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Abstract—In recent years, network functions virtualization 

(NFV) has been well perceived as the driving force behind 

innovations of the 5G system, such as slicing precious system 

resources for differential service needs. In this paper, we 

propose a container-based design of virtual evolved packet core 

(vEPC) slice and its light-weight version (LW-vEPC) based on 

the OpenAirInterface (OAI) software package. We have 

successfully containerized, and thus virtualized, the EPC 

component functions into two separate containers: the control-

plane (CP) container for virtual home subscriber server (vHSS) 

and virtual mobility management entity (vMME), and the data-

plane (DP) container for virtual serving and packet data network 

gateway (vSPGW). Via a joint configuration design of virtual 

linking, binding and bridging, including appropriate source and 

destination network address translation (SNAT and DNAT), 

both the intra-container and inter-container communications 

have been successfully realized. An OAI-based joint test of 

vEPC with a small-cell base station (ENB) has also been 

successfully demonstrated via a downlink video streaming 

showcase from the Internet to a cellular phone. The DP 

container itself can also perform as a LW-EPC slice near the 

mobile edge of ENB to greatly reduce the latency for time-

critical applications. The resource allocation methodology of 

multiple CPU cores for vEPC and LW-EPC slicing is being 

developed. This paper proposes a simple but powerful 

algorithm called specifically assigned cores (SAC) to achieve 

better utilization of CPU cores. Our preliminary results show 

that SAC outperforms the default scheme, namely randomly 

assigned cores (RAC), in terms of lower CPU load and less 

packet loss. The superiority of SAC over RAC amplifies with 

the traffic level. 

Keywords- 5G; NFV; SDN, Cloud, SAC, network slicing; 

container; Docker  

 

I.  INTRODUCTION  

The coming era of the fifth generation (5G) [1] mobile 
communication and networking is not only remarked with its 
much wider communication bandwidth by introducing the 
use of 5G new radio (5G-NR) at high-frequency mm-wave 
bands, but more with its networking innovations by 
embracing new ideas from the datacom making itself rapidly 
evolve from closure to openness. The 5G networking 

innovations are driven by the maturity and wide deployment 
of Cloud-based applications, the standardization and 
commercialization of software defined networking (SDN) [2, 
3], and the proposal of network functions virtualization 
(NFV) [4], where Cloud and SDN come from the datacom 
and both inspire the telecom and other third-party 
stakeholders, e.g. many over-the-top (OTT) service providers 
in 5GPPP, to propose new innovations such as NFV for core 
networks and software defined Cloud radio access networks 
(C-RAN) [5].      

These innovations can meet differential QoS needs in 
three major aspects, such as extreme mobile broadband 
(eMBB) for video content delivery (CDN), ultra-reliable 
low-latency communication (uRLLC) for advanced 
connected vehicles [6], and massive machine-type 
communication (mMTC) for internet of things (IoT).  
However, these applications also impose technically 
challenging issues, such as flexible function split of base 
stations or small cells for C-RAN [7], software defined 
fronthaul and backhaul networks [8], customized multi-
tenancy service/network slicing of core-network resources, 
and mobile edge deployment of time-critical cloud 
applications.  

To address the aforementioned issues, NFV plays a 
pivotal role, where customized chaining of desired virtual 
network functions (VNFs), equivalently service slicing or 
network slicing [9, 10], can be demanded for differential use 
cases, such as Network Store [11]. Based on the levels of 
realization complications, the following use cases are 
expected in sequential phases: (1) vCPE for virtual customer 
premise equipment, remotely installable and maintainable by 
the central office to enable the simplicity of customization 
and management of user-demanded VNFs; (2) vEPC for 
virtual evolved packet core, to achieve multi-tenancy-based 
core network slicing and logically independent 
administration, allowing for value-added OTT VNFs; (3) 
vRAN for virtual radio access network,  to realize a virtual 
base-band unit (vBBU) pool for C-RAN or FlexRAN [12] 
management.           

This paper presents a study on Docker container [13, 14] 
based virtualization design of the vEPC, where the ultimate 
goal is to containerize all the component functions of the 
EPC [15] such that each component function becomes a 
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VNF and customized chaining of these VNFs plus extra 
value-added OTT VNFs can be formed. In other words, a 
customized chain of VNF containers can thus be viewed as a 
network slice or service slice. In this paper, a system design 
on how to containerize and thus virtualize a light-weight 
EPC (LW-vEPC) slice is presented, in order to be 
deployable at a mobile edge cloud, as aforementioned. In 
addition, the allocation methodology of multiple CPU cores 
for such a LW-EPC slice is being developed. In this paper, 
an algorithm called specifically assigned cores (SAC) is also 
proposed to achieve better utilization of CPU cores. Our 
preliminary results show that SAC outperforms the default 
scheme, namely randomly assigned cores (RAC).    

The remainder of this paper is organized as follows. 
Section II details the system design of a vEPC slice, and its 
benefit to be deployed as a LW-vEPC slice near the mobile 
edge. Section III describes the proposed SAC algorithm and 
explains its design principles. Section IV demonstrates the 
function test of a vEPC slice consisting of two separate 
containers, and the performance evaluation of SAC, 
compared to RAC. Concluding remarks and outlook to future 
works are summarized in Section V. 

II. PROPOSED SYSTEM DESIGN OF VEPC AND LW-VEPC 

The realization of the whole system design is based on an 
open-source software package for 4G/5G called 
OpenAirInterface (OAI) [16]. One major contribution of this 
paper is to introduce the design and implementation details 
of component VNFs for vEPC using the Docker container 
technology, and discuss the benefit of a LW-vEPC slice at 
the mobile edge.   

A. vEPC Slice Design with Two Containers 

 
Fig. 1  System design of a vEPC with CP and DP containers  

 

 
Fig. 2  Function blocks of CP and DP containers  

The proposed system design of a vEPC slice with two 
Docker containers is detailed in Figs. 1 and 2. Fig. 1 gives 
the entire view of the system, where it is clearly seen that a 
vEPC slice, chained with a control-plane (CP) container and 
a data-plane (DP) container via a Docker Bridge using two 
veth-pairs-based virtual links, is created on top of an x86 PC 
of 8 CPU cores running with Linux, equipped with two 
network interface cards (NICs), where the first NIC (eth0) is 
connected with a small-cell base station (ENB) with a 
software-defined-radio (SDR) modem (USRP B210) for the 
radio access of user equipment (UE), and the second NIC 
(eth1) is connected to the Internet. Note that it is required to 
insert the first NIC (eth0) into the Docker Bridge for the 
bride to function correctly. In addition, an IP-masquerading 
mechanism via source network address translation (SNAT) 
is needed for access to the Internet.  

Fig. 2 details the function blocks of both the proposed CP 
and DP containers. Based on the virtualization technology of 
Docker containers, the CP container virtualizes both the 
control subsystem functions: (1) home subscriber server 
(HSS) connected with a MySQL database for UEs' SIM 
account management and association authentication, and (2) 
mobility management entity (MME) for UEs' movement 
handover between ENBs. Note that, as of the writing of this 
paper, the handover function is not implemented in the OAI 
yet. By the same token, the DP container virtualizes the data-
plane subsystems functions: (1) serving gateway (SGW) for 
establishing data tunneling between UE and EPC based on 
the GPRS tunneling protocol (GTP) for the sake of security 
and providing internal routing among ENBs, and external 
routing to the Internet via the S5/S8 interface; (2) packet 
data network gateway (PGW) for routing uplink and 
downlink traffic flows to/from the Internet and for providing 
dynamic IP addressing to UEs, and establishing the EPS 
bearer for QoS requirements. Note that the S5/S8 interface 
between SGW and PGW is not implemented for simplicity, 
and thus they can be denoted as SPGW throughput this paper. 

Once virtualized, the CP container can perform as vHSS 
and vMME, and the DP container as vSPGW. However, the 
main challenging tasks for this study are two folded: internal 
linking within each container (denoted as intra-container 
linking) and external linking between the two containers 
(denoted as inter-container linking). For intra-container 
linking, the main design question is how to form multiple 
internal IP-domains based on a single virtual port equipped 
with each container. The answer is the binding mechanism 
provided by the Linux NIC interface, even if the interface is 
a virtual one. In other words, binding allows a single NIC 
interface to be associated with multiple IP addresses via a 
pre-definition in the default NIC configuration file under the 
/etc directory. For instance, the MME virtual port veth10:11 
is associated with veth10 via binding such that they share the 
same entry/exit of the CP container. Similarly, the SGW 
virtual port veth20:21 is associated with veth20. Note that the 
default network configuration files (*.conf in Fig. 2) should 
be appropriately modified for each individual component 
function according to the above new configurations. For 
inter-container linking, on the other hand, the main design 
questions are two folded: (1) how to resume the S11 
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interface between MME and SGW between the CP and DP 
containers, and (2) how to resume the external connections 
of both MME and the SPGW. For MME, the answer is that 
the CP container establishes both source and destination 
NAT (SNAT and DNAT) rules in the NAT table (i.e., the -t 
nat option when using the iptables toolset) for outbound and 
inbound flows, respectfully for masquerading of source IP-
addresses and port-redirection (or port-mapping) for a 
specific internal application. For PGW, the answer is similar. 
In addition, SGW needs a specific iptables rule for the GTP 
tunnel traffic. The function test results are presented in Figs. 
4 and 5.    

B. LW-vEPC Slice Design and Fast Provisioning 

The aforementioned design can further be developed as a 
LW-vEPC slice, in the sense that the DP container can be 
deployed near the mobile edge, or even co-located with the 
ENB or the vBBU pool of C-RAN. This is beneficial to 
those time-critical applications such as the communication of 
connected vehicles or the control of flying drones. With the 
help of a mobile edge cloud, bandwidth-consumptive CDN 
services can also be redirected to the edge cloud to save the 
outbound bandwidth and latency.  

In the case of no handover requirement, the design of the 
DP container with vSPGW should be able to function and 
survive. However, if the handover between ENBs is required, 
the DP container should be redesigned to contain vMME. 
However, this is currently out of the capability of OAI 
because the OAI EPC software cannot handle handover yet.   

In terms of VNFs' provisioning, the Container-type 
virtualization is famous with its powerful imaging ability in 
the sense that once an image is provisioned for the desired 
container functions, the image can fan out many containers 
of the same functions very fast, which makes the 
provisioning time much shorter than the Hypervisor-type 
virtualization, namely the level of seconds to minutes versus 
the level of hours to days. The fundamental difference 
between the two virtualization technologies lies in that the 
Hypervisor-type is based on guest-OS confinement, while the 
Container-type on process confinement. Thus, the latter 
consumes much lighter-weight resources than the former, 
and is more agile to differential customization and more 
adaptive to traffic load variations. Thus, these justify the 
adoption of the Docker container for provisioning flexible 
and real-time deployment of VNFs. 

III. PROPOSED ALGORITHM  

Efficient allocation and orchestration methods of system 
resources among the vEPC slices or LW-EPC slices are 
under development. As aforementioned, this paper proposes 
a simple but powerful algorithm, called specifically assigned 
cores (SAC), in better saving the resource and boosting 
higher performance of CPU cores than the default RAC 
algorithm. Such an issue is important since the multi-core 
technology is the main stream of modern CPUs. Furthermore, 
saving the use of CPU cores is also energy-green, in 
particular when running  many VNFs or Containers in a 
computing farm such as a cloud-based data center. The SAC 
algorithm adopts two design principles as listed below.  

 Principle 1 (Bottleneck Identification)  

It is obviously important to identify the bottleneck of the 
system performance between the DP and CP containers 
such that the dominant one deserves more CPU resources.  
Generally speaking, the DP traffic dominates the CP 
signals in terms of bandwidth demands, thus it seems to 
be justified to assign more CPU resources to the DP 
containers. This is quite common to most of the 5G use 
cases. However, in the case of mMTC, where massive 
machine-type communications may involve huge amount 
of control signals during their connection associations 
with the EPC, and thus the CP signals may well 
dominate over the DP traffic. In such a case, the CP 
container deserves more CPU resources instead.  

 Principle 2 (CPU Core Pinning) 

When conducting a resource allocation of CPU cores, the 
allocation unit is important, which could be integral or 
fractional. The integral allocation unit is obviously more 
convenient and simpler to a computing farm with a lot of 
CPU cores, and not so friendly to a physical machine 
with only a limited number of CPU cores such as a 
generic PC. Although the fractional allocation unit is 
obviously more flexible and friendly the use of CPU 
cores, it requires the support of the adopted virtualization 
technology. To the best of the authors' knowledge, the 
Container type such as Docker or LXC can support both, 
but the Hypervisor type cannot support the fractional one 
yet. Again, this justifies the adoption of the Docker 
container for this study. Various allocation methods in 
combining and leveraging both are underway in our lab. 
However, for simplicity, this paper only focuses on the 
integral one to demonstrate the power of the proposed 
SAC algorithm, which emphasizes on avoiding 
unnecessary context-switching overheads among the 
allocated CPU cores to a vEPC which can be expected to 
be worse as the traffic load level increases.     
As a simple illustration, according to Principle 1, the 

proposed SAC algorithm was firstly exercised for the 
aforementioned LW-vEPC slice (equivalently, the DP 
container with vSPGW only) considering this use case where 
the DP traffic dominates the CP signals is of the most 
common and highest interest, on a generic x86 PC with 8 
CPU cores, equipped two physical Gigabit Ethernet (GbE) 
NICs and a PCI-E mother board. As aforementioned, only 
the integral allocation unit was considered to simplify the 
discussions. Given the simplest allocation scenario where a 
single CPU core is demanded for a LW-vEPC slice, formed 
by the DP container with only vSPGW, the proposed SAC 
algorithm specifically assigns one CPU core to avoid 
unnecessary context-switching overheads, according to 
Principle 2, with a special trick on specifying the largest 
CPU core ID to avoid any possible random selection from 
the smallest ID. Of course, given the fact that the default 
RAC scheme with a periodic load-balancing capability from 
the Linux kernel for symmetric multiprocessing system 
(SMP), performed every 200 ms, this consideration might 
become trivial. However, a shorter term than this period with 
traffic bursts might generate some benefit due to this trick 
with the SAC algorithm. 
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IV. FUNCTION AND PERFORMANCE TESTS  

This section gives the function test of a vEPC slice of 
two containers, namely the CP and DP containers, to 
illustrate the successful verification of the system design and 
the linking capability of intra-container and inter-container 
communications, as depicted in Figs. 1 and 2 and detailed in 
Section II. In addition, some preliminary results for 
performance comparison between the proposed SAC 
algorithm and the default RAC algorithm is given for 
demonstrating the powerful design of SAC.         

A.  Function Test 

Fig. 3 presents a joint system function test of a vEPC 
slice of two containers (i.e., the CP and DP containers) with 
the ENB, allowing for the UE (cell-phone) connection 
association to receive a downlink video streaming from the 
Internet successfully. As previously explained in Fig. 1, the 
x86 PC on the left, running with a low-latency Linux kernel 
(v3.19), hosts the OAI ENB software and performs as a ENB, 
together with the SDR modem (USRP B210); the x86 PC on 
the right displays the operations of vHSS, vMME and 
vSPGW in a top-down fashion, where vHSS and vMME is 
formed by the CP container and vSPGW by the DP container.   

This above success also verifies the answers to the main 
design questions raised in Section II, for both the intra-
container and inter-container communications. Fig. 4 lists 
all the Kernel-based and Docker-based NAT chains, set with 
SNAT and DNAT rules, within the CP container. Note that 
the DOCKER_OUTPUT chain, defined on top of the Kernel 
OUTPUT chain, is in charge of DNAT for both TCP and 
UDP inbound flows to find the CP container itself 
(127.0.0.11) when arriving at its only entry (veth10, recalled 
from Fig. 2) using a randomly pre-set internal port-
redirection for TCP (34245) and UDP (37114). On the other 
hand, the DOCKER_POSTROUTING chain, defined on top 
of the Kernel POSTROUTING chain, is responsible for 
SNAT for both TCP and UDP outbound flows to 
masquerade their source IP address and port number. Note 
that the masqueraded port number 53 may confuse the 
outside world with that these outbound flows were from a 
DNS server, but actually they are not. Fig. 5 also lists all the 
Kernel-based and Docker-based NAT chains, set with SNAT 
and DNAT rules, within the DP container, where both the 
DNAT and SNAT behaviors work similarly, respectively at 
the DOCKER_OUTPUT and DOCKER_POSTROUTING 
chains. A major difference is that the UE's uplink data flow 
(i.e., non-control flow from 192.188.0.0, identified by non-
SCTP or !sctp) should also be specifically masqueraded with 
the IP address 172.100.0.20 of the egress port of vPGW 
(veth20, recalled again from Fig. 2), and eventually 
masqueraded again at the egress port (eth1) of the physical 
machine  with 140.100.0.1 for access to the Internet.    

B. Performance Evaluation and Analysis 

Good understanding of the CPU response to the external 
traffic load can be helpful to the design of CPU resource 
allocation. Particularly, for a multi-core CPU, such 
understanding is complicated and thus challenging. For this 
study,       two     types     of      test        results      are      presented.     Type-1 test    is    

 
Fig. 3  Joint system function test of a vEPC slice of two 

containers (the CP and DP containers) with the UE/ ENB  
 

 
Fig. 4  SNAT/DNAT iptables rules (CP container) 

 

 
Fig. 5  SNAT/GNAT/GTP iptables rules (DP container)  
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for studying the CPU response behavior with full cores to the 
external traffic load on a physical machine (PM), as 
illustrated in Fig. 6, where a generic x86 PC with 8 cores 
(actually hyper-threaded from 4 physical cores) was adopted. 
On the other hand, Type-2 test is for studying the CPU 
response   with     allocated        cores          to the incoming traffic load to 
a container, as illustrated in Fig. 7, where the DP container 
demands a single core, allocated by RAC and SAC.   

The major messages delivered by Fig. 6 are listed below:     
 Idle response phase  (traffic < 20 Gbps) 

During this phase (CPU is idle), the average CPU load 
over 8 cores is still light enough, i.e., < 20%. 
Equivalently, 20% (average) can be scaled to 160% (total) 
if the total CPU limit 800% is considered. Note that the 
response is somewhat non-linear. Also note that the 
packet loss rate (PLR) is either zero or invisible.  

  Linear response phase  (traffic ∈ [20, 80] Gbps) 
During this phase (CPU can work normally), the average 
CPU load over 8 cores linearly increases with the UDP 
test flow rate. The linear phase allows for a predictable 
response when the container-based VNFs demand some 
resources of the CPU cores from the PM host. Note that 
the PLR is still either zero or small. 

 Saturated response phase (traffic > 80 Gbps) 
During this phase (CPU is over busy), the CPU load 
shows  descending or saturating slopes as the traffic rate 
increases. This suggests that the PM host cannot longer 
provide the desired core performance, and more 
demands from the container-based VNFs should not be 
admitted any longer or should be redirected to other 
worker PMs if they are existent and can permit the 
demands. This is also strongly suggested by the fact that 
the PLR starts to shoot up and become worse with more 
traffic.  

One the other hand, the major messages delivered by Fig. 7 
are also listed below:     
 Much shorter linear response phase (traffic < 20 Gbps) 

The linear response phase is much shorter than that of 
Fig. 6. This is highly expected since only a single core is 
allocated to the DP container, either via RAC or SAC. 
Since the linear phase of the CPU load is short enough, 
the PLR becomes a much better metric to the upper end 
of this phase, say 20 Gbps in light of the shooting up of 
the PLR here. Obviously, the linear phase is also 
expected to be longer if more CPU cores can be 
allocated.  

 Very early saturated response phase (traffic > 20 Gbps) 
The saturated response phase, early and long, has a 
different operational meaning than the one in Fig. 6, and 
can thus provide a good competition playground for 
performance comparison of various allocation strategies. 
In other words, the demanded container should try to 
make the best use of the assigned core even if the 
assigned core starts to saturate so early. Depending on 
the level of QoS requirements, say PLR, one can still 
make some efforts in finding a better allocation 
algorithm leading to a lower CPU load response and less 
packet loss as well. It is clearly seen that the proposed 
SAC algorithm outperforms the default RAC algorithm, 

in terms of both lower CPU load response and less 
packet loss. In the case of PLR, such superiority 
amplifies with the traffic load, and this shows the true 
power of SAC, despite that its superiority in saving the 
CPU load becomes slightly less visible when the traffic 
> 40 Gbps, which suggests that even the SAC algorithm 
is getting too much CPU load and it is time to demand 
more CPU resources. Also note that, beyond 40 Gbps, 
the CPU load of RAC is more than 100%, which is 
possible because the demand from RAC is switched 
among different cores and these overheads can add up 
together to pass over the single-core limit 100%, 
averagely speaking. 

 

 
Fig. 6   Average CPU load over 8 cores and packet loss rate 

(PLR) versus the UDP test flow rate on the PM host     
 

 
Fig. 7   Average CPU load over time and packet loss rate 
(PLR) versus the UDP test flow rate to the DP container  
(single-core allocated by the RAC and SAC algorithms) 
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V. CONCLUSION AND OUTLOOK 

In this study, a system design of a vEPC slice with two 
Docker containers, namely the CP container with vHSS and 
vMME and the DP container with vSPGW, has been 
proposed and functionally verified. The demonstration 
results show a successful joint test of this vEPC slice with an 
ENB, which enables the UE to successfully receive a video 
streaming from the Internet. This success also verifies our 
design efforts in dealing with both intra-container and inter-
container communication designs via the Docker bridge and 
in-container NAT rule setting (SNAT/DNAT) and other 
network configurations. In addition, a powerful but simple 
CPU resource allocation algorithm called specifically 
assigned cores (SAC) has also been proposed. Our 
preliminary results show that the understanding of a physical 
machine's response to external traffic level can provide a 
predictable linear design, serving a good design guideline for 
developing efficient resource allocation strategies for CPU 
resources. In addition, it has also been shown that the 
proposed SAC algorithm outperforms the default RAC 
algorithm in terms of lower CPU load response and less 
packet loss, and the performance gap of SAC over RAC 
amplifies with the traffic level. This is helpful in suggesting 
some further design guidelines on how to make the best use 
of the allocated CPU cores, and on when would be the 
appropriate time to demand more resources.   

For future works, individual containerization and thus 
virtualization for each subsystem function of the EPC would 
also be interesting. For instance, containerizing each VNF 
(i.e., placing vSPGW, vMME and vHSS in three different 
containers) can increase the flexibility for customized 
chaining or slicing of VNFs, but would also increase the 
linking complexity. Thus, different linking capabilities of the 
Docker technology will be studied. In addition, an improved 
version of CPU resources allocation is also interesting, 
where the allocation unit cannot only be integral, but also 
fractional, or even both. To generate SAC-like improvement 
works, more extensive studies on the traffic dynamics 
interaction between the physical machine and the VNF 
containers it provides is also needed.     

The ultimate goal of 5G core network virtualization [17] 
is moving toward a direction called microservice, which will 
further divide the core network functions into more specific 
micro-functions. In that scenario, how to virtualize and link 
these micro VNFs would be very challenging because the 
complexity of linking becomes so high, and the point-to-
point linking will be too complicated to implement, and 
might also generate intolerable latency. In the case, a simple 
message bus such as protobuf can be expected to reduce the 
design complexity of microservice-based VNFs. Our future  
research will also move toward this direction.     
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