant’s length and the tracking of the growth velocity possible. 

I. INTRODUCTION 

It is important to measure an infant’s length and growth 

velocity regularly to make sure that the infant is growing 

normally. Traditionally, measuring an infant’s length requires 

performing a manual measurement using an infantometer 

(which consists of a flat surface with a headboard and an 

adjustable footboard). The infant is placed on the flat surface, 

and then the head and the legs are straightened so that both 

touch the boards that are parallel, providing a measure of the 

infant’s length. However, the infant struggles and cries in the 

process, and it often needs three persons to position the head 

and the legs of the infant, and to adjust the footboard of the 

infantometer. During the process, it could also accidently hurt 

the infant. Fig. 1 shows an example of the process of measuring 

an infant’s length using an Infantometer [1].  
 

Fig. 1 Measuring the infant’s length using an infantometer. 

    Given the complexity of the infant length measurement 

procedure and the staff requirement, a parent cannot be 

expected to perform this process alone regularly at home. It is 

very desirable to have a simple process so that the infant’s 

length could be measured easily by a single person without 

special training or special equipment and the need to hold and 

straighten out the infant. One possibility is to use a photograph 

taken by a typical cellphone camera with the infant free-

moving, and to use computer vision techniques to 

automatically calculate the infant’s length by an algorithm. 

    However, this is a very difficult problem. A free-moving 

infant is a dynamic deformable object. The body parts of the 

infant (e.g., the head and legs) can bend in the 3D space. Also, 

the lengths of the body parts will appear differently in the 2D 

image depending on their distances and viewing directions 

relative to the camera. In order to accurately measure the length 

of the infant, we need the 3D positions of the joints of the 

infant’s body parts relative to the camera, and physical 

reference lengths at these 3D positions since the same physical 

length could appear very differently in 2D images when at 

different 3D positions. We also need to be able to detect these 

body part joints accurately and robustly under various lighting 

conditions. Unfortunately, many body parts important for 

determining the length of the infant, such as the top of the head 

(which may be covered by hair), the neck, the shoulder, the 

joints between the body and the legs, the knee, and the heel, all 

lack clear and unique feature points. Another severe problem is 

that infants’ movements may cause severe motion blurs of the 

body parts and joints in the image. 

    An intuitive approach to measure the length of an object in 

the 3D space from images is to construct the 3D structure of 

the object. With the 3D structure, the 3D coordinates of the 

feature points and the total length of the object can be 

calculated. The most popular technique to estimation the 3D 

structure from 2D images is Structure from Motion (SfM) [2]. 

SfM requires a rigid textured object, and the availability of 

multiple photographs from different angles. However, an infant 

is not a rigid object, and it is difficult to extract enough features 

from the relatively textureless skin. There are two main 

methods to handle non-rigid objects: one is the template-based 

method and the other one is the non-rigid structure from motion 

(NRSfM) [3] method. The template-based method usually 

requires not only the texture but also a known template, which 

makes it not applicable for our goal. The NRSfM method does 

not require a known model, however, this method requires 

accurate matched feature pairs [3]. Reliable feature matching 

such as SIFT [4] does not work well on skin with no apparent 
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texture. Dense matching by the state of the art optical flow 

algorithms [5] and [6] give very noisy feature pairs, so they are 

not suitable for accurate infant length estimation. Structure 

from shading is a method that does not rely on feature 

matchings. However, due to unknown light sources and the 

complexity of cloth material and skin, even the most recent 

structure from shading algorithm [7] cannot produce 

satisfactory 3D results for infant photographs.  

In this paper, we aim to measure an infant’s length accurately 

and automatically from an image that is captured by a regular 

cellphone camera. In our proposed approach, we use round 

stickers of a known-size to mark the feature points (joints of 

the body parts) and to provide the reference lengths at the 3D 

positions of those feature points. A round sticker in the 3D 

space will be projected into an ellipse with different sizes and 

shapes depending on its 3D location and orientation relative to 

the camera. We can thus estimate the 3D positions of the 

centers of the stickers from the ellipses in the 2D image, and 

calculate the distances between the centers of the stickers on 

the infant. We develop a minimal spanning tree method to 

automatically determine the order of the ellipses for calculating 

the total length of the infant. We also developed a blurred-

ellipse detection algorithm which can automatically reject the 

images containing ellipses with motion blur to obtain accurate 

results. The stickers can be put on the infant easily in a few 

seconds, and the calculation of the length is fully automatic. 

We tested our algorithm on a model (a baby doll) as well as 

on human infants. The results show that our proposed approach 

can provide very accurate results and is easy to apply in 

practical situations. 

The contributions of this paper include: 1. We propose a new 

approach which enables automatic calculation of an infant’s 

length from a picture taken from a regular cellphone camera. 2. 

We propose to use a minimal spanning tree based algorithm to 

automatically calculate the infant’s length. 3. We propose a 

blurred-ellipse detection method to reject the pictures with 

motion-blurred ellipses caused by the infant’s motion while 

taking the pictures. 4. We perform experiments to show the 

effectiveness and the accuracy of the proposed methods. 

The organization of the rest of this paper is as follows. In 

Section II, we describe our proposed approach. In Section III, 

we discuss our proposed method to detect blurred ellipses due 

to motion, so that we could automatically reject the images 

containing blurred ellipses in our calculations in order to obtain 

accurate results. In Section IV, we present our measurement 

results. In Section V, we give conclusions. 

II. PROPOSED APPROACH 

For a deformable object such as an infant, determining its 3D 

length from a single 2D picture is an ill posed problem due to 

the reasons mentioned above. Our idea is that feature points are 

needed, but they do not need to be “natural” feature points on 

the infant. We proposed to use known-size round stickers 

placed on the joints on the infant’s body to serve as easily 

identifiable feature points and provide the needed reference 

physical lengths at the 3D positions of those feature points. 

With different distances and viewing angles from the camera, 

the round stickers will appear as ellipses in different sizes and 

shapes. By analyzing the ellipses’ geometric parameters, we 

can recover the sticker centers’ 3D positions relative to the 

camera with only one image. Stickers can easily be put on the 

infant’s joints (e.g., heel, knee, hip, shoulder, and head) in just 

a few seconds, and with the 3D positions of the ellipse centers, 

the distance between stickers could be calculated. The infant’s 

length could then be calculated by adding up the length of each 

body part. Since the hair may cover the infant’s head, we put a 

sticker on a hard surface (such as a cardboard or a book) to be 

pressed against the head to provide the length measurement 

between the top of the head and the shoulder.  

 With this approach, only off-the-shelf round stickers are 

needed in the measurement. There is no need to try to detect 

feature points in the textureless areas, or to provide reference 

physical lengths at the 3D positions of those feature points. 

Essentially, the stickers solve the problems of defining feature 

points, detecting the 3D locations of the feature points, and 

providing the physical reference lengths at the 3D locations all 

at once. 

It was shown in [8] that the 3D position of the center of a 

round pattern relative to a camera could be determined up to 

two solutions based on the actual size of the round pattern and 

the parameters of the corresponding ellipse in the image. Those 

two solutions will have different surface orientations, but very 

close positions. Specially designed pattern is needed to help to 

resolve the ambiguity [9], otherwise, multiple images are 

needed to help to find the true position. For our situation, the 

round sticker’s size is very small compared to its distance to 

the camera center. Thus, there is no need to differentiate those 

two solutions: for a sticker of diameter 1.905 cm, camera to 

sticker distance larger than 20 cm, the difference of those two 

solutions is less than 0.5 mm. The 3D distance accuracy will 

not be affected by the sticker’s orientation, it is mainly affected 

by the accuracy of the detected ellipse parameters.  

To measure the infant’s length automatically, we need to 

determine the connecting order of the ellipses automatically. 

To do this, we use a Minimal Spanning Tree (MST) based 

algorithm to obtain the connectivity of the stickers.  
 

 
 

Fig. 2. Placing round stickers on the infant and using a minimal 

spanning tree based algorithm for calculating the infant’s length from 

an image. 
 

We formulate the connections of stickers as a graph, in 

which each sticker represents one node. Let  𝑁𝑖  be the ith 

sticker. Since any two stickers are connected by exactly one 
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path in our configuration, we can extract an MST to obtain the 

connectivity of the stickers. The optimal MST encourages that 

the path between any two connected stickers should be covered 

by the infant’s body as much as possible. For example, in Fig. 

2, we encourage the connection between Node C and D, while 

discouraging the connection of A-D and B-D. Therefore, the 

path between two stickers will be weighted by the portion of 

the path located on the body as well as the Euclidian distance 

between the two stickers in 3D. More formally, the weight 

between any two nodes 𝑁𝑖 and  𝑁𝑗  is defined as: 
 

𝐸(𝑖, 𝑗) = ‖𝑁𝑖
3𝑑 − 𝑁𝑗

3𝑑‖ ∙ (1 + 𝛼𝑝)                     (1) 

 

𝑝 =
|𝑃𝑖𝑥𝑒𝑙𝑠 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑏𝑜𝑑𝑦|

|𝑃𝑖𝑥𝑒𝑙𝑠 𝑎𝑙𝑜𝑛𝑔 𝑙𝑖𝑛𝑒(𝑁𝑖,𝑁𝑗)|
                          (2) 

 

where 𝑁𝑖
3𝑑 stands for the 3D position of node 𝑁𝑖 and ‖ ∗ ‖ is 

the Euclidian distance between the two points. | ∗ | stands for 

the cardinal number, and 𝛼 is a constant. To count the number 

of the pixels outside the body, we first segment out the infant’s 

body from the background based on the skin color. The total 

length of the MST is the infant’s body length. Fig. 2 shows an 

example where green lines are all possible paths, and the blue 

lines are the selected MST path. Besides this MST-based 

method, an alternative method is to take multiple pictures with 

each picture containing two stickers only, and the total length 

is the sum of the individual length in each picture. 

III. BLURRED STICKERS DETECTION 

    Sometimes the ellipses in the picture appear blurry due to 

the infants’ movements. The blurred ellipses will have an 

impact on the accuracy of the final results. To improve 

accuracy, we develop a blur detection method to automatically 

reject the images with blurred ellipses. Since we can take 

multiple images, we have enough clear ellipses for the 

measurement. To increase the possibility of getting good 

images while the infant is moving, we can use the burst mode 

to take pictures. 

    Although the topic of image blur analysis has attracted 

much attention, most previous works focus on detecting 

blurred images. In [10], Su et al. constructed a new blur metric: 

singular value feature, and use it to detect the blurred regions 

of an image. In [11], Liu et al. designed four local blur features 

for blur confidence and type classification. In [12], Shi et al. 

studied a few blur feature representations in image gradient, 

Fourier domain, and data-driven local filters. In our case, even 

if there are some blurred regions in an image, as long as a 

sticker in the image is clear, it can still be used to calculate the 

3D distance. 

The motion blur could be modeled as a convolution with a 

motion blur kernel. The stickers are put on various 

backgrounds which have very different pixel values. Due to the 

convolution and the different pixel values across the ellipse 

boundary, the regions immediately inside and outside the 

ellipse boundary usually have relatively large gradients. Since 

the stickers could be put on many different backgrounds, the 

gradients outside the ellipse boundary have many variations. 

On the other hand, since the inside of the ellipse is just pure 

green color in our case, we can ensure that the gradients inside 

the ellipse are small and consistent except the region 

immediately inside the ellipse boundary. Thus, it is easy to 

extract a ring with relatively large gradients between the ellipse 

boundary and the inside region of the ellipse. Depending on the 

width of the ring, we could determine the extent of the sticker 

blurriness. 

After we extract the sticker masks by setting a color 

threshold, we calculate the magnitudes of the gradients of the 

grey-scale image for the pixels inside the sticker masks. The 

Sobel operator is used in the calculation of gradients. After that, 

we process the gradient images by binarization with an 

empirical threshold, followed by the Closing operation using a 

9x9 kernel, which is an all-ones matrix, to fill the holes. An 

example for a blurred sticker is shown in Figure 3. 

 

 
Fig. 3. Blurred sticker sample. (a) is the original blurred sticker 

image, (b) is the gradient image, and (c) is the mask of the gradient 

image after binarization and morphology processing. 

 

To make the process simple, we approximate the gradient 

mask (e.g., in Figure 3(c)) by an elliptical ring, which is the 

blue part shown in Figure 4. We define the inner ellipse as the 

internal contour of the ring, the outer ellipse as the exterior 

contour of the ring. If the elliptical ring is wider, the 

corresponding sticker is more likely to be blurred.  

 

 
  

Fig. 4. The elliptical ring. 

 

Suppose the long axis of the inner and outer ellipse are 𝑎1 

and 𝑎2 , and the short axis of the inner and outer ellipse are 

𝑏1 and 𝑏2 , respectively, where 𝑎1 ≥ 𝑏1 > 0 , 𝑎2 ≥ 𝑏2 >
0 ,  𝑎2 > 𝑎1  and 𝑏2 > 𝑏1 . The middle dashed ellipse can be 

regarded as the skeleton of the elliptical ring, which can be 

obtained by skeletonization [13] of the elliptical ring, and the 
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long and the short axis of it are  (𝑎1 + 𝑎2)/2 and (𝑏1 + 𝑏2)/2. 

Thus the area 𝐴 of the elliptical ring is 

 

𝐴 = 𝜋(𝑎2𝑏2 − 𝑎1𝑏1)  .                       (3) 
 

The perimeter P of the dashed ellipse is 
 

    𝑃 = 𝜋(𝑏1 + 𝑏2) + 2(𝑎1 + 𝑎2 − 𝑏1 − 𝑏2) ,                    (4) 

 

and the Area/Perimeter (𝐴/𝑃) ratio is  
 

𝐴/𝑃 =
𝜋(𝑎2𝑏2−𝑎1𝑏1)

𝜋(𝑏1+𝑏2)+2(𝑎1+𝑎2−𝑏1−𝑏2)
  .             (5) 

 

To simplify the equations, we denote 𝑎1 = 𝑛 𝑏1 , 𝑎2 =
𝑛 𝑏2 , 𝑎2 = 𝑚 𝑎1  and 𝑏2 = 𝑚 𝑏1 , where 𝑛 ≥ 1 and 𝑚 ≥ 1, so 

the 𝐴/𝑃 ratio in Equation (5) can be simplified into 
 

𝐴/𝑃 =
(𝑚−1)𝑛𝜋𝑏1

𝜋+2(𝑛−1)
                          (6) 

 

In Equation (6), for a given elliptical ring, 𝑛 and 𝑏1are fixed. 

If 𝑚 is larger, the elliptical ring is wider. 𝐴/𝑃 estimates how 

thick the ellipse ring is. For accurate ellipse estimation, smaller 

𝐴/𝑃 is preferred.  

In our experiments, we tested our ellipse blur detection 

method on 30 infant images from the dataset we collected in 

our field trials. To evaluate the accuracy, we first manually 

estimated the stickers and classified the stickers as clear 

stickers or blurred stickers. First, we classified the images. If 

there were only clear stickers in an image, the image was 

classified as a clear image. Otherwise, the image was classified 

as a blurred one. Among the 30 images we tested, 15 images 

were clear and 15 images were blurred. Next, we classified the 

stickers. There were 86 stickers in these 30 infant images. If the 

Blur Ratio > threshold, the sticker was regarded as blurred; 

otherwise, the sticker was regarded as clear. We set the 

threshold as 20. The accuracy for the sticker classification was 

95.3%, and only 4 stickers were incorrectly estimated, which 

may be due to the illumination and shadow effects.  

Although four stickers were incorrectly classified, the 30 

infant images tested were all correctly classified, so the 

accuracy of image classification was 100%. This is because the 

image is classified as a clear image only if all the stickers are 

classified as clear. 

IV. EXPERIMENTAL RESULTS 

A. Calibration of the Proposed Method as a Virtual Ruler 

Before comparing the measurements of length using the 

proposed method and using an infantometer, we established the 

precision of the sticker method. For this purpose, we put six 

stickers on an Infantometer. Three stickers were put on the 

headboard to determine the headboard plane, and the other 

three at 20cm, 30cm, and 40cm positions on the flat base, 

respectively. Here the sticker’s correct orientation out of two 

possible solutions could be selected automatically using the 

fact that the headboard stickers and the ruler stickers are 

coplanar. By selecting the correct solution, the maximum 0.5 

mm error mentioned in Section II can be circumvented. 

We measured the distance from each of the three stickers on 

the headboard plane to each of the three stickers on the base of 

the infantometer to estimate the precision of our proposed 

method. As shown in Table 1, our proposed method is very 

accurate. The maximum measurement error is 0.11 cm, and the 

average is 0.058 cm (below 1 mm). This demonstrates that with 

clear images and precise ellipse detection, our proposed 

approach could achieve very high accuracy. 

 
TABLE 1 

LENGTH MEASUREMENT (IN CM) USING STICKERS COMPARED TO 

INFANTOMETER, THREE IMAGES WERE TAKEN FROM DIFFERENT ANGLES. 

Sticker 

Location 

Image No Dist2Headboard Err Err% 

20 cm 

1 19.89 0.1 0.6% 

2 19.98 0.02 0.1% 

3 19.97 0.02 0.1% 

30 cm 

1 29.92 0.08 0.3% 

2 29.96 0.04 0.1% 

3 30.07 0.07 0.2% 

40 cm 

1 39.94 0.06 0.15% 

2 40.03 0.03 0.08% 

3 40.11 0.1 0.3% 

 

Next, to evaluate the accuracy in a controllable environment, 

we put stickers on a baby doll’s joints. We used a book 

touching the doll’s head. The length between the head to the 

shoulder is estimated by calculating the shoulder sticker’s 

distance to the book plane. In this baby doll experiment, only 

one image is used to estimate the total length, since all stickers 

were captured in one image. One person could take the pictures 

easily. 

The final infant length is: 
 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿ℎ𝑒𝑎𝑑2𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟 + 𝐿𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟2ℎ𝑖𝑝 + 𝐿ℎ𝑖𝑝2𝑘𝑛𝑒𝑒 +

𝐿𝑘𝑛𝑒𝑒2ℎ𝑒𝑒𝑙 + 𝑟𝑠𝑡𝑖𝑐𝑘𝑒𝑟                                                              (7) 
 

As shown in Table 2, the final result has only about 0.97% 

error compared to the ground truth measured by an 

infantometer.  

 
TABLE 2 

BABY DOLL MEASUREMENT WITH ¾” GREEN STICKERS. (RESULT IN MM), GROUND 

TRUTH (GT) OBTAINED BY REAL RULER. 

NO. 
Head2Br

east 
Breaset2

Hip 
Hip2Knee Knee2Heel Total 

1 111.55 95.2 73.83 65.83 346.41 

2 111.11 94.40 71.91 65.69 343.11 

3 113.67 95.09 73.03 65.14 346.93 

4 114.47 96.71 73.41 63.91 348.50 

5 112.03 97.18 72.19 64.43 345.83 

6 111.09 96.44 72.21 67.28 347.02 

7 112.15 94.46 74.62 66.83 348.06 

8 112.91 95.44 73.29 65.32 346.96 

AVG 114.24 95.50 73.00 65.49 348.24 

STD 1.22 1.04 0.93 1.13 1.64 

GT 114 96 73 67 350 

diff% 1.43% 0.40% 0.084% 2.16% 0.97% 
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B. Field test 

We also apply the proposed method to real infants in 

practical settings. Since it is more difficult to take a single clear 

picture that contains all stickers, we take pictures of knee to 

heel, hip to knee, shoulder to hip, and head to shoulder. 

Different types of pictures were uploaded to different folders 

and the computer automatically calculates the individual length 

and sums the individual lengths to get the final total length. 

The size of the sticker in the image can also affect the 

accuracy of the measurement. Although theoretically we could 

recover circular stickers of any orientation and distance, the 

result depends on the accuracy of the ellipse parameters. If a 

circular sticker is too small in the image, then even a small 

deviation in the ellipse estimation will cause noticeable errors 

in the 3D position recovery. Thus, it is preferred to use a 

reasonably large sticker. However, if the sticker is too large, it 

is not convenient to use. We used a 3/4” (1.905 cm) sticker, 

which is a suitable size. Also, we made the stickers appear large 

in the pictures taken. 

Another issue is the location of the stickers. For example, a 

sticker could be put on the outer side of a leg or on the inner 

side of the leg. The principle is to place the stickers close to the 

joints and observe if the distance between two neighbor sticker 

pairs is affected when the baby moves.  

We compared the infant length measurements using both the 

proposed method and the infantometer method of the same day 

(see Table 3). We averaged the results if there were more than 

one clear photo available. The errors are close to 3%.  

 
TABLE 3 

FIELD TEST COMPARED WITH INFANTOMETER. (IN CM). STICKER DIAMETER IS 

1.905 CM. 

Sub Head 
to 
Shoul
der 

Should
er 
 to Hip 

Hip to 
Knee 

Knee 
 to 
Heel 

Total GT Err 

1 16.77 18.30 11.88 13.98 61.89 60.0 3.15% 

2 16.74 20.44 15.41 13.25 66.80 66.5 0.5% 

3 19.7 31.46 * 14.27 66.38 65.0 2.1% 

4 18.51 16.03 13.58 13.70 61.90 64.0 3.3% 

5 15.00 19.23 11.92 13.43 59.65 64.3 7.2% 

6 17.70 20.58 13.96 14.07 67.27 67.45 0.27% 

* Combined result. 

V. CONCLUSIONS 

In this paper, we propose a new technique to measure an 

infant’s length from one 2D photograph. The method is easy to 

apply, and requires only circular stickers and a regular 

cellphone camera. Thus, a parent could easily apply this 

method regularly to keep track of the infant’s growth. 

Compared to the traditional infantometer method, this new 

method can be applied by one person (instead of three persons). 

It also does not need special equipment (i.e., an infantometer). 

Our experimental results show that it has a good accuracy of 

about 3% in field trials. Since the major error is due to the head 

measurement and the sticker locations, it is possible to further 

improve the accuracy and repeatability with clearer definitions 

of head measurement and the joint locations.  
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