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Abstract—Cochlear implant (CI) restores the hearing sensation
in profoundly deafen patients by directly stimulating auditory
nerve with electric pulses using an array of tonotopically inserted
electrodes. Basal electrodes stimulate in response to high input
frequencies while apical electrodes stimulate to low input frequen-
cies. The problem with this electrical stimulation, particularly
in unilaterally implanted users who has residual hearing in
the contra-lateral ear, lies in the frequency mismatch between
characteristic frequency of auditory nerve and input signal. In
this paper, we revisit our previously proposed mechanism for
tuning intra-cochlear electrode to its pitch matched frequency
using a single channel EEG [1]. We apply the wavelet scattering
transform to extract a deformation invariant from the EEG signal
recorded from each of 10 CI subjects when they were listening
to pitch matched electro-acoustic stimulation. Results show that
the wavelet scattering transform is able to capture the variability
introduced by different subjects, and a more robust alternative
to reveal the underlying neuro-physiological responses to this
perceptual event.

Index Terms—Analytical complex wavelet, Cochlear implants,
wavelet scattering transform

I. INTRODUCTION

A. Motivation

Cochlear Implant (CI) is a surgically implanted electronic
device that provides a sense of sound to a patient who is
profoundly deaf. It consists of a microphone and a speech pro-
cessor that reside outside the head, which process input speech
signal and encoded with electrical pulses. The information of
electrical stimulation is transmitted to an array of electrodes
implanted in the cochlea via a radio-frequency (RF) channel.
Fig. 1 shows a typical cochlear implant. The intra-cochlear
electrodes decode the signal and stimulate the auditory nerve
tonotopically bypassing the peripheral auditory system. [2].

Direct electrical stimulation to cochlear nerve does not
necessary match up the input acoustic frequency with the
characteristic frequency of the cochlear nerve at where the
intra-cochlear electrode is placed. As a result, individualized
tuning of appropriate speech processing and electrical sim-
ulation parameters is necessary for CI users. To date, this
tuning process is done with verbal responses from the CI
users when they listening to speech with an audiologist. This
process is time and energy consuming and might not be
helpful for very young users. However, CI users will need
time to adapt to their devices to resolve this impoverish

representation of speech provided by electrical stimulation to
derive benefits. An automatic tuning and evaluation platform
is definitely a useful tool to CI users. With the advancement in
neuro-engineering, a closed loop CI tuning system [3] and a
signal processing algorithm for reducing the mismatch using
independent component analysis [4] were also proposed in
attempt to resolve this issue.

Cortical response to pitch matched stimuli was found to be
a useful feedback for this tuning process. In [3], unilateral CI
users with residual hearing in their non implanted ear were
studied behaviorally and physiologically in matching electro-
acoustic stimulation. CI users were asked to match the pitch
percept elicited by electrical stimulation with those elicited
by adjustable acoustic tone presented in the contra-lateral ear.
EEG was also recorded when pitch matched stimuli were
presented to these CI users.

One difficulty in interpreting the EEG signal is the low
signal to noise ratio which hinders the extraction of the under-
lying physiological response and raises difficulty to establish
a causal or statistical relationship between the behavioral
and neural activities. Considering a zero mean additive noise
for the measured signal, a typical method in reducing noise
is ensemble averaging the waveform collected from several
experiments. Since noise is zero mean, the ensemble average
contains just the deterministic part of the signal. However,
the ensemble averaging corrupts the deterministic part of this
signal since the deterministic part the signal is not fixed wave-
form and is a time varying phenomena. Different factors like
artifacts and other neural activities deform the deterministic
part. As a result, the measured signal has a different shape.
In our CI application, it is required to reduce the existing
variability in order to establish a meaningful relation between
EEG and the frequency mismatch.

B. Key Contribution

In this paper, we consider a time warp model for defor-
mation in EEG signal. Then, we apply the wavelet scattering
transform to a single channel EEG before ensemble averaging
which extracts a time warp deformation invariant from the
signal. We applied this method to the data collected from 10
CI subjects. The experimental results show similarity between
different subjects in the scattering domain.
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This paper is outlined as below: Section II reviews the
deformation model, the analytical complex wavelet and the
scattering transform. The experimental results are reported in
Section III. Finally, the concluding remarks are in Section IV.

Fig. 1. A typical cochlear implant.

II. SIGNAL PROCESSING FRAMEWORK

A. Deformation and Notion of Stability
From a mathematical perspective, different EEG signals for

the same neural activity are deformed versions of each others.
Assuming a model for deformation can lead to developing
robust signal processing methods. For example, consider the
time shift deformation, which is defined as x(t)→ xτ (t− c)
for an arbitrary signal x(t). Then, the Fourier representation
x̂(ω) =

∫
x(t)e−jωtdt can be used for rejecting this deforma-

tion since |x̂(ω)| is shift invariant.
Time-warping is a general class of deformation which is

modeled as xτ (t) = x(t − τ(t)) with |τ ′(t)| < 1. Here, the
deformation can be quantified using |τ ′(t)|. If the derivative is
zero the deformation simplifies to a pure shift. Suppose Φ(x)
is an arbitrary representation (feature) of x(t) and Φ(xτ ) is
the same representation for xτ (t), the deformed version of
x(t); then, Φ(·) is considered as a robust representation if the
difference between Φ(x) and Φ(xτ ) caused by the deformation
is small. This similarity can be quantified using the Euclidean
norm as d(x, xτ ) = ‖Φ(x) − Φ(xτ )‖. Basically, we are
looking for a Φ(·) which is invariant to this deformation. This
invariance can be characterized using notion of stability. Φ(·)
is stable if a small change in x(t) does not lead to a big
change in d. Mathematically, stability is defined as Lipschitz
continuity condition respect to the norm, if there exists a
constant C > 0 such that for all τ with sup

t
|τ ′(t)| < 1:

‖Φ(x)− Φ(xτ )‖ ≤ C sup
t
|τ ′(t)| ‖x‖ (1)

where sup denotes supremum of a set. The constant C gives
a measure of stability. Indeed, if the Lipschitz condition holds
true, a change in x(t) caused by time warp leads to a linear
change in its representation. Since, time-warping is locally
linearized by Φ(x(t)) and Φ(x)−Φ(xτ ) can be approximated
by a linear operator if sup|τ ′(t)| is small. In other words, in the
feature space Φ(x) and Φ(xτ ) are on the same hyperplane and
the corresponding features do not spread all over the space.

B. Analytic Wavelet Transform Modulus

The analytic wavelet transform, which is robust against shift
deformation, can be calculated using constant Q filterbanks
[6]. A wavelet like ψ(t) is a band pass filter where ψ̂(0) = 0.
In the analytical wavelet transform ψ̂(ω) ' 0 for ω < 0 [7].
A dilated version of ψ(t) with the central frequency of λ > 0
can be written as ψλ(t) = λψ(λt) or in frequency domain
ψ̂λ(ω) = ψ̂(ωλ ), where the central frequency of ψ̂(ω) is
normalized to 1 and Q is chosen as the number of wavelets per
octave, λ = 2k/Q for k ∈ Z, which guarantees the bandwidth
of ψ̂λ to be in order of Q−1 and its central frequency is at
λ. In this way, different ψ̂λ’s cover all frequency axis except
DC which is covered using a low-pass filter φ. Let Λ denote
the set of all values of λ, the wavelet transform of signal x(t)
can be calculated by convolution of these filters:

Wx = (x(t) ∗ φ(t), x ∗ ψλ(t)) t ∈ R, λ ∈ Λ (2)

Here, t is not critically sampled as the wavelet bases, so this
representation is redundant. The filters φ and ψ need to be
designed such that the entire frequency axis is covered which
requires:

A(ω) = |φ̂(ω)|2 +
1

2

∑
λ∈Λ

(|ψ̂λ(ω)|2 + |ψ̂λ(−ω)|2) (3)

for all ω ∈ R satisfies [8]:

1− α ≤ A(ω) ≤ 1 for α ≤ 1 (4)

By multiplying both sides of this inequality by |x̂(ω)|2 and
apply Plancherel theorem one can obtain [9]:

(1− α)‖x‖2 ≤ ‖Wx‖2 ≤ ‖x‖2 (5)

where ‖Wx‖2 =
∫
|x ∗ φ|2 +

∑
λ∈Λ

∫
|x ∗ ψ|2 is the squared

norm of wavelet representation and ‖x‖2 =
∫
|x(t)|2dt is

the norm of signal. In Eq. 5, the lower bound guarantees a
stable inverse while the upper bound shows that wavelet is a
contractive operator [10]. If α = 0, then W becomes a tight
frame and x(t) can be reconstructed as x(t) = (x ∗ φ(t)) ∗
φ(−t) +

∑
λ∈ΛReal{(x ∗ ψ(t)) ∗ ψ(−t)} [8].

In the scattering transform, the wavelet modulus is used
for feature extraction. In spite of Fourier transform, which is
not possible to reconstruct the signal just using its Fourier
modulus, it is possible to reconstruct the signal using just
modulus of complex wavelet [11]. This is due to the redundant
representation in Eq. 2. In addition, since the complex modulus
is contractive, ||a| − |b|| for any (a, b) ∈ C, the wavelet
modulus operator, |W | is contractive:

‖|W |x− |W |x′‖2≤ ‖Wx−Wx′‖2≤ ‖x− x′‖2 (6)

C. Wavelet Scattering Transform

The main idea behind the scattering transform is to analyze
the signal using analytical wavelet and then average the
wavelet coefficients over time to extract features. The intuition
behind the averaging coefficient is to reduce the variability in
features and is similar to averaging the Fourier coefficient over
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Mel frequency intervals to extract Mel frequency cepstral co-
efficients (MFCC) in speech processing [12]. However, MFCC
loses information by averaging, while scattering transform
preserves the reconstruction information [13].

Fig. 2. Scattering transform of signal x by iterating the |W |m operator. The
output nodes are shown as squares.

In the scattering transform, a locally translation invariant
descriptor is obtained by a time average S0x(t) = x ∗ φ(t)
which removes the high frequency contents. However, these
high frequency content are recovered by a wavelet modulus
transform as |W |1x = (x ∗ φ, |x ∗ ψλ1

|). The first order of
the scattering coefficients can be obtained as S1x(t, λ1) =
|x ∗ ψλ1

| ∗ φ. These coefficients measure the average signal
amplitude in the frequency interval covered by ψλ1 with
bandwidth corresponding to Q1. In essence, they are calculated
by a second wavelet modulus operator as |W |2|x ∗ ψλ1

| =
(|x∗ψλ1

|∗φ, ||x∗ψλ1
|∗ψλ2

|). So, the second order scattering
coefficients are S2x = ||x ∗ ψλ1

| ∗ ψλ2
| which are computed

by a ψλ2
with a bandwidth corresponding to Q2. Iterating this

process defines the scattering coefficients at any desired order.

For any m ≥ 1, iterated wavelet modulus convolutions
are written as Um(t, λ1, · · ·λm)x = |||x ∗ ψλ1 | ∗ · · ·| ∗ ψλm |
where the mth order wavelet have an octave resolution of
Qm and they satisfy condition in Eq. 4. Next; the mth order
scattering coefficients are obtained by averaging Umx with φ
as Smx(t, λ1, · · · , λm) = Umx(t, λ1, · · · , λm) ∗ φ. So, the
scattering decomposition of a signal with the maximum order
of l is an iterative operation by applying |W |m+1 on Umx
to obtain Smx and Um+1x for 0 ≤ m ≤ l where U0x = x.
The scattering transform is the collection of all coefficients
from each order Sx = {Smx|0 ≤ m ≤ l}. Fig. 2 shows the
decomposition graph.

One can prove that the scattering transform has the follow-
ing properties [9]:

• Time warp deformation stability: it satisfies the Lipschitz
condition, ( i.e., there exist a constant C for any x such
that ‖Sx− Sxτ‖≤ Csup

t
|τ ′(t)| ‖x‖).

• Contraction: since scattering is calculated by wavelet
modulus, it is a contractive transform, (i.e., ‖Sx−Sx′‖≤
‖x − x′‖). As a result of this property, the scattering
transform is robust against the additive noise.

• Energy conservation: if the chosen wavelet is a tight
frame, then the scattering transform preserves the norm,
(i.e., ‖x‖2 = ‖Sx‖2 + ‖Ul+1x‖2). As a result, ‖Ul+1x‖2
vanishes as l → ∞. In practice, the coefficients become
very small after a few iterations.

III. EXPERIMENTAL RESULTS

A. Data Description

We developed a real-time pitch matching platform that
stimulates the electrode of interest directly at the user’s com-
fortable level (MCL) via the NIC research interface provided
by Cochlear Corporation [Sydney, Australia]. The acoustic
tone is amplified by a prescribed NAL-R gain based on the
subject’s pure tone audiogram in the un-implanted ear. The
acoustic signal is further amplified by a Graham Slee Solo
SRGII amplifier and presented via an ER-2 insert earphone.

All acoustic and electric signals are presented in an alter-
nating sequence, in which electrical pulses are presented via
stimulation of a single channel in the implanted ear for 500 ms
followed by 500 ms of electrical inactivity, the acoustic tone
is shaped by trapezoidal window with a rising/falling time of
10 ms to prevent spectral splatter.

In these experiments a single EEG channel placed at the
center of scalp (electrode 20) is used to collect data from 10
subjects at the rate of 500 Hz. The stimuli is a pure tone
varied for 6 different frequencies: 250, 375, 500, 625, 1,000
Hz. These frequencies are chosen to be one octave higher or
lower than the target frequency of 500 Hz and at the center
of apical or basal electrodes.

B. Variability Reduction

We apply a three stage algorithm for reducing variability of
EEG signal. Figure 3 depicts the flowchart of the algorithm.

Scattering
Transform

Normalization
Ensemble
Averaging

To The
Audiologist

For 
Evaluation

Fig. 3. A three step algorithm for variability reduction using the wavelet
scattering transform.
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Fig. 4. Frequency response of Morlet wavelet used in scattering network.
(a) First layer with Q1 = 8, (b) Second layer with Q2 = 1.

In the first step, the single channel EEG signal is analyzed
with the scattering transform. We use a two layer (l = 2)
scattering network with the normalized Morlet wavelet defined
as ψ(t) = e−iω0tθ(t) = e−ite−t

2/2σ2

, which is simply a mod-
ulated Gaussian function. In the frequency domain, ψ̂(ω) =
θ̂(ω − 1) is a low-pass filter with a Gaussian shape with
its central frequency at the normalized frequency of 1. The
Morlet wavelet is almost an analytical function since |ψ̂(ω)|
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Fig. 5. Ensemble average of normalized scattering of EEG signal for matched pitch for 10 CI subjects. Different subjects show a high degree of similarity
after removing the variability.

is small for ω < 0 but not zero. However, strictly speaking,
Morlet is not an admissible wavelet [10]. For satisfying the
admissibility condition we use ψ̂ = θ̂(ω−1)−θ̂(ω)θ̂(−1)/θ̂(0)
which guarantees ψ̂(0) = 0. The parameter σ2 determines
the bandwidth of the wavelet which is assigned based on the
choice of Q in scattering network. Fig. 4 shows the Morlet
wavelets for Q1 = 8 and Q2 = 1 in our scattering network
(chosen empirically). In the second stage, the scattering coef-
ficients are normalized to be invariant against a change in the
amplitude of input signal by dividing the coefficients in each
layer by corresponding coefficients in the predecessor layer
where the first layer coefficients are normalized by S0x. After
normalization, the log function is applied to the normalized
coefficients as a range compressor. The range compression
provides a better visualization for expert. In the last step, we
apply an ensemble averaging to reduce noise.

Figure 5 depicts the ensemble average of the scattering
transform for 10 CI subjects. As seen, the algorithm output
shows a high degree of similarity for different subjects.

IV. CONCLUSION

In this paper, a method for tuning of cochlear implant based
on EEG signal was investigated and the wavelet scattering
transform was found to remove the variability in EEG signal.
This processing framework provides a more robust alternative
to the classical technique in mining the neurophysiological
correlate to pitch matched stimuli, particularly in unilateral CI
users with residual hearing in their contralateral non-implanted
ear.
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