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Abstract—In this paper, we propose a novel video coding tech-
nique that uses a virtual reference (VR) video frame, synthesized
by a convolution neural network (CNN) for an inter-coding.
Specifically, an encoder generates a VR frame from a video
interpolation CNN (VI-CNN) using two reconstructed pictures,
i.e., one from the forward reference frames and the other from the
backward reference frames. The VR frame is included into the
reference picture lists to exploit further temporal correlation in
motion estimation and compensation. It is demonstrated by the
experimental results that the proposed technique shows about
1.4% BD-rate reductions over the HEVC reference test model
(HM 16.9) as an anchor in a Random Access (RA) coding
scenario.

I. INTRODUCTION

Deep neural networks are emerging as important coding
techniques for High Definition (HD) and Ultra High Definition
(UHD) videos. Both the Video Coding Experts Group (VCEG)
and Moving Picture Experts Group (MPEG) have launched a
project to work on a new video coding standard, i.e., Versatile
Video Coding (VVC) [1], aiming to achieve substantial bit-
rates saving around 50% over High Efficiency Video Coding
(HEVC) standard. In the Call-for-Proposal (CfP) responses
of VVC, there have been several coding methods employing
the neural networks to improve coding efficiency [2]. At this
moment, the VVC reference software advances the conven-
tional hybrid video coding framework of HEVC with more
enhanced coding tools. However, it has been also observed
that the neural network based coding tools could replace
the existing tools by improved coding performance in the
following standardization activities.

Convolution Neural Networks (CNN) have been success-
fully applied in the field of low-level image processing such
as image denoising [3] and image super-resolution [4], and
the success is spreading into the video coding techniques. As
ringing artifacts and blocking artifacts incurred by quantization
process tend to have unique patterns of the distortions, the
CNN can obtain useful features in the training to restore the
visual quality of the original video frame. Following this idea,
there have been several research works to integrate the trained
in-loop filters into HEVC. In [5], Park et al. develop a CNN-
based in-loop filter, replacing the conventional SAO(Sample
Adaptive Offset) filter, to remove visual artifacts in video
frames. In [6], Kang et al. develop a multi-scaled CNN
in-loop filter, exploiting coded video parameters to further
alleviate blocking artifacts. There are also a few studies to

apply adaptive deep learning filters to an intra-coding. Li et
al. develop a CNN-based block up-sampling filter, so that a
down-sampled block is coded, and then restored to the original
size in [6]. In [8], Li et al. propose a fully-connected neural
network to create an intra-prediction blocks from multiple
reference lines in the boundaries of the current block.

Most of the previous works have only focused on applying
the deep neural networks for enhancing spatial information of
video signals to improve coding efficiency. The works have
been used for intra-coding or frame interpolation to have rich
spatial correlation among pixels.

In this paper, we propose an inter-coding algorithm that
exploits enhanced temporal information of a video by the
CNN. Our method considers a synthesis of a reference frame,
namely a virtual reference (VR) frame, that approximates the
current frame as close as possible in the same time. To be
specific, given previously coded frames in the decoded picture
buffer (DPB), the CNN generates the VR frames of high
quality by estimating kernels in an end-to-end manner. Then,
the VR frames are included into the reference picture lists for
motion estimation and compensation. The VR frame has an
obvious advantage as it shows higher temporal correlation with
the current video frame than the conventional reference frames
of different moments. It is demonstrated by the experimental
results that the proposed technique provides about 1.4% BD-
rate reductions over the HEVC reference test model (HM 16.9)
as an anchor in an Random Access (RA) coding scenario.

The rest of the paper is organized as following. Section
II shows the background. Section III explains the proposed
technique. The experiment results are shown in Section IV.
Conclusion and future works are remarked in Section V.

II. BACKGROUND

A. Hierarchical B-Picture Coding Structure

The HEVC specifies a layer identifier (layer ID) in the
network abstraction layer units to allow temporal prediction
in an RA coding scenario [9]. B slices are hierarchically
coded with the forward and backward references frames in
the higher temporal level. Fig. 1 shows hierarchical B-picture
coding structure, in a group of pictures (GOP) 8. The colors
of the pictures indicate temporal sub-layers corresponding to
temporal layer ID values of 0, 1, 2, and 3 respectively. The
arrows show which frame can be used for reference frames
in a hierarchical manner. For example, the current frame with
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the picture of count (POC) 3 uses a frame with POC 2 and
POC 4 as the temporal layer ID of the current frame is lower
than those of the reference frames.

Fig. 1. Hierarchical B-Picture Coding Structure.

B. Video Interpolation by Convolutional Neural Network

Owing to the recent developments of CNNs, video in-
terpolation is actively studied even though it is a classic
image processing problem. A conventional video interpolation
method uses optical flows. Yet, there are many studies about
CNN architectures to generate an intermediate frame in an
end-to-end fashion and significantly improve the visual quality.
Dosovitskiy et al. propose to learn optical flows using CNNs
to estimate motion information [10]. Pixel-based prediction
by Voxel Flow is developed in [11]. Though the Voxel Flow
network is trained without labeling, it can synthesis pixels in
the interpolated frame, efficiently. Adaptive Separable Convo-
lution Neural Network (ASCNN) [12] is the state-of-the-art
video interpolation algorithm using CNN. The work uses two
pairs of two 1-D kernels to synthesize pixels, in which the two
kernels are used for the vertical prediction and the other two
kernels are used for the horizontal prediction.

III. THE PROPOSED TECHNIQUE

A. Overview of the Proposed Technique

The overall idea of the proposed algorithm is shown in Fig.
2. As shown, the proposed technique integrates a CNN that can
perform video interpolation (VI-CNN) by generation and syn-
thesis into the HEVC framework. The virtual reference (VR)
frame x̃n−1 is newly generated from the synthesis process,
using previously coded pictures x̂n−1 = {x̂0, x̂1, . . . , x̂n−1}
stored in the decoded picture buffer (DPB). x̃n−1 is added into
the reference picture lists, so that it can be used for motion
estimation and compensation for coding the current frame xn.
Fig. 2 depicts an encoder blockdiagram. In the decoder side,
the same VI-CNN is used for generating the same VR frame to
form reconstructed frame. For the generation of the VR frame
that can approximate to the current frame as close as possible,
we adopt the ASCNN [12] with only the minor modification
as the VI-CNN to get high Peak Signal-to-Noise ratio (PSNR)
quality at the low complexity. We use the pre-trained model
in [12], and, thus none of the trained videos are included in
the evaluations of coding performance.

Fig. 2. Encoder blockdiagram of the proposed technique.

B. VI-CNN for VR Frame Generation

The VI-CNN synthesises an intermediate video frame by
using two frames, i.e., one is from forward reference frames,
and the other is from backward reference frames on the hier-
archical B-picture coding structure. Fig. 3 shows the VI-CNN
using the Adaptive Separable Convolution Neural Network.
The two reconstructed frames from the DPB go through the
network to create the VR frame as an intermediate frame. It
is noted that the VR frame can be efficiently used for B-slices
in the RA coding scenario as the Low-Delay coding scenario
or P slices are restricted to perform the video interpolation.

It is also highlighted that the two input frames can change
the visual quality of the VR frame, which would affect video
coding efficiency. Therefore, in the proposed technique, we
choose each of the forward and the backward reference frames,
which has the lowest picture of counts (POC) difference
between the current frame, from the reference picture lists of
the conventional HEVC codecs. As the POC differences are
the same in the forward and the backward reference frames,
the VR frame displays the same moment of the current frame
in principle.

Fig. 3. VI-CNN using Adaptive Separable Convolution Neural Network in the
proposed technique.
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C. Reconfiguration of the Reference Picture Lists in HEVC

The VR frames are included into the reference picture lists
to be used for motion estimation and compensation. For this,
the reference pictures in the two reference picture lists denoted
by List0 and List1 [14] in HEVC need to be reconfigured in
the RA coding scenario. As the RA configuration in HEVC
uses the hierarchical B-picture coding structure, we configure
the both reference picture lists for the bi-directional motion
predictions as follows.

First, the proposed technique reconfigures the lists only
when coding a picture of non-reference picture type [14]
residing in the lowest temporal layer, so that the other frames
in the higher layers can be decoded properly. For example, in
Table I, the current frames whose POC numbers are 1, 3, 5, and
7 can use the VR frames in the reference picture lists. Second,
the reference pictures corresponding to the first indices in the
two lists remain the same as the original HEVC. However, the
reference pictures corresponding to the second indices of the
lists are replaced with the VR frames.

The specific changes of the reference picture lists of the
HEVC reference software model (HM16.9) are shown in Table
I. The reference picture index (Idx) points a reference frame
specified by the corresponding POC number. For example,
the current frame whose POC number is 2 is coded with
the backward and the forward reference frames whose POC
numbers are 0 and 4, respectively, as in HEVC. However,
the current frame whose POC number is 1 replaces the
conventional reference frames in the second indices with the
VR(0,2). VR(0,2) denotes the VR frame interpolated by using
the reference frames 0 and 2 for an example. The VR frames
are generated using temporally adjacent reference frames,
so the lists manages only the short-term references. As the
maximum number of the reference frames being active in
the RA mode is two [14], the coding gain comes from the
replacements of the conventional reference frames with the
VR frames, if any.

TABLE I
RECONFIGURATION OF REFERENCE PICTURE LISTS IN HM16.9

POC Reference Picture List 0 Reference Picture List 1
Idx 0 (POC) Idx 1 (POC) Idx 0 (POC) Idx 1 (POC)

8 0 0 0 0
4 0 8 8 0
2 0 4 4 8
1 0 VR(0,2) 2 VR(2,0)
3 2 VR(2,4) 4 VR(4,2)
6 4 0 8 4
5 4 VR(4,6) 6 VR(6,4)
7 6 VR(6,8) 8 VR(8,6)

IV. EXPERIMENTAL RESULTS

A. Experimental Configurations

In this section, we first evaluate the coding performance
of the proposed technique as in the common test conditions
(CTC) [15]. We implement the proposed technique in the
HEVC reference software HM16.9, and also compare the

TABLE II
THE RATE-DISTORTION PERFORMANCE OF THE PROPOSED TECHNIQUE

VERSUS THE ANCHOR HM16.9

Class Sequence
BD-rate

Y U V

Class B
(1920x1080)

BasketballDrive -0.1% 0.3% 0.6%

BQTerrace -0.6% -0.4% -0.4%

Cactus -1.6% -0.3% -1.2%

Kimono1 -2.0% 1.0% 1.0%

ParkScene -2.0% 0.0% 0.0%

Class C
(832x480)

RaceHorses -0.5% -0.2% -0.6%

BQMall -2.5% -1.4% -1.7%

PartyScene -1.4% -0.8% -1.0%

BasketballDrill 0.0% 0.0% -1.0%

Class D
(416x240)

RaceHorses -1.7% -0.8% -1.2%

BlowingBubbles -2.8% -1.7% -2.0%

BasketballPass -3.4% -2.3% -3.9%

BQSquare -3.3% -0.2% -0.8%

Class E
(1280x720)

Johnny -0.1% 0.1% 0.2%

FourPeople -0.9% -0.3% -0.2%

KristenAndSara -0.3% 0.1% 0.1%

Total Average -1.4% -0.4% -0.8%

performance to the anchor. The quantization parameters are
22, 27, 32, and 37. The RA configuration is the same as in
the CTC, where the size of the group of pictures is set to 8.
We use the pre-trained ASCNN model without any fine-tuning,
and, thus the training/testing video sets are exclusively chosen.

B. Rate-Distortion Performance Comparisons

Experimental results show that the proposed technique
provides around 1.4% of the BD-rate reductions on average
as compared to the anchor. Table II shows the performance
comparisons between the anchor and the proposed technique.
Fig. 4 shows the Rate-Distortion curve of “BasketBallPass”.
As shown, the proposed technique outperforms the anchor over
the range of the bit-rates.

It is observed that the test video sequences with fast motions
show higher coding gains as compared to the other test
sequences. For example, “BQSquare” and “BasketBallPass”
yield more than 3 % coding gains. As compared, the test
videos with small motions such as “Johnny” and “Kriste-
nAndSara” show only minor coding gains. To be specific,
we obtain the residual signals between the original frame and
the prediction frames to figure out how the VR frame can
be efficiently used for the motion prediction. Fig. 5 shows the
visual comparisons using “Cactus” test video. The video frame
in Fig.5.(d) shows the difference between the original frame
and the VR frame, synthesized by the forward reference frame
and the backward reference frame. Meanwhile, the differences
between the original frame and the forward/backward refer-
ence frames are respectively shown in Fig.5.(e) and Fig.5.(f).
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Fig. 4. The Rate-Distortion curve of BasketballPass.

As shown, the residues in Fig.5.(d) are much smaller than
in Fig.5.(e) and (f). Actually, the residual signals are quite
small, owing to the deep learning technique, when being
compared to the difference between the original video and
the its reconstruction after the coding. The results demonstrate
the VR frames can be efficiently used for exploiting temporal
correlation in the motion prediction.

Fig. 5. Visual quality comparisons of the residues between the original frame
and the various reference frames.

V. CONCLUSION

In this paper, we propose a new video coding algorithm
in inter prediction using a deep learning technique. The
proposed technique uses the virtual reference frame to reduce
temporal redundancies, so that achieves 1.4% BD-rate saving

on average. Our future work includes further developments of
the VI-CNN to enhance the quality of the VR frames as well
as improvements of the low-level inter-coding tools applied to
the VR frames to enhance coding gains.
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