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Abstract—High–dimensional neural networks, in which all the
network parameters, states, signals and activation functions are
expressed using hypercomplex numbers, have received increasing
attention as solutions to real–world problems in many fields
of science and engineering. Quaternion numbers constitute a
class of the hypercomplex number system, and several successful
applications based on quaternion neural networks have been
demonstrated. In this study, the application of a quaternion
neural network to control systems is investigated. An adaptive–
type servo controller, in which a quaternion neural network
output is used as the control input of a plant to ensure the plant
output matches the desired output, is presented. The quaternion
neural network has a multi–layer feedforward network topology
with a split–type quaternion function as the activation function
of neurons, and a tapped–delay–line method is used to compose
the network input. To train the network parameters by using
the gradient error minimisation, a feedback error learning
scheme is introduced into the control system. Computational
experiments for controlling a two–link robot manipulator by
using the proposed quaternion neural network–based controller
are conducted, and the simulation results obtained demonstrate
the feasibility of using the proposed controller in practical control
applications.

I. INTRODUCTION

Over the past decades, numerous studies have been con-
ducted to use the capabilities of neural networks, such as the
flexibility, non–linear mapping and learning ability, for solving
real–world problems in many fields of science and engineer-
ing, and many successful applications have been demonstrated.
Meanwhile, high–dimensional neural networks, in which all
the network parameters, states, signals and activation functions
are expressed using hypercomplex numbers, such as complex
numbers and quaternion numbers, have received increasing
attention as solutions to such problems [1], [2].

Quaternion numbers, introduced by W. R. Hamilton in 1843,
constitute a four–dimensional hypercomplex number system.
A quaternion number is defined as a generalised complex
numbers: q = q0 + q1i+ q2j+ q3k, where q0, q1, q2, q3 ∈ R
and i, j, and k are imaginary units that satisfy the following
Hamilton rule: i2 = j2 = k2 = ijk = −1, ij = −ji = k,
jk = −kj = i, and ki = −ik = j. Neural networks
based on quaternion algebras have been proposed, and several
engineering applications based on quaternion neural networks
have been successfully demonstrated because such networks
provide a method for handling the relationship between high–
dimensional inputs and outputs naturally, for example, time–
series signal processing [3], rigid body control [4], image

processing [5], filtering [6], pattern classification [7], and in-
verse problems [8]. Moreover, the authors have also proposed
a control systems application of quaternion neural networks
and investigated its effectiveness in servo–level controllers by
using mathematical representations of a non–linear plant as
the target systems [9], [10].

In this study, an adaptive–type servo controller based on a
quaternion neural network, in which the output of the quater-
nion neural network output is directly used as a control input
of a plant to make the plant output match the desired output,
is investigated and applied to trajectory control of a robot
manipulator. The quaternion neural network has the multi–
layer feedforward network topology, and a tapped–delay–line
method is used in the input of the quaternion neural network to
manage the information that conveys the system dynamics. A
split–type quaternion function in which a real–valued function
is applied independently to each component of the quaternion
number is used as the activation function of the neuron, and
the training rule of the network parameters is derived using
gradient error minimisation. Computational experiments for
controlling the robot manipulator – in this case, a two–link
robot manipulator – by using the quaternion neural network–
based controller are conducted to evaluate the feasibility of
using this network in practical control applications.

II. DYNAMICS MODEL OF ROBOT MANIPULATOR

Figure 1 shows a two–link robot manipulator where θ1
and θ2 are the joint angles and τ1 and τ2 are the control
torques. Here, acceleration due to gravity is downward along
Y –axis. The dynamics of the two–link robot manipulator can
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Fig. 1. Two–link robot manipulator.
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be represented using the following equation of motion:

M(θ)θ̈ +K(θ, θ̇)θ +Dθ̇ + ξ(θ̇) = τ (1)

where θ ∈ R2 is the vector of the joint angle; M(θ) ∈ R2×2

is the inertia matrix; K(θ, θ̇) ∈ R2×2 represents the Coriolis
force, centrifugal force, and gravity force where a sinc function
is used in the components of the matrix to extract the variable
θ; D ∈ R2×2 is the viscous matrix; ξ(θ̇) ∈ R2 is the vector
of the solid friction force; and τ ∈ R2 is the vector of the
control torque.

III. QUATERNION NEURAL NETWORK–BASED
CONTROLLER

To design the servo controller, the following discrete–time
plant is considered as the target system:

y(t+ d) = F (y(t),y(t− 1), · · · ,y(t− ν),

u(t),u(t− 1), · · · ,u(t− µ)) , (2)

where y ∈ Rq is the plant output, u ∈ Rr is the control input,
t is the sampling number, F (·) is a function representing the
plant characteristics, ν = n− 1, µ = m+ d− 1, n and m are
the plant orders, and d ≥ 1 is the plant dead time. Assuming
the output error e(t) defined by the difference between the
desired output yd and the plant output will converge to 0,
the control input can be expressed using an arbitrary function
F̃ (·) as follows:

u(t) = F̃ (yd(t+ d),y(t),y(t− 1), · · · ,y(t− ν),

u(t− 1), · · · ,u(t− µ)) . (3)

By representing the mapping function of the quaternion neural
network as F qnn(·), the input–output relationship of the
quaternion neural network can be represented as follows:

o(t) = F qnn (s(t),ω(t)) , (4)

where s(t) is the input vector to the quaternion neural network,
o(t) is the output vector from the quaternion neural network,
and ω(t) is composed of network parameters such as weights
and thresholds. Comparing Eqs. (3) and (4), the components
of the input vector should consist of {yd(t + d),y(t),y(t −
1), · · · ,y(t− ν),u(t− 1), · · · ,u(t− µ)}.

The quaternion neural network uses a multi–layer feedfor-
ward network topology. The output of the j-th neuron unit in
the h-th layer can be defined as follows:

o
(h)
j (t) = f(z

(h)
j (t))

z
(h)
j (t) =

∑
i

w
(h)
ji (t)⊗ o

(h−1)
i (t) + ϕ

(h)
j (t)

(5)

where w
(h)
ji is the weight between the i-th neuron of the

(h− 1)-th layer and the j-th neuron of the h-th layer, ϕ(h)
j is

the threshold of the j-th neuron of the h-th layer, ⊗ denotes
the product of quaternion numbers, and f(·) is an activation
function of the neuron unit. A split–type quaternion function

with respect to a quaternion number q = q0+ q1i+ q2j+ q3k
is used as the activation function [11]:

f(q) = f0(q0) + f1(q1)i+ f2(q2)j+ f3(q3)k,

where and the function fl(·) is a real–valued non–linear
function (l = 0, 1, 2, 3).

In training the quaternion neural network, the back–
propagation algorithm extended to quaternions is used to
conduct the gradient error minimisation with respect to the
network parameters. A feedback error learning scheme is in-
troduced to avoid the Jacobian problem in the control system,
and thus, the network parameters are updated to minimise the
cost function J(t) by considering the dead time of the plant
as follows:

ω(t+ 1) = (1− σ)ω(t− d) + ∆ω(t), (6)

where t is the iteration number; η, σ ∈ R+ are the training
factor and the weight decay factor, respectively; and ∆ω(t) is
the increment of the network parameters defined as follows:

∆ω(t) = −η∇ω(t−d)J(t), (7)

where

J(t) =
1

2
uc(t)⊗ u∗

c(t), (8)

where uc(t) is the feedback controller output, and u∗
c(t) is its

conjugate.
Owing to use of the feedback error learning scheme, the

control system uses the feedback controller in parallel with
the quaternion neural network. Therefore, the control input
is synthesised by the sum of the quaternion neural network
output and the feedback controller output. Considering Eqs.
(3) and (4), the input vector of the quaternion neural network
s(t) should contain the feedback controller output uc(t) as
one of its components [10].

IV. CONTROLLER DESIGN FOR ROBOT MANIPULATOR

To define the input to the quaternion neural network, the
transfer function of the robot manipulator is considered. To
simplify, the control toque τ is assumed to be proportional to
the control input of the robot manipulator u: τ = T ru where
T r ∈ R2×2 is the coefficient matrix. Representing Eq. (1) by
a state space form with the state vector x(t) = [ θ θ̇ ]T and
applying zero–order hold of the sampling interval T to the
state space form under linear approximations yields{

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)
, (9)

where A = eAcT , Ac =
[

0 E

−M(θ)−1K(θ, θ̇) −M(θ)−1D

]
,

E is an identity matrix, B =
∫ T

0
eActdtBc, Bc =[

0
M(θ)−1T r

]
, and C =

[
E 0

]
. The transfer function

from the control input to the joint angle can be expressed by

y(t) =
1

D(z)

[
N11(z) N12(z)
N21(z) N22(z)

]
u(t), (10)
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where D(z) = z4+a3z
3+a2z

2+a1z+a0, Nij(z) = b3ijz
3+

b2ijz
2 + b1ijz+ b0ij (i, j = 1, 2), and z is a shift operator.

Applying the form of the transfer function (d = 1, n = 4,
m = 3) to design the quaternion neural network–based
controller described in Section III, the input vector of the
quaternion neural network is defined as follows:

s1(t) = yd1(t+ 1) + yd2(t+ 1)i,

s2(t) = y1(t) + y2(t)i+ uc1(t)j+ uc2(t)k,

s3(t) = y1(t− 1) + y2(t− 1)i+ u1(t− 1)j+ u2(t− 1)k,

s4(t) = y1(t− 2) + y2(t− 2)i+ u1(t− 2)j+ u2(t− 2)k,

s5(t) = y1(t− 3) + y2(t− 3)i+ u1(t− 3)j+ u2(t− 3)k.

Using the imaginary part of the quaternion neural network
output o1(t), the control input is synthesised as follows:

u1(t) = o12(t) + uc1(t),

u2(t) = o13(t) + uc2(t),

where the feedback controller uses the P–control law and its
output can be given by

uci(t) = Gpiei(t) +GdiT
−1(ei(t)− ei(t− 1)),

where Gpi and Gdi (i = 1, 2) are the gain parameters. In the
cost function of Eq. (8), the output of the feedback controller
is defined as follows:

uc(t) = uc1(t)j+ uc2(t)k.

V. NUMERICAL SIMULATIONS

In computational experiments, trajectory control of the two–
link robot manipulator was conducted using the proposed
quaternion neural network–based controller.

The parameters of the robot manipulator are shown in Table
I. In the experiments, the force due to solid friction at the joint
was given by Sisgn(θ̇i), where Si (i = 1, 2) is the amplitude
of the solid friction force. The desired joint angles, yd1

(t)
and yd2(t), were calculated in advance by solving the inverse
kinematics of the robot manipulator to ensure that the end
effector of the robot manipulator tracked the circular trajectory
of the radius R. Here, R = 0.1, and the trajectory consisted

TABLE I
PARAMETERS OF ROBOT MANIPULATOR

parameter value
Length of link 1 0.25
Length of link 2 0.25

Distance of centre of mass from joint 1 0.125
Distance of centre of mass from joint 2 0.125

Mass of link 1 0.2
Mass of link 2 0.15

Damping factor 1 0.005
Damping factor 2 0.005

Amplitude of sold friction force 1 0.2
Amplitude of sold friction force 2 0.1

Torque coefficient 1 5.0
Torque coefficient 2 5.0

of 1000 data points per round. Hereinafter, one round of the
trajectory is called one cycle.

In the controller, the quaternion neural network contained
one hidden layer, and the number of neurons in the hidden
layer was five. The real–valued function of the activation func-
tion in the neuron was a sigmoid function: fl(x) = 1/(1+e−x)
where l = 0, 1, 2, 3. To use the output from the quaternion
neural network o1(t) as a part of the control input, it was
converted to the range [-1, 1] with gain and shift factors
because the output of the sigmoid function was in the range [0,
1]. The initial values of the network parameters were selected
randomly from the interval [−1, 1], and the training factors
were η = 0.01 and σ = 10−5. The gain parameters of the
feedback controller were Gp1

= 2.0, Gp2
= 1.0, Gd1

= 0.02,
and Gd2

= 0.01.
In the simulation experiments, training of the quaternion

neural network was terminated when the normalised cost
function was smaller than 3×10−4 for five continuous cycles,
while the total number of cycles in the simulation was 100.
Here, the normalised cost function is defined as the mean of
the cost function J within one cycle of the desired plant output.
Furthermore, the training of the quaternion neural network was
restarted with new initial values of the network parameters if
the normalised cost function was larger than 10 in the training
process.

Figure 2 shows an example of system response where
the simulation is terminated at the 36th cycle and the root
mean square of the output error is 0.0068. The controller
could achieve the control task of ensuring that the joint
angles followed the desired output by using the output of the
quaternion neural network as its training progressed. A real–
valued neural network was used as a controller that can provide
the data with which to compare the results of the quaternion
neural network. Figure 3 shows an example of the system
response obtained using the real–valued neural network. Here,
the upper limit of the normalised cost function in the stop
criteria was the same as that of the quaternion neural network.
To satisfy the stop criteria, an 18–24–2 network topology was
required. The simulation was terminated at the 65th cycle
and the root mean square of the output error was 0.0106.
The output error using the quaternion neural network is less
than that when using the real–valued neural network and the
normalised cost function of the quaternion neural network
decreases faster than that of the real–valued neural network.
Using 40 results, the cycle that terminated the training of the
quaternion neural network was with a mean of 35.5 (standard
deviation of 18.7), while that of the real-valued neural network
was with a mean of 63.6 (standard deviation of 4.6). These
results indicate that the learning performance of the quaternion
neural network is better than that of the real–valued neural
network. By contrast, the performance obtained by a complex–
valued neural network of 9–7–1 network topology was similar
to that of the quaternion neural network.

In training of the quaternion neural network, quick propaga-
tion (Quickprop) [12] and resilient back propagation (Rprop)
[13] were compared with standard back propagation. To sim-
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(a) Time responses. In each figure, the top panels show response of joint angle 1, while the bottom panels show response of joint
angle 2. Left: system response within the first cycle; right: system response within the last cycle.
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Fig. 2. Example of simulation result where the robot manipulator is controlled using proposed quaternion neural network–based controller.

plify the application of these methods for calculating network
parameter increments, each component of the quaternion num-
ber representing the network parameter increments and the
gradients was processed independently.

Quickprop is an iterative second–order optimisation algo-
rithm in which the cost function is approximated using a
quadratic function for each network parameter independently

from the others. Defining Ω(t) = ∇ωlji
J(t)/(∇ωlji

J(t−1)−
∇ωlji

J(t)), the process of calculating the increment of the
network parameter is as follows:
1) If the absolute value of the current gradient is smaller than
the previous one but the signs of the gradients are the same,
then

∆ωlji(t) = −η∇ωlji
J(t) + Ω(t)∆ωlji(t− 1),
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Fig. 3. Example of simulation result where the robot manipulator is controlled using real–valued neural network–based controller.

where η is the training factor.
2) If the signs of the gradients are different, then

∆ωlji(t) = Ω(t)∆ωlji(t− 1).

3) If the absolute value of the current gradient is larger or
equal to the previous one, then

∆ωlji(t) = −η∇ωlji
J(t) + α∆ωlji(t− 1),

where α is the momentum factor.
In the implementation, the maximum growth factor ϕ is used
to limit the growth of a step size.

Rprop is a local adaptive learning scheme in which the
network parameter increments are calculated by using only the
sign of the gradient without using its value. The magnitude of

564

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



BP QP RP

N
u

m
b

er
 o

f 
cy

cl
e

0

20

40

60

80

100

Fig. 4. Comparison of training performance (BP: back propagation, QP:
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the increment is determined as follows:

∆ωlji(t) = −ηlji(t)sgn
(
∇ωlji

J(t)
)
,

where the training factor ηlji(t) is defined individually for
each parameter as follows:

ηlji(t) =



min(η+ × ηlji(t− 1), ηmax)
(∇ωlji

J(t)×∇ωlji
J(t− 1) > 0)

max(η− × ηlji(t− 1), ηmin)
(∇ωlji

J(t)×∇ωlji
J(t− 1) < 0)

ηlji(t− 1) (otherwise)

,

where η+ and η− are the increase and decrease factors,
respectively, that satisfy 0 < η− < 1 < η+, and ηmax and
ηmin are the limits of the maximum and minimum step size,
respectively. In the implementation, a window of Nw samples,
which is continuously renewed, is used to apply Rprop in on–
line training.

Figure 4 shows a comparison of the training performance
of the algorithms in terms of the number of cycles required
to satisfy the stop criterion. Here, the number of cycles
was averaged using 50 results, and the error bar depicts
the standard deviation of the mean. In the experiments, a
momentum term β∆ω(t− 1) was introduced in the standard
back propagation and Rprop. The factors in the standard back
propagation were η = 0.01 and β = 0.1. The factors of
Quickprop were η = 0.01, α = 0.5, and ϕ = 1.75, while
the factors of Rprop were η+ = 1.2, η− = 0.5, ηmax = 1,
ηmin = 10−6, β = 0.1, and Nw = 5. When using either
Quickprop or Rprop, the number of cycle was almost the same
as that when using the standard back propagation. This shows
that the simplest approach that handles each component of the
quaternion number independently in these methods seems to
be ineffective to improve the training speed of the quaternion
neural network.

VI. CONCLUSIONS

In this study, we investigated an adaptive–type servo con-
troller based on a quaternion neural network, in which the
network output was directly used as the control input of a plant
to ensure that the plant output follows the desired output, and
applied the proposed controller to trajectory control of a robot

manipulator. The controller was composed of a multi–layer
feedforward quaternion neural network, in which a tapped–
delay–line method was used as its input, the activation function
of the neuron was a split–type quaternion function, and the
training of the network parameters was based on the gradient
error minimisation. A feedback error learning scheme was
introduced in the control system to conduct the training of
the quaternion neural network. Computational experiments
for controlling a two–link robot manipulator by using the
quaternion neural network–based controller were conducted
to evaluate the feasibility of using this network in practi-
cal control applications. The simulation results demonstrated
the effectiveness and characteristics of the quaternion neural
network–based controller for trajectory control of a two–link
robot manipulator.
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