
Containerized Design and Realization of Network

Functions Virtualization for a Light-Weight

Evolved Packet Core Using OpenAirInterface

Wen-Ping Lai
*
, Yong-Hsiang Wang, Kuan-Chun Chiu

Department of Electrical Engineering

Yuan Ze University

Taoyuan, Taiwan

wpl@saturn.yzu.edu.tw*

Abstract—In recent years, network functions virtualization

(NFV) has been well perceived as the driving force behind

innovations of the 5G system, such as slicing precious system

resources for differential service needs. In this paper, we

propose a container-based design of virtual evolved packet core

(vEPC) slice and its light-weight version (LW-vEPC) based on

the OpenAirInterface (OAI) software package. We have

successfully containerized, and thus virtualized, the EPC

component functions into two separate containers: the control-

plane (CP) container for virtual home subscriber server (vHSS)

and virtual mobility management entity (vMME), and the data-

plane (DP) container for virtual serving and packet data network

gateway (vSPGW). Via a joint configuration design of virtual

linking, binding and bridging, including appropriate source and

destination network address translation (SNAT and DNAT),

both the intra-container and inter-container communications

have been successfully realized. An OAI-based joint test of

vEPC with a small-cell base station (ENB) has also been

successfully demonstrated via a downlink video streaming

showcase from the Internet to a cellular phone. The DP

container itself can also perform as a LW-EPC slice near the

mobile edge of ENB to greatly reduce the latency for time-

critical applications. The resource allocation methodology of

multiple CPU cores for vEPC and LW-EPC slicing is being

developed. This paper proposes a simple but powerful

algorithm called specifically assigned cores (SAC) to achieve

better utilization of CPU cores. Our preliminary results show

that SAC outperforms the default scheme, namely randomly

assigned cores (RAC), in terms of lower CPU load and less

packet loss. The superiority of SAC over RAC amplifies with

the traffic level.

Keywords- 5G; NFV; SDN, Cloud, SAC, network slicing;

container; Docker

I. INTRODUCTION

The coming era of the fifth generation (5G) [1] mobile
communication and networking is not only remarked with its
much wider communication bandwidth by introducing the
use of 5G new radio (5G-NR) at high-frequency mm-wave
bands, but more with its networking innovations by
embracing new ideas from the datacom making itself rapidly
evolve from closure to openness. The 5G networking

innovations are driven by the maturity and wide deployment
of Cloud-based applications, the standardization and
commercialization of software defined networking (SDN) [2,
3], and the proposal of network functions virtualization
(NFV) [4], where Cloud and SDN come from the datacom
and both inspire the telecom and other third-party
stakeholders, e.g. many over-the-top (OTT) service providers
in 5GPPP, to propose new innovations such as NFV for core
networks and software defined Cloud radio access networks
(C-RAN) [5].

These innovations can meet differential QoS needs in
three major aspects, such as extreme mobile broadband
(eMBB) for video content delivery (CDN), ultra-reliable
low-latency communication (uRLLC) for advanced
connected vehicles [6], and massive machine-type
communication (mMTC) for internet of things (IoT).
However, these applications also impose technically
challenging issues, such as flexible function split of base
stations or small cells for C-RAN [7], software defined
fronthaul and backhaul networks [8], customized multi-
tenancy service/network slicing of core-network resources,
and mobile edge deployment of time-critical cloud
applications.

To address the aforementioned issues, NFV plays a
pivotal role, where customized chaining of desired virtual
network functions (VNFs), equivalently service slicing or
network slicing [9, 10], can be demanded for differential use
cases, such as Network Store [11]. Based on the levels of
realization complications, the following use cases are
expected in sequential phases: (1) vCPE for virtual customer
premise equipment, remotely installable and maintainable by
the central office to enable the simplicity of customization
and management of user-demanded VNFs; (2) vEPC for
virtual evolved packet core, to achieve multi-tenancy-based
core network slicing and logically independent
administration, allowing for value-added OTT VNFs; (3)
vRAN for virtual radio access network, to realize a virtual
base-band unit (vBBU) pool for C-RAN or FlexRAN [12]
management.

This paper presents a study on Docker container [13, 14]
based virtualization design of the vEPC, where the ultimate
goal is to containerize all the component functions of the
EPC [15] such that each component function becomes a

472

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

978-988-14768-5-2 ©2018 APSIPA APSIPA-ASC 2018

VNF and customized chaining of these VNFs plus extra
value-added OTT VNFs can be formed. In other words, a
customized chain of VNF containers can thus be viewed as a
network slice or service slice. In this paper, a system design
on how to containerize and thus virtualize a light-weight
EPC (LW-vEPC) slice is presented, in order to be
deployable at a mobile edge cloud, as aforementioned. In
addition, the allocation methodology of multiple CPU cores
for such a LW-EPC slice is being developed. In this paper,
an algorithm called specifically assigned cores (SAC) is also
proposed to achieve better utilization of CPU cores. Our
preliminary results show that SAC outperforms the default
scheme, namely randomly assigned cores (RAC).

The remainder of this paper is organized as follows.
Section II details the system design of a vEPC slice, and its
benefit to be deployed as a LW-vEPC slice near the mobile
edge. Section III describes the proposed SAC algorithm and
explains its design principles. Section IV demonstrates the
function test of a vEPC slice consisting of two separate
containers, and the performance evaluation of SAC,
compared to RAC. Concluding remarks and outlook to future
works are summarized in Section V.

II. PROPOSED SYSTEM DESIGN OF VEPC AND LW-VEPC

The realization of the whole system design is based on an
open-source software package for 4G/5G called
OpenAirInterface (OAI) [16]. One major contribution of this
paper is to introduce the design and implementation details
of component VNFs for vEPC using the Docker container
technology, and discuss the benefit of a LW-vEPC slice at
the mobile edge.

A. vEPC Slice Design with Two Containers

Fig. 1 System design of a vEPC with CP and DP containers

Fig. 2 Function blocks of CP and DP containers

The proposed system design of a vEPC slice with two
Docker containers is detailed in Figs. 1 and 2. Fig. 1 gives
the entire view of the system, where it is clearly seen that a
vEPC slice, chained with a control-plane (CP) container and
a data-plane (DP) container via a Docker Bridge using two
veth-pairs-based virtual links, is created on top of an x86 PC
of 8 CPU cores running with Linux, equipped with two
network interface cards (NICs), where the first NIC (eth0) is
connected with a small-cell base station (ENB) with a
software-defined-radio (SDR) modem (USRP B210) for the
radio access of user equipment (UE), and the second NIC
(eth1) is connected to the Internet. Note that it is required to
insert the first NIC (eth0) into the Docker Bridge for the
bride to function correctly. In addition, an IP-masquerading
mechanism via source network address translation (SNAT)
is needed for access to the Internet.

Fig. 2 details the function blocks of both the proposed CP
and DP containers. Based on the virtualization technology of
Docker containers, the CP container virtualizes both the
control subsystem functions: (1) home subscriber server
(HSS) connected with a MySQL database for UEs' SIM
account management and association authentication, and (2)
mobility management entity (MME) for UEs' movement
handover between ENBs. Note that, as of the writing of this
paper, the handover function is not implemented in the OAI
yet. By the same token, the DP container virtualizes the data-
plane subsystems functions: (1) serving gateway (SGW) for
establishing data tunneling between UE and EPC based on
the GPRS tunneling protocol (GTP) for the sake of security
and providing internal routing among ENBs, and external
routing to the Internet via the S5/S8 interface; (2) packet
data network gateway (PGW) for routing uplink and
downlink traffic flows to/from the Internet and for providing
dynamic IP addressing to UEs, and establishing the EPS
bearer for QoS requirements. Note that the S5/S8 interface
between SGW and PGW is not implemented for simplicity,
and thus they can be denoted as SPGW throughput this paper.

Once virtualized, the CP container can perform as vHSS
and vMME, and the DP container as vSPGW. However, the
main challenging tasks for this study are two folded: internal
linking within each container (denoted as intra-container
linking) and external linking between the two containers
(denoted as inter-container linking). For intra-container
linking, the main design question is how to form multiple
internal IP-domains based on a single virtual port equipped
with each container. The answer is the binding mechanism
provided by the Linux NIC interface, even if the interface is
a virtual one. In other words, binding allows a single NIC
interface to be associated with multiple IP addresses via a
pre-definition in the default NIC configuration file under the
/etc directory. For instance, the MME virtual port veth10:11
is associated with veth10 via binding such that they share the
same entry/exit of the CP container. Similarly, the SGW
virtual port veth20:21 is associated with veth20. Note that the
default network configuration files (*.conf in Fig. 2) should
be appropriately modified for each individual component
function according to the above new configurations. For
inter-container linking, on the other hand, the main design
questions are two folded: (1) how to resume the S11

473

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

interface between MME and SGW between the CP and DP
containers, and (2) how to resume the external connections
of both MME and the SPGW. For MME, the answer is that
the CP container establishes both source and destination
NAT (SNAT and DNAT) rules in the NAT table (i.e., the -t
nat option when using the iptables toolset) for outbound and
inbound flows, respectfully for masquerading of source IP-
addresses and port-redirection (or port-mapping) for a
specific internal application. For PGW, the answer is similar.
In addition, SGW needs a specific iptables rule for the GTP
tunnel traffic. The function test results are presented in Figs.
4 and 5.

B. LW-vEPC Slice Design and Fast Provisioning

The aforementioned design can further be developed as a
LW-vEPC slice, in the sense that the DP container can be
deployed near the mobile edge, or even co-located with the
ENB or the vBBU pool of C-RAN. This is beneficial to
those time-critical applications such as the communication of
connected vehicles or the control of flying drones. With the
help of a mobile edge cloud, bandwidth-consumptive CDN
services can also be redirected to the edge cloud to save the
outbound bandwidth and latency.

In the case of no handover requirement, the design of the
DP container with vSPGW should be able to function and
survive. However, if the handover between ENBs is required,
the DP container should be redesigned to contain vMME.
However, this is currently out of the capability of OAI
because the OAI EPC software cannot handle handover yet.

In terms of VNFs' provisioning, the Container-type
virtualization is famous with its powerful imaging ability in
the sense that once an image is provisioned for the desired
container functions, the image can fan out many containers
of the same functions very fast, which makes the
provisioning time much shorter than the Hypervisor-type
virtualization, namely the level of seconds to minutes versus
the level of hours to days. The fundamental difference
between the two virtualization technologies lies in that the
Hypervisor-type is based on guest-OS confinement, while the
Container-type on process confinement. Thus, the latter
consumes much lighter-weight resources than the former,
and is more agile to differential customization and more
adaptive to traffic load variations. Thus, these justify the
adoption of the Docker container for provisioning flexible
and real-time deployment of VNFs.

III. PROPOSED ALGORITHM

Efficient allocation and orchestration methods of system
resources among the vEPC slices or LW-EPC slices are
under development. As aforementioned, this paper proposes
a simple but powerful algorithm, called specifically assigned
cores (SAC), in better saving the resource and boosting
higher performance of CPU cores than the default RAC
algorithm. Such an issue is important since the multi-core
technology is the main stream of modern CPUs. Furthermore,
saving the use of CPU cores is also energy-green, in
particular when running many VNFs or Containers in a
computing farm such as a cloud-based data center. The SAC
algorithm adopts two design principles as listed below.

 Principle 1 (Bottleneck Identification)

It is obviously important to identify the bottleneck of the
system performance between the DP and CP containers
such that the dominant one deserves more CPU resources.
Generally speaking, the DP traffic dominates the CP
signals in terms of bandwidth demands, thus it seems to
be justified to assign more CPU resources to the DP
containers. This is quite common to most of the 5G use
cases. However, in the case of mMTC, where massive
machine-type communications may involve huge amount
of control signals during their connection associations
with the EPC, and thus the CP signals may well
dominate over the DP traffic. In such a case, the CP
container deserves more CPU resources instead.

 Principle 2 (CPU Core Pinning)

When conducting a resource allocation of CPU cores, the
allocation unit is important, which could be integral or
fractional. The integral allocation unit is obviously more
convenient and simpler to a computing farm with a lot of
CPU cores, and not so friendly to a physical machine
with only a limited number of CPU cores such as a
generic PC. Although the fractional allocation unit is
obviously more flexible and friendly the use of CPU
cores, it requires the support of the adopted virtualization
technology. To the best of the authors' knowledge, the
Container type such as Docker or LXC can support both,
but the Hypervisor type cannot support the fractional one
yet. Again, this justifies the adoption of the Docker
container for this study. Various allocation methods in
combining and leveraging both are underway in our lab.
However, for simplicity, this paper only focuses on the
integral one to demonstrate the power of the proposed
SAC algorithm, which emphasizes on avoiding
unnecessary context-switching overheads among the
allocated CPU cores to a vEPC which can be expected to
be worse as the traffic load level increases.
As a simple illustration, according to Principle 1, the

proposed SAC algorithm was firstly exercised for the
aforementioned LW-vEPC slice (equivalently, the DP
container with vSPGW only) considering this use case where
the DP traffic dominates the CP signals is of the most
common and highest interest, on a generic x86 PC with 8
CPU cores, equipped two physical Gigabit Ethernet (GbE)
NICs and a PCI-E mother board. As aforementioned, only
the integral allocation unit was considered to simplify the
discussions. Given the simplest allocation scenario where a
single CPU core is demanded for a LW-vEPC slice, formed
by the DP container with only vSPGW, the proposed SAC
algorithm specifically assigns one CPU core to avoid
unnecessary context-switching overheads, according to
Principle 2, with a special trick on specifying the largest
CPU core ID to avoid any possible random selection from
the smallest ID. Of course, given the fact that the default
RAC scheme with a periodic load-balancing capability from
the Linux kernel for symmetric multiprocessing system
(SMP), performed every 200 ms, this consideration might
become trivial. However, a shorter term than this period with
traffic bursts might generate some benefit due to this trick
with the SAC algorithm.

474

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

IV. FUNCTION AND PERFORMANCE TESTS

This section gives the function test of a vEPC slice of
two containers, namely the CP and DP containers, to
illustrate the successful verification of the system design and
the linking capability of intra-container and inter-container
communications, as depicted in Figs. 1 and 2 and detailed in
Section II. In addition, some preliminary results for
performance comparison between the proposed SAC
algorithm and the default RAC algorithm is given for
demonstrating the powerful design of SAC.

A. Function Test

Fig. 3 presents a joint system function test of a vEPC
slice of two containers (i.e., the CP and DP containers) with
the ENB, allowing for the UE (cell-phone) connection
association to receive a downlink video streaming from the
Internet successfully. As previously explained in Fig. 1, the
x86 PC on the left, running with a low-latency Linux kernel
(v3.19), hosts the OAI ENB software and performs as a ENB,
together with the SDR modem (USRP B210); the x86 PC on
the right displays the operations of vHSS, vMME and
vSPGW in a top-down fashion, where vHSS and vMME is
formed by the CP container and vSPGW by the DP container.

This above success also verifies the answers to the main
design questions raised in Section II, for both the intra-
container and inter-container communications. Fig. 4 lists
all the Kernel-based and Docker-based NAT chains, set with
SNAT and DNAT rules, within the CP container. Note that
the DOCKER_OUTPUT chain, defined on top of the Kernel
OUTPUT chain, is in charge of DNAT for both TCP and
UDP inbound flows to find the CP container itself
(127.0.0.11) when arriving at its only entry (veth10, recalled
from Fig. 2) using a randomly pre-set internal port-
redirection for TCP (34245) and UDP (37114). On the other
hand, the DOCKER_POSTROUTING chain, defined on top
of the Kernel POSTROUTING chain, is responsible for
SNAT for both TCP and UDP outbound flows to
masquerade their source IP address and port number. Note
that the masqueraded port number 53 may confuse the
outside world with that these outbound flows were from a
DNS server, but actually they are not. Fig. 5 also lists all the
Kernel-based and Docker-based NAT chains, set with SNAT
and DNAT rules, within the DP container, where both the
DNAT and SNAT behaviors work similarly, respectively at
the DOCKER_OUTPUT and DOCKER_POSTROUTING
chains. A major difference is that the UE's uplink data flow
(i.e., non-control flow from 192.188.0.0, identified by non-
SCTP or !sctp) should also be specifically masqueraded with
the IP address 172.100.0.20 of the egress port of vPGW
(veth20, recalled again from Fig. 2), and eventually
masqueraded again at the egress port (eth1) of the physical
machine with 140.100.0.1 for access to the Internet.

B. Performance Evaluation and Analysis

Good understanding of the CPU response to the external
traffic load can be helpful to the design of CPU resource
allocation. Particularly, for a multi-core CPU, such
understanding is complicated and thus challenging. For this
study, two types of test results are presented. Type-1 test is

Fig. 3 Joint system function test of a vEPC slice of two

containers (the CP and DP containers) with the UE/ ENB

Fig. 4 SNAT/DNAT iptables rules (CP container)

Fig. 5 SNAT/GNAT/GTP iptables rules (DP container)

475

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

for studying the CPU response behavior with full cores to the
external traffic load on a physical machine (PM), as
illustrated in Fig. 6, where a generic x86 PC with 8 cores
(actually hyper-threaded from 4 physical cores) was adopted.
On the other hand, Type-2 test is for studying the CPU
response with allocated cores to the incoming traffic load to
a container, as illustrated in Fig. 7, where the DP container
demands a single core, allocated by RAC and SAC.

The major messages delivered by Fig. 6 are listed below:
 Idle response phase (traffic < 20 Gbps)

During this phase (CPU is idle), the average CPU load
over 8 cores is still light enough, i.e., < 20%.
Equivalently, 20% (average) can be scaled to 160% (total)
if the total CPU limit 800% is considered. Note that the
response is somewhat non-linear. Also note that the
packet loss rate (PLR) is either zero or invisible.

 Linear response phase (traffic ∈ [20, 80] Gbps)
During this phase (CPU can work normally), the average
CPU load over 8 cores linearly increases with the UDP
test flow rate. The linear phase allows for a predictable
response when the container-based VNFs demand some
resources of the CPU cores from the PM host. Note that
the PLR is still either zero or small.

 Saturated response phase (traffic > 80 Gbps)
During this phase (CPU is over busy), the CPU load
shows descending or saturating slopes as the traffic rate
increases. This suggests that the PM host cannot longer
provide the desired core performance, and more
demands from the container-based VNFs should not be
admitted any longer or should be redirected to other
worker PMs if they are existent and can permit the
demands. This is also strongly suggested by the fact that
the PLR starts to shoot up and become worse with more
traffic.

One the other hand, the major messages delivered by Fig. 7
are also listed below:
 Much shorter linear response phase (traffic < 20 Gbps)

The linear response phase is much shorter than that of
Fig. 6. This is highly expected since only a single core is
allocated to the DP container, either via RAC or SAC.
Since the linear phase of the CPU load is short enough,
the PLR becomes a much better metric to the upper end
of this phase, say 20 Gbps in light of the shooting up of
the PLR here. Obviously, the linear phase is also
expected to be longer if more CPU cores can be
allocated.

 Very early saturated response phase (traffic > 20 Gbps)
The saturated response phase, early and long, has a
different operational meaning than the one in Fig. 6, and
can thus provide a good competition playground for
performance comparison of various allocation strategies.
In other words, the demanded container should try to
make the best use of the assigned core even if the
assigned core starts to saturate so early. Depending on
the level of QoS requirements, say PLR, one can still
make some efforts in finding a better allocation
algorithm leading to a lower CPU load response and less
packet loss as well. It is clearly seen that the proposed
SAC algorithm outperforms the default RAC algorithm,

in terms of both lower CPU load response and less
packet loss. In the case of PLR, such superiority
amplifies with the traffic load, and this shows the true
power of SAC, despite that its superiority in saving the
CPU load becomes slightly less visible when the traffic
> 40 Gbps, which suggests that even the SAC algorithm
is getting too much CPU load and it is time to demand
more CPU resources. Also note that, beyond 40 Gbps,
the CPU load of RAC is more than 100%, which is
possible because the demand from RAC is switched
among different cores and these overheads can add up
together to pass over the single-core limit 100%,
averagely speaking.

Fig. 6 Average CPU load over 8 cores and packet loss rate

(PLR) versus the UDP test flow rate on the PM host

Fig. 7 Average CPU load over time and packet loss rate
(PLR) versus the UDP test flow rate to the DP container
(single-core allocated by the RAC and SAC algorithms)

476

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

V. CONCLUSION AND OUTLOOK

In this study, a system design of a vEPC slice with two
Docker containers, namely the CP container with vHSS and
vMME and the DP container with vSPGW, has been
proposed and functionally verified. The demonstration
results show a successful joint test of this vEPC slice with an
ENB, which enables the UE to successfully receive a video
streaming from the Internet. This success also verifies our
design efforts in dealing with both intra-container and inter-
container communication designs via the Docker bridge and
in-container NAT rule setting (SNAT/DNAT) and other
network configurations. In addition, a powerful but simple
CPU resource allocation algorithm called specifically
assigned cores (SAC) has also been proposed. Our
preliminary results show that the understanding of a physical
machine's response to external traffic level can provide a
predictable linear design, serving a good design guideline for
developing efficient resource allocation strategies for CPU
resources. In addition, it has also been shown that the
proposed SAC algorithm outperforms the default RAC
algorithm in terms of lower CPU load response and less
packet loss, and the performance gap of SAC over RAC
amplifies with the traffic level. This is helpful in suggesting
some further design guidelines on how to make the best use
of the allocated CPU cores, and on when would be the
appropriate time to demand more resources.

For future works, individual containerization and thus
virtualization for each subsystem function of the EPC would
also be interesting. For instance, containerizing each VNF
(i.e., placing vSPGW, vMME and vHSS in three different
containers) can increase the flexibility for customized
chaining or slicing of VNFs, but would also increase the
linking complexity. Thus, different linking capabilities of the
Docker technology will be studied. In addition, an improved
version of CPU resources allocation is also interesting,
where the allocation unit cannot only be integral, but also
fractional, or even both. To generate SAC-like improvement
works, more extensive studies on the traffic dynamics
interaction between the physical machine and the VNF
containers it provides is also needed.

The ultimate goal of 5G core network virtualization [17]
is moving toward a direction called microservice, which will
further divide the core network functions into more specific
micro-functions. In that scenario, how to virtualize and link
these micro VNFs would be very challenging because the
complexity of linking becomes so high, and the point-to-
point linking will be too complicated to implement, and
might also generate intolerable latency. In the case, a simple
message bus such as protobuf can be expected to reduce the
design complexity of microservice-based VNFs. Our future
research will also move toward this direction.

ACKNOWLEDGMENT

This study was supported by the Taiwan Ministry of
Science and Technology under research grant 107-2221-E-
155-013.

REFERENCES

[1] View on 5G Architecture, 5GPPP White Paper v2.0, Dec. 2017.

[2] D. Kreutz, P. E. Verissimo, and S. Azodolmolky, ―Software-defined
networking: a comprehensive survey,‖ Proceedings of the IEEE, vol.

103, no. 1, pp. 14–76, 2015.

[3] Y. Li and M. Chen, ―Software-defined network function
virtualization: a survey,‖ IEEE Access, vol. 3, no. 1, pp. 2542–2553,

2015.

[4] Network Functions Virtualization (NFV); Ecosystem; Report on SDN
Usage in NFV Architectural Framework, ETSI NFV-EVE White

Paper 005, Dec.2015.

[5] N. Nikaein et al., ―Towards a cloud-native radio access network,‖ in
Advances in Mobile Cloud Computing and Big Data in the 5G Era,

vol. 22. 3, C. X. Mavromoustakis et al., Ed. Cham: Springer, 2017, pp.

171–202.
[6] A study on 5G V2X Deployment, 5GPPP White Paper v1.0, Feb. 2018.

[7] Commscope. What are C-RAN small cells [Online]. Available:

http://www.commscope.com/Solutions/what-are-c-ran-small-cells
[8] Heli Zhang, Jun Guo, Lichao Yang, et al., ―Computation Offloading

Considering Fronthaul and Backhaul in Small-Cell Networks

Integrated with MEC,‖ IEEE Conf. on Computer Communications
Workshops, Atlanta, GA, USA, May 2017, pp. 115–120.

[9] Description of Network Slicing Concept, NGMN White Paper, Jan.

2016.
[10] X. Foukas, G. Patounas, A. Elmokashfi and M. K. Marina, ―Network

slicing in 5G,‖ IEEE Comm. Magazine, vol. 55, no. 5, pp. 94–100,

May 2017.
[11] N. Nikaein et al., ―Network store: exploring slicing in future 5G

networks,‖ Proc. 10th Int. Workshop on Mobility in the Evolving

Internet Architecture (MobiArch '15), Paris, France, Sep. 2015, pp. 8–
13.

[12] X. Foukas, N. Nikaein, M. M. Kassem et al., "FlexRAN: a flexible

and programmable platform for software-defined radio access

networks," Proc. 12th Int. Conf. on Emerging Networking

Experiments and Technologies (CoNEXT ’16), Irvine, CA, USA, Dec.

2016, pp. 427–441.
[13] D. Bernstein, ―Containers and cloud: from LXC to Docker to

Kubernetes,‖ IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[14] I. Miell and A. H. Sayers, Docker in Practice. New York: Manning,
2016.

[15] The journey to packet core virtualization, Alcatel-Lucent White paper,

2014.
[16] N. Nikaein, M. K. Marina, S. Manickam et al., "OpenAirInterface: A

flexible platform for 5G research, ACM SIGCOMM Computer

Communication Review, vol. 44, no. 5, pp. 33-38, 2014.
[17] System Architecture for the 5G system; Stage 2, 3GPP TS 23.501

v15.00, Dec. 2017.

477

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii

		2018-10-19T10:54:38-0500
	Preflight Ticket Signature

