
Deep Learning with Feature Reuse for JPEG 

Image Steganalysis  
Jianhua Yang1, Xiangui Kang1*, Edward K.Wong2 and Yun-Qing Shi3 

1 Guangdong Key lab of Information Security, School of Data and Computer Science,  

Sun Yat-Sen University, Guangzhou, China 
*E-mail: isskxg@mail.sysu.edu.cn 

2 Computer Science and Engineering, New York University, NY, USA 

E-mail: ewong@nyu.edu 
3 Department of ECE, New Jersey Institute of Technology, NJ, USA 

E-mail: shi@njit.edu 

 
Abstract— It is challenging to detect weak hidden information in 

a JPEG compressed image. In this paper, we propose a 32-layer 

convolutional neural networks (CNNs) with feature reuse by 

concatenating all features from previous layers. The proposed 

method can improve the flow of gradient and information, and 

the shared features and bottleneck layers in the proposed CNN 

model further reduce the number of parameters dramatically. The 

experimental results shown that the proposed method significantly 

reduce the detection error rate compared with the existing JPEG 

steganalysis methods, e.g. state-of-the-art XuNet method and the 

conventional SCA-GFR method. Compared with XuNet method 

and conventional method SCA-GFR in detecting J-UNIWARD at 

0.1 bpnzAC (bit per non-zero AC DCT coefficient), the proposed 

method can reduce detection error rate by 4.33% and 6.55% 

respectively. 

I. INTRODUCTION 

JPEG image steganography is a technology to hide secret 

messages into DCT coefficients for covert communication. 

Current steganography methods have become more and more 

sophisticated by designing a security distortion function so that 

the stego images are statistically undetectable from cover 

images. For instance, uniform embedding distortion (UED) [1] 

and uniform embedding revisited distortion (UERD) [2] design 

the distortion functions from DCT domain by allowing the 

embedding modifications to be proportional to the coefficient 

of variation of DCT coefficients, thus avoid statistical detect 

and keep the low computational complexity. Different from 

UED and UERD, other JPEG steganography method, e.g., 

JPEG universal wavelet relative distortion (J-UNIWARD) [3], 

combine the DCT domain and spatial domain to design the 

distortion functions. So far, J-UNIWARD have achieved the 

best security performance.  

With the rapid development of steganography, steganalysis 

has also made substantial progress to detect hidden messages 

in a suspicious image. Conventional steganalysis feature sets, 

such as the union of JPEG Rich Model and Spatial Rich Model  

(J+SRM) [4], Discrete Cosine Transform Residual (DCTR) [5], 

Gabor filtering residual method (GFR) [6] and PHase Aware 

pRojection Model (PHARM) [7], extract noise residuals by 

convolving the decompressed (non-rounded) JPEG image with 

high pass filters. In work [8], based on decision rough set α-

positive region reduction, Ma et al reduced feature dimensions 

of J+SRM and GFR. To further enhance the steganalysis 

feature sets, Denemark et al [9] proposed a method to 

incorporate the prior probabilistic knowledge (selection 

channel awareness) by accumulating in the histograms a 

quantity that bounds the expected absolute distortion of the 

residual. The experimental results have shown that selection 

channel awareness (SCA) based method, e.g., SCA-GFR can 

provide a substantial detection gain. After finished the feature 

extraction, the ensemble classifiers [10] are applied to the 

feature set for classification task. 

Recently, image steganalysis has made significant progress 

by using convolutional neural networks (CNNs) in the spatial 

domain [ 1 1 - 1 6 ] . However, there are only a few works in 

the JPEG domain [17-19].  

In [17], Zeng et al. proposed a hybrid deep-learning 

structure based on the large-scale ImageNet dataset. In the 

preprocessing phase, they used hand-crafted convolutional 

layers with 5 × 5 DCT patterns from DCTR [5] for the 

decompressed images, and performed quantization and 

truncation, which was similar to conventional steganalysis 

methods. The experimental results showed that the integration 

of quantization and truncation can boost the detection accuracy.  

In [18], Chen et al. proposed a phase-split module by 

splitting the feature maps into 64 parallel channels to make the 

architecture be aware of JPEG phase. To suppress the image 

content and increase the high frequency stego signal, four 5 × 

5 high-pass filters, which include a “KV filter”, a “point filter”, 

and 2 Gabor filters had been used. Experimental results showed 

that different kinds of high pass filters can complement each 

other and the detection performance will be improved by using 

JPEG phase awareness. 

In [19], Xu proposed a 20-layer CNN structure for JPEG 

steganalysis. In the preprocess step, the fixed DCT high pass 

filters were used to suppress the image content effectively. The 

residuals calculated from high pass filters are processed by an 

absolute layer, then truncated with a slightly tuned global 

threshold value of 8. All the pooling layers were performed by 

3 × 3 convolutional with a stride of 2, and the shortcut 
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connection [20] has been incorporated to achieve a deep 

architecture. Experimental results have shown that this method 

can obtain state-of-the-art performance. We refer to it as XuNet 

[19] in the rest of this paper. Due to the limited computational 

resource, we only compare the CNN-based method XuNet [19] 

and conventional method SCA-GFR in this work.  

In this paper, we proposed a feature-reuse CNN model for 

JPEG image deep steganalysis similar to the Dense 

Convolutional Networks (DenseNet) [21]. The features are 

reused by concatenating them from all the previous layers 

within a group.  

  The rest of this paper is organized as follows. Details of the 

proposed CNN model is described in Section II. Experiments 

and analysis are given in Section III. The conclusion and future 

works are described in Section IV. 

 

II. THE PROPOSED CNN METHOD 

The whole architecture of the CNN model is shown in Table 

I. It contains the high-pass filters in Group 1, the truncation 

layer in Group 2, “conv” layers in Group 3, feature reuse layers 

in Groups 4 ~ 8 and classifier layers in Group 9. Note that in 

Table I, each convolutional layer is followed by a batch 

normalization and a ReLU layer, so that each “conv” layer 

shown in Table I corresponds to a sequence of layers: 

convolution-batch normalization-ReLU. When we mention 

that a “conv” layer is used, it means that the sequence of layers 

is used. The size of the convolutional kernels is equal to 

number of kernels × height × width. Feature reuse is achieved 

by concatenating the feature maps with the same size within a 

group. The feature reuse in Group 4 is shown in Fig. 1. The 

feature reuse within groups 5 to 8 is similar to that in Group 4. 

The classifier layers in Group 9 contain a fully-connected layer 

and a Softmax layer. 

A. High pass filtering 

The embedded signal, i.e., hidden information, is regarded 

as the embedding noise, it is very weak when compared with 

image content. Therefore, steganalysis with deep learning is 

learning in a very low signal-to-noise ratio (SNR) case. In order 
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Fig. 1 The architecture of Group 4. 

 

TABLE  I 

THE PROPOSED CNN ARCHITECTURE  

Group Output data Process / 

Group 1 16 × (256 × 256) High pass filtering ×1 

Group 2 16 × (256 × 256) Truncation ×1 

Group 3 64 × (128 × 128) 
32 × (3 × 3) conv (stride 1) 

64 × (3 × 3) conv (stride 2) 
×1 

 

Group 4 

96 × (64 × 64) 96 × (1 × 1) conv (stride 1) 

32 × (3 × 3) conv (stride 1) 

×2 

128 × (1 × 1) conv (stride 1) 

96 × (3 × 3) conv (stride 2) 

×1 

 

Group 5 

 

96 × (32 × 32) 

96 × (1 × 1) conv (stride 1) 

32 × (3 × 3) conv (stride 1) 

×2 

128 × (1 × 1) conv (stride 1) 

96 × (3 × 3) conv (stride 2) 

×1 

 

Group 6 

 

96 × (16 × 16) 

96 × (1 × 1) conv (stride 1) 

32 × (3 × 3) conv (stride 1) 

×2 

128 × (1 × 1) conv (stride 1) 

96 × (3 × 3) conv (stride 2) 

×1 

 

Group 7 

96 × (8 × 8) 96 × (1 × 1) conv (stride 1) 

32 × (3 × 3) conv (stride 1) 

×2 

128 × (1 × 1) conv (stride 1) 

96 × (3 × 3) conv (stride 2) 

×1 

 

Group 8 

 

160 × (1 × 1) 

96 × (1 × 1) conv (stride 1) 

32 × (3 × 3) conv (stride 1) 

×2 

8 × 8 global average pooling ×1 

Group 9 2 × (1 × 1) 2D fully-connected 

Softmax 

×1 
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to enhance SNR, a JPEG compressed image was first 

decompressed to the spatial domain without rounding off the 

pixel values to integers so as to avoid any loss of information, 

then the decompressed image is high-pass filtered via the 

convolution with sixteen 4×4 DCT high-pass filters B(k,l)  [5] 

[19]: 
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Given an M × N decompressed image XRM×N, the residual 

can be calculated from the convolution with DCT high-pass 

filters.                            

      ( , )( ) , 1 , 4k lR X X B k l=              (3) 

where ’*’ denotes a convolution. The high-pass filters are 

initialized to DCT filter kernels first, then the parameters of 

high-pass filters are optimized together with other parameters 

in the architecture during training stage. For easier exposition, 

we use padding process to make the size of feature maps be a 

multiple of 8. 

B. Truncation Layer 

In conventional method, the residuals generated from high 

pass filters are performed quantization and truncated for 

statistical calculation. In this work, the value of the feature 

maps x generated by high-pass filter is first truncated with a 

threshold value T, and T is chosen to be 8 to stay the same as 

XuNet. Truncated linear unit (TLU) [16] activation function is 

applied as follows: 

,

( ) ,

,

T x T

f x x T x T

T x T

−  −


= −   −
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              (4) 

It is also observed in our work that the training process with 

TLU function will converge faster than with Tanh or ReLU 

activation function instead. 

C. Feature reuse 

Motivated by the deep learning work of DenseNet [21] in 

computer vision, in this low SNR deep learning work, the 

features obtained from previous layers are reused by 

concatenation within a group. In Fig. 1, we show the 

concatenation of feature maps in Group 4, “input” and “output” 

mean the input feature maps with size of 128 × 128 and the 

output feature maps with size of 64 × 64, respectively. As 

shown in Fig.1, the feature-maps from the previous layers can 

be used by subsequent layers in the same group, thus the flow 

of information and gradients throughout the network are 

improved and will make the proposed architecture easy to train. 

The process in layer ℓ was shown in Eq. (5), where Hℓ 

represents the process with Convolution, Batch Normalization 

[22] and ReLU (Conv-BN-ReLU) functions: 

0 1 1([ , ,..., ])x H x x x −=             (5) 

where [x0, x1,.., x ℓ -1] refers to the concatenation of the feature 

maps produced in layers 0,1 ..., ℓ −1. 

Note that in this low SNR steganalysis task, we cannot apply 

the DenseNet [21] directly. The main differences between the 

proposed architecture and the DenseNet [21] are: 1) The pre-

activation mode used in DenseNet does not improve the 

performance of steganalysis, therefore, in our work, we use 

post-activation, i.e., each convolution layer is followed by a 

Batch Normalization (BN) and ReLU function; 2) Average 

pooling layer in the DenseNet is replaced with a convolution 

layer with stride 2 in order to enhance the propagation of the 

weak signal. As shown in Fig. 1, we use a convolution layer 

with stride 2 before “output” instead of average pooling layer. 

III. EXPERIMENTS AND ANALYSIS 

A. Software Platform and Hyperparameters  

Caffe toolbox [23] is selected to implement the proposed 

CNN architecture. Parameters are updated by the stochastic 

gradient descent (SGD). A mini-batch of 32 images with 16 

cover-stego pairs is used as the input for each training iteration. 

The momentum is set to 0.9 and the learning rate is initialized 

with a value 0.001, and then divided by 5 every 30,000 

iterations. The convolutional kernels are initialized using a 

zero-mean Gaussian distribution with a standard deviation 0.01, 

except that the fully connected layers are initialized using 

“Xavier” initialization. The biases are initialized to 0.2 in the 3 

× 3 convolutions and disabled in the 1 × 1 convolutions. 

B. Datasets 

BOSSbase. BOSSbase dataset v1.01 [24] contains 10,000 

grayscale images. All 10,000 images are first resampled to the 

size of 256 × 256 by using “imresize” function in MATLAB 

with default parameter setting, then JPEG compressed with a 

quality factor 75. The corresponding stego images were 

generated through data embedding into the compressed cover 

images. We select 6,000 images for training and the remaining 

4,000 images for validation. In training stage, a training image 

is randomly flipped, and rotated by a multiple of 90 degrees for 

data augmentation. 

ImageNet. In order to test the performance on large scale 

dataset, 500,000 images were randomly selected from 

ImageNet ILSVRC 2013 classification dataset [25]. For each 

image, a 256 × 256 image block is cropped from its left-top 

region, then converted to a grayscale one and compressed with 

JPEG quality factor 75. The corresponding stego images were 

generated through data embedding into the compressed cover 

images. We use 80% images for training, 10% for validation 

and 10% for testing. 

C. Classification Results on BOSSbase 

We compare our method with XuNet [19] and the 

conventional steganalysis methods SCA-GFR [9] for J-

UNIWARD with payloads ranging from 0.1 to 0.5 bpnzAC (bit 

per non-zero AC DCT coefficient). The performance of the 
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steganalyzer is evaluated using an average classification 

(detection) error rate: 

)(
2

1
MDFAE PPP +=                  (6) 

where PFA and PMD are the false-alarm and missed-detection 

probabilities. 

The validation errors of the proposed CNN and XuNet after 

120,000 iterations on BOSSbase for J-UNIWARD at 0.4 

bpnzAC are shown in Fig. 2. It shows that the validation error 

rate of the proposed CNN becomes lower than XuNet after 

20,000 iterations and after 100,000 iterations, the performance 

of two methods becomes steady. We train the proposed CNN 

model and XuNet with 120,000 iterations, for three times 

separately. In each time, the trained model is saved every 5,000 

iterations, the last three saved models are selected. After 

training, we obtain nine trained CNN models, and report the 

average detection error rate for J-UNIWARD in Table II. In 

Fig. 3, we further illustrate the classification error rates with 

payloads ranging from 0.1 to 0.5 bpnzAC. It is observed from 

Table II that the proposed CNN method can reduce the 

detection errors significantly than XuNet method [19] and 

SCA-GFR method [9]. For example, at 0.1 bpnzAC on J-

UNIWARD, the proposed CNN method achieves 4.33% 

advantage over XuNet method and 6.55% advantage over 

SCA-GFR method. Furthermore, the number of parameters in 

the proposed CNN model is only 16% of that used in XuNet 

[19], i.e., the numbers of parameters are 924,080 and 5,750,836 

respectively.  

In order to investigate the influence of different parts of the 

proposed CNN model, we test the following variants of the 

proposed CNN method. 

Variant #1: Replace all 1 × 1 convolutional layers with 3 × 

3 convolution layers.  

Variant #2: Fix the parameters of the sixteen DCT high pass 

filters in the training. 

Variant #3: Replace all convolutional pooling with average 

pooling. 

Variant #4: Add an absolute layer after the high pass 

filtering in Group 1. 

The classification error rates in the validation of each 

variants on BOSSbase for J-UNIWARD at 0.4 bpnzAC are 

shown in Fig. 4. The lowest error rates during 80,000 iterations 

for comparison have been shown in Table III. It is observed 

that the proposed compact CNN architecture with the feature 

concatenation, 1 × 1 convolutional layer and convolutional 

pooling layers, obtain better performance than all variant 

methods.  

In XuNet, all convolutional kernels were 3 × 3 convolutional 

layers, thus the parameters also increased. Form variant #1, 

replacing the 1 × 1 convolutional layers by 3 × 3 convolutional 

layers makes the detection accuracy decrease, this result may 

be caused by that the 1 × 1 convolutional layers can project the 

input channel onto a new channel space, thus improve the 

cross-channel correlations. What’s more, replacing the 1 × 1 

convolutional layers by 3 × 3 convolutional layers leads to 

dramatical increment of training parameters, thus it easier to 

overfit.  

 

       
Fig. 3 Detection error for proposed CNN, XuNet and SCA-GFR for J-
UNIWARD on Bossbase. 

 

 
Fig. 2 Comparison of validation errors versus training iterations 

between the proposed CNN and the XuNet for J-UNIWARD at 0.4 
bpnzAC on BOSSbase. 

 
TABLE III 

CLASSIFICATION ERROR RATES FOR DIFFERENT VARIANTS ON THE 

BOSSBASE FOR J-UNIWARD AT 0.4 BPNZAC 

Proposed CNN #1 #2 #3 #4 

0.1151 0.1383 0.1221 0.1546 0.1454 

TABLE II 
CLASSIFICATION ERROR RATES FOR J-UNIWARD ON BOSSBASE 

Payload Proposed CNN XuNet SCA-GFR 

0.1 bpnzAC 0.3730 0.4163 0.4385 

0.2 bpnzAC 0.2572 0.2927 0.3391 

0.3 bpnzAC 0.1661 0.2030 0.2522 

0.4 bpnzAC 0.1084 0.1416 0.1781 

0.5 bpnzAC 0.0890 0.1072 0.119 
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Note in XuNet, all high pass filters are fixed during the 

training stage, thus variant #2 shows one advantage of the 

proposed method than XuNet. From variant #3, the result 

demonstrates the advantage of the convolutional pooling layers. 

XuNet has an absolute operation layer after the pre-

processing of high pass filtering. It is observed from the result 

of variant #4 that the performance increases for JPEG 

steganalysis without the absolute operation layer in our 

proposed CNN model. 

D. Classification Results on ImageNet 

In this experiment on attacking for J-UNIWARD at 0.4 

bpnzAC, we train the CNN model in 280,000 iterations for 0.4 

bpnzAC on the training images from ImageNet dataset. After 

every 10,000 training iterations, we perform validation on the 

validation images from ImageNet dataset, and obtain a 

validation error rate. The validation error rates versus the 

numbers of training iterations are shown in Fig. 5. In Fig. 5, we 

also compare the proposed CNN with the XuNet method [19]. 

On attacking J-UNIWARD at 0.2 bpnzAC, the CNN model is 

trained and fine-tuned from the trained CNN model for 0.4 

bpnzAC.  

After the CNN model is trained, we conduct tests on the 

50,000 cover-stego pairs test images from ImageNet using the 

saved trained model with the best validation result. Test results 

are shown in Table IV. We compare the proposed CNN method 

with the XuNet method using the same mini-batch of 40 images 

with 20 cover-stego pairs. It is observed from Table IV that the 

proposed method can also achieve lower error rates on large 

scale dataset. For example, for J-UNIWARD at 0.4 bpnzAC,  

compared with the XuNet method, our method achieves 6.94% 

lower in terms of test error rates. 

IV. CONCLUSIONS 

In this paper, we propose a 32-layer convolutional neural 

networks (CNNs) with feature reuse by concatenating all 

features from the previous layers. The proposed method can 

improve the flow of gradient and information, the shared 

features and bottleneck layers further reduce the number of 

parameters in the proposed CNN model dramatically, i.e., the 

number of parameters is only 16% of that used in the CNN 

model of the existing XuNet method. Experimental results 

show that the proposed method can further lower detection 

error and achieve the state-of-the-art performance.  

For the future work, we will incorporate the selection 

channel aware (SCA) into the CNN architecture, which is 

similar to conventional method for JPEG steganalysis. 
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