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Abstract—Expressing multidimensional information as a value
in hypercomplex number systems (e.g., quaternion, octonion, etc.)
has great potential, in signal processing applications, to enjoy
their nontrivial algebraic benefits which are not available in
standard real or complex vector systems. Exploiting sparsity of
hypercomplex matrices or vectors would play an important role
in utilizing such benefits. In this paper, we propose a new spar-
sity measure for evaluating sparsity of hypercomplex matrices.
With utilizing this measure, the hypercomplex robust principal
component analysis can be relaxed into the hypercomplex robust
principal component pursuit and it can be reduced to a real
convex optimization problem. We then derive an algorithmic
solution to the hypercomplex principal component pursuit based
on a proximal splitting technique. Numerical experiments are
performed in the octonion domain and show that the proposed
algorithm outperforms a part-wise state-of-art real, complex and
quaternion algorithm.

I. INTRODUCTION

Multidimensional information arises naturally in many areas
of engineering and science since almost all observations have
many attributes. Utilizing hypercomplex number system for
representing such multidimensional information is one of the
most effective ways because we can express multidimensional
information not in terms of vectors but in terms of num-
bers among which we can define the four basic arithmetic
operators. Indeed, it has been used in many areas such as
computer graphics [1] and robotics [2], [3] wind forecasting
[4]–[6] and noise reduction in acoustic systems [7]. In the
statistical signal processing field, effective utilization of the
m-dimensional Cayley-Dickson number system (C-D number
system) [8], [9], which is a standard class of hypercomplex
number systems [10], including, e.g., real R, complex C,
quaternion H, octonion O and sedenion S etc., have been
investigated.

A hypercomplex number has one real part and many imag-
inary parts, and it can represent multidimensional data as a
number for which the four arithmetic operations including
multiplication and division are available. It can fulfill the
four arithmetic operation for multidimensional information,
which are not available for ordinary real multidimensional
vectors. Moreover, thanks to the nontrivial algebraic struc-
ture, the multiplication of hypercomplex numbers can enjoy
algebraically interactions among real and imaginary parts.
Hypercomplex vectors, matrices and tensors can also enjoy
these benefits. For example, in 3D object modeling, each point
in 3-dimensional space can have multiple attribute such as

color, material, intensity, etc., and each attribute may have
correlation with other attributes. Modeling of the correlations
among attributes in multidimensional data and will be more
and more important by the popularization of 3D printer [11],
virtual reality, medical imaging etc. Algebraically natural oper-
ations in hypercomplex number system has great potential for
such modelingof various correlations (see e.g., [12]–[16] for
color image processing applications). However, because of the
“singularity” of higher dimensional C-D number systems (see
e.g., Example 1), few mathematical tools had been maintained
[17]–[20]. To overcome this situation, in our previous works
[21]–[23], we have proposed several useful mathematical tools
for designing advanced algorithm for optimization, learning
and low rank approximation in hypercomplex domain. In [21]
we proposed an algebraic real translation for clarifying the
relation between C-D linear system and real vector valued
linear systems, and successfully designed some online learning
algorithms which are available in general C-D domain. More-
over, we also proposed in [22], [23] useful tools C-D singular
value decomposition, R-rank (see Section II-C) and low rank
approximation technique and proposed an algorithmic solution
for low rank hypercomplex tensor completion.

One of the other standard approximation methods utilizing
simpler structure of matrices is the robust principal component
analysis (RPCA) [24], which separates an input matrix into a
low-rank and sparse ones:

minimize
L,S∈RM×N

rank(L) + λ ∥S∥0 s.t. M = L+ S, (1)

where ∥·∥0 denotes the ℓ0-norm, which counts the number
of non-zero entries of S. The RPCA has been successfully
used for various signal processing applications such as source
separation [25], face recognition [26] and so on. Unfortunately,
the formulation (1) is NP-hard, so its convex relaxation called
the principal component pursuit [24] is often considered in
stead of the RPCA. Recently, the PCP is extended to simpler
hypercomplex domains C and H using the complex matrix
isomorphism [27]. However, it can be only applied up to four
dimensional data and hard to be generalized to octonion and
higher dimensional C-D domain only with this isomorphism.

In this paper, to establish a RPCA framework in hyper-
complex domain, first, we present Cayley-Dickson principal
component analysis (C-D PCP) as a convex relaxation of the
C-D extension of RPCA. This relaxation is based on the
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R-rank proposed in [22] and a new sparsity measure, ℓ1-
norm of C-D matrices. This sparsity measure can be inter-
preted as evaluating a group sparsity of real matrices, so the
proximity operator can be easily calculated. Hence, the C-D
PCP is a convex optimization in real domain which can be
solved by applying proximal splitting techniques to a certain
structured convex optimization problem. We finally propose
an hypercomplex PCP algorithm Am based on Douglas-
Rachford splitting (DRS) [28]. The proposed algorithm is a
C-D generalization of a PCP algorithm (DR-PCP) proposed
in [29] and can be applied to general C-D domains.

Numerical experiments are performed in the context of
recovering sparsely corrupted low rank matrices in octonion
domain and show that the proposed algorithm successfully uti-
lizes algebraically natural correlations of real and all imaginary
parts to recover much more faithfully the original matrices,
corrupted randomly by noise, than a part-wise real, complex
and quaternion PCP algorithms.

II. PRELIMINARIES

A. Hypercomplex Number System

Let N and R be respectively the set of all non-negative inte-
gers and the set of all real numbers. Define an m-dimensional
hypercomplex number Am (m ∈ N \ {0}) expanded on the
real vector space [8]

a := a1i1 + a2i2 + · · ·+ amim ∈ Am, a1, . . . , am ∈ R (2)

based on imaginary units i1, . . . , im, where i1 = 1 represents
the vector identity element. Any hypercomplex number is
expressed uniquely in the form of (2). The coefficient of each
imaginary unit aℓ (ℓ = 1, . . . ,m) is represented as aℓ = ℑℓ(a).
A multiplication table defines the products of any imaginary
unit with each other or with itself (e.g., i21 = 1, i22 = −1
and i1i2 = i2i1 = i2 for A2(=: C)). The addition and
the subtraction of two hypercomplex numbers are defined as
commutative binomial operations

a± b := (a1 ± b1)i1 + (a2 ± b2)i2 + · · ·+ (am ± bm)im

for a, b ∈ Am, where b := b1i1 + b2i2 + · · · + bmim,
b1, . . . , bm ∈ R. From the unique expression of (2), the
multiplication of two hypercomplex numbers

ab = (a1i1 + a2i2 + · · ·+ amim)(b1i1 + b2i2 + · · ·+ bmim)

:=
m∑

k=1

m∑
ℓ=1

akbℓikiℓ ∈ Am

is determined uniquely according to the multiplication table.
We also define the conjugate of hypercomplex number a as

a∗ := a1i1 − a2i2 − · · · − amim. (3)

In this paper, we consider the hypercomplex number systems
which are constructed recursively by the Cayley-Dickson con-
struction (C-D construction or C-D (doubling) procedure) [8].
The C-D construction is a standard method for extending a
number system. This method has been used in extending R
to C, C to H and H to O. By using the C-D construction, an

m-dimensional hypercomplex number Am is extended to A2m

[8], [9] as

z := x+ yim+1 ∈ A2m, x, y ∈ Am,

where im+1 ̸∈ Am is the additional imaginary unit for dou-
bling the dimension of Am satisfying i2m+1 = −1, i1im+1 =
im+1i1 = im+1 and ivim+1 = −im+1iv =: im+v for all
v = 2, . . . ,m. For example, the real number system (A1 :=) R
is extended into complex number system C (= A2) by the C-D
construction. Note that the value of m is restricted to the form
of 2n (n ∈ N). The hypercomplex number systems constructed
inductively from the real number by the C-D construction are
called Cayley-Dickson number system (C-D number system).
The imaginary units appeared in the C-D number systems
have many characteristic properties [21] such as i2α = −1
and iαiβ = −iβiα(α ̸= β) for all α, β ∈ {2, . . . ,m}. These
properties ensures aa∗ =

∑m
ℓ=1 a

2
ℓ ≥ 0 for any a ∈ Am in

(2) and a∗ ∈ Am in (3) and enable us to define the absolute
values of C-D number a as |a| :=

√
aa∗.

Example 1. 1) A representative example of hypercomplex
number is the quaternion H. The quaternion number
system is constructed from the complex number system
by using the C-D construction. A quaternion number is
a 4-dimensional hypercomplex which is defined as

q = q1 + q2ı+ q3ȷ+ q4κ ∈ H, q1, q2, q3, q4 ∈ R

with the multiplication table:

ıȷ = −ȷı = κ, ȷκ = −κȷ = ı, κı = −ıκ = ȷ,
ı2 = ȷ2 = κ2 = −1 (4)

by letting m = 4, i1 = 1, i2 = ı, i3 = ȷ and i4 = κ.
From (4), quaternions are not commutative, i.e., pq ̸= qp
for p, q ∈ H in general.

2) The octonion O can be constructed from the quaternion
H by the C-D construction. Note that the multiplication
in O is neither commutative nor associative, i.e., pq ̸= qp
and (pq)r ̸= p(qr) for p, q, r ∈ O in general [10]. For
the octonion multiplication table, see, e.g., [10].

The C-D number system can be seen as an algebraically nat-
ural higher dimensional generalization of our familiar fields,
i.e., R and C.

We also define AN
m := {[x1, . . . , xN ]⊤|xi ∈ Am (i =

1, . . . , N)} for ∀N ∈ N \ {0}, where (·)⊤ stands for the
transpose. Define ⟨x,y⟩AN

m
:= xHy ∈ Am,∀x,y ∈ AN

m

and ∥x∥AN
m

:= ⟨x,x⟩1/2AN
m

, ∀x ∈ AN
m, where (·)H de-

notes the Hermitian transpose of vectors or matrices (e.g.,
xH := [x∗

1, . . . , x
∗
N ] for x := [x1, . . . , xN ]⊤ ∈ AN

m, where
x1. . . . , xN ∈ Am). We also define the addition of two hyper-
complex vectors x+y := [x1+y1, · · · , xN +yN ]⊤ ∈ AN

m for
x,y(:= [y1, . . . , yN ]⊤) ∈ AN

m. Let S := R, S := C or S :=
Am (m ≥ 4), and call the element of S scalar. If we define the
left scalar multiplication as αx := [αx1, . . . , αxN ]⊤ ∈ AN

m

for α ∈ S and x ∈ AN
m, we have αx + βy ∈ AN

m,
∀α, β ∈ S,∀x,y ∈ AN

m. We can also define the right scalar
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multiplication xα ∈ AN
m in a similar way.

B. Algebraic Translations

In this section, we introduce algebraic translation of C-D
valued vectors and matrices proposed in [21]. A trivial corre-
spondence (mapping) of hypercomplex vectors or matrices to
real ones is

(̂·) : AM×N
m → RmM×N : A 7→ Â :=

A1

...
Am

, (5)

where A = A1i1+ · · ·+Amim ∈ AM×N
m and A1 . . . ,Am ∈

RM×N . This correspondence is just concatenating a real and
all imaginary parts in the hypercomplex matrices. Obviously,
this mapping is invertible and thus we can also define

|(·) : RmM×N → AM×N
m : Â 7→ A. (6)

Only in terms of the mappings (̂·) and |(·), it is hard to obtain
the correspondence of matrix-vector product Ax, so we also
introduce the following non-trivial mapping:

(̃·) : AM×N
m → SAm

(M,N) :

A 7→ Ã :=
[
L

(1)⊤
M Â, . . . ,L

(m)⊤
M Â

]
, (7)

where the matrix L
(ℓ)
M ∈ RmM×mM (ℓ = 1, . . . ,m) is defined

for the m-dimensional hypercomplex number Am as

L
(ℓ)
M =


δ
(ℓ)
1,1IM δ

(ℓ)
1,2IM · · · δ

(ℓ)
1,mIM

−δ(ℓ)2,1IM −δ(ℓ)2,2IM · · · −δ(ℓ)2,mIM

...
...

. . .
...

−δ(ℓ)m,1IM −δ(ℓ)m,2IM · · · −δ(ℓ)m,mIM

,
with the M -dimensional identity matrix IM and

δ
(γ)
α,β :=

 1 (if iαiβ = iγ),
−1 (if iαiβ = −iγ),
0 (otherwise).

SAm(M,N) ⊂ RmM×mN is the restriction of Ã and repre-
sented as

SAm(M,N) := {Ã|A ∈ AM×N
m } ⊂ RmM×mN

=
{[

L
(1)⊤
M A′, . . . ,L

(m)⊤
M A′

]∣∣∣A′ ∈ RmM×N
}
.

(8)

Using the imaginary unit vector i := [i1, i2, . . . , im]⊤ ∈ Am
m,

L
(ℓ)
M is also compactly represented as

L
(ℓ)
M = ℑℓ(ii

H ⊗ IM ),

where ‘⊗’ is the Kronecker product. Similar to the trivial
mapping, (̃·) is also invertible and thus we can define

(̃·) : SAm
(M,N)→ AM×N

m : Ã 7→ A.

These mappings have the following useful algebraic proper-
ties:

Fact 1 (Algebraic correspondence between real and C-D vec-
tors and matrices [21]). For all A,A′ ∈ AM×N

m , B ∈ AN×L
m

and x ∈ AN
m,

1) (Â+A′) = Â+ Â′, (α̂A) = αÂ,

(Ã+A′) = Ã+ Ã′, (α̃A) = αÃ for all α ∈ R,

2) (ÃH) = Ã
⊤

,
3) ∥x∥AN

m
= ∥x̂∥RmN ,

4) (ÂB) = ÃB̂ and (Âx) = Ãx̂,
5) (ÃB) = ÃB̃ if m ≤ 4, i.e., if Am = R or C or H.

Example 2. For a quaternion matrix A := A1+A2ı+A3ȷ+
A4κ ∈ HM×N , Â ∈ R4M×N and Ã ∈ R4M×4N are given as

Â =


A1

A2

A3

A4

, Ã =


A1 −A2 −A3 −A4

A2 A1 −A4 A3

A3 A4 A1 −A2

A4 −A3 A2 A1

.
Remark 1. Obviously, SAm

(M,N) is an mMN -dimensional
real vector space and the non-trivial mapping (̃·) is guaranteed
to be an isomorphism between AM×N

m and SAm
(M,N)

regarding AM×N
m as a vector space over R (see Section II-A).

C. Singular Value Decomposition, Rank, and Low Rank Ap-
proximation

In this section, we introduce useful notions C-D singular
value decomposition (C-D SVD) and R-rank for C-D matrices
originally proposed in [22]. For any C-D matrix A ∈ AM×N

m ,
there exist orthogonal real matrices U ∈ RmM×mM and V ∈
RmN×mN such that

Ã = UΣV ⊤, (9)

where Σ := diag(σ1, . . . , σr, 0, . . . , 0) ∈ RmM×mN is
a rectangular diagonal matrix with positive singular values
σ1 ≥ · · · ≥ σr(> 0) of Ã on the diagonal We call
it C-D singular value decomposition (C-D SVD) and call
rankR(A) := r = rank(Ã) ≤ max(mM,mN) R-rank of
A. The R-rank has very strong relation to well-established
original ranks [19] in C-D domain.

Fact 2 (R-rank and original ranks in C-D domain [22]). For
complex (m = 2) or quaternion (m = 4) cases,

rankR(A) = mrank(A)

holds for all A ∈ AM×N
m .

Originally, the rank of matrices is defined as the maximum
number of column vectors of them which are linearly inde-
pendent. In quaternion and higher dimensional C-D domain,
we can consider left and right linearly independence since
left and right scalar multiplications are distinct, so we have
to define carefully the rank over Am. In quaternion domain,
by convention, the rank is defined as the maximum number of
columns which are right linearly independent [19], since if we
define so, the rank becomes equal to the number of positive
singular values with the right eigenvalues. For octonion and
higher dimensional C-D domain, the concrete definition of the

581

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



rank has not yet been established to the best of the author’s
knowledge. However, the R-rank is explicitly available for
general C-D matrices keeping the consistency with the known
results (e.g., [19]) from Fact 2. Therefore, the R-rank is a
natural generalization of the rank to hypercomplex domain.

Finally, we discuss a low rank approximation of matrices in
C-D domain. By passing through the Schmidt-Eckart-Young
theorem [30] we can also perform a low rank approxima-
tion of C-D matrices in terms of R-rank minimization with
truncating C-D SVD. Note that this approximation does not
always provide a low R-rank matrix in SAm(M,N), i.e.,
the existence the corresponding C-D matrix of the low R-
rank approximation is not guaranteed (for details, see [22]).
However, there are several cases where the corresponding C-
D matrices of low R-rank approximation is guaranteed. The
following fact is one of the examples (another examples can
be seen in [22]).

Fact 3 (Inheritance of special structure of non-trivial map-
ping with the shrinkage operator). Let shrink(Ã, τ) be the
shrinkage operator given by

shrink(Ã, τ) = UΣτV
⊤ (10)

for (9) and the shrunk diagonal matrix Στ := diag(max{σ1−
τ, 0}, . . . ,max{σr−τ, 0}, 0, . . . , 0). For any A ∈ AM×N

m and
τ > 0,

1) If m ≤ 4, the shrinkage operator keeps the special
structure of non-trivial mapping (̃·), i.e., shrink(Ã, τ) ∈
SAm(M,N).

2) If m > 4, the shrinkage operator does not always
keep this structure, i.e., shrink(Ã, τ) ̸∈ SAm

(M,N) in
general.

The shrinkage operator will be used in Section III-B and
it often appears as the proximity operator (see Appendix A)
of nuclear norm regularization in many context of matrix low
rank approximation via proximal splitting methods including
the principal component pursuit [24] and low rank matrix (or
tensor) completion [31], [32].

III. HYPERCOMPLEX PRINCIPAL COMPONENT PURSUIT

A. Convex Relaxation of Hypercomplex Robust Principal
Component Analysis

In this section, we formulate the robust principal component
analysis (RPCA) in C-D domain. Since the R-rank defined in
II-C is available for general C-D domain, we can formulate it
in C-D domain as follows:

minimize
L,S∈AM×N

m

rankR(L) + λ ∥S∥0,Am
s.t. M = L+ S,

(11)

where λ > 0 and ∥·∥0,Am
is the number of non-zero entries

in A ∈ AM×N . Obviously from Fact 2, this is a C-D
generalization of RPCA in real domain. Similar to the real
case [24], (11) is NP-hard. For relaxing (11) to a convex
optimization problem, we first introduce newly the ℓ1-norm

of a C-D matrix as follows:

∥A∥1,Am
:=

M,N∑
i,j=1

|Ai,j |, A ∈ AM×N
m . (12)

For any C-D matrix A ∈ AM×N
m , we can consider the

following real matrix:

̂̂A =

 Â1,1 · · · Â1,N

...
. . .

...
ÂM,1 · · · ÂM,N

 ∈ RmM×N (13)

with the mapping ̂̂(·) : AM×N
m → RmM×N . Note that ̂̂(·) is

just a permutation of (̂·) in (5) and we can define its inverse
|

|(·) : RmM×N → AM×N
m : ̂̂A 7→ A. Then, we have

∥A∥1,Am
=

M,N∑
i,j=1

∥∥∥Âi,j

∥∥∥
2
=:

∥∥∥ ̂̂A∥∥∥Am

1
,

where ∥·∥2 is the ℓ2-norm of real vectors and note that Âi,j ∈
Rm (i = 1, . . . ,M , j = 1, . . . , N ). This implies that the ℓ1-
norm of a C-D matrix A can be regarded as a convex function
∥·∥Am

1 of the real matrix ̂̂A ∈ RmM×N and it evaluates the
group sparsity (structured sparsity) [33] of A′. Therefore, we
have the following theorem:

Theorem 1 (Proximity operator of ∥·∥Am

1 ). For any A ∈
AM×N

m , the proximity operator (see Appendix A) of ∥·∥Am

1

with index τ > 0 can be easily calculated group-wise as[
prox

γ∥·∥Am
1

( ̂̂A)
]
i,j

=
Âi,j∥∥∥Âi,j

∥∥∥
2

max(0,
∥∥∥Âi,j

∥∥∥
2
− τ), (14)

=: [ŜT( ̂̂A, τ)]i,j (15)

where the indices [·]i,j (i = 1, . . . ,M , j = 1, . . . , N ) stand for
the (i, j)-th group of size m×1 in prox

γ∥·∥Am
1

(A′) ∈ RmM×N .

If we note that
∥∥∥Âi,j

∥∥∥
2

= |Ai,j | and by applying |(·)
defined in (6) to the right hand side of (14), we formally
obtain the following entry-wise soft-thresholding function of
C-D matrices:

[ST(A, τ)]i,j :=
Ai,j

|Ai,j |
max(0, |Ai,j | − τ).

This is obviously equivalent to (15) and a C-D generalization
of real, complex and quaternion soft-thresholding functions.

By using ℓ1 norm we have discussed above and approximat-
ing R-rank with nuclear norm, we have the following convex
optimization problem:

minimize
L,S∈AM×N

m

∥L̃∥∗ + λ ∥S∥1,Am
s.t. M = L+ S, (16)

where ∥·∥∗ is the nuclear norm of real matrices i.e., the
sum of positive singular values. In this paper, we call the
problem (16) Cayley-Dickson principal component pursuit (C-
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D PCP). Obviously, if we set Am = R (m = 1) and
Am = C or H (Am = 2 or 4), (16) is respectively identical
to the original PCP in real domain [24], and the complex
and quaternionic PCP in [27]. Therefore, the C-D PCP is a
natural generalization of these problems. Moreover, the C-D
PCP can be regarded as a convex optimization problem in real
domain since the ℓ1-norm of C-D matrices A can be regarded
as a convex function of real matrices, and can be solved by
proximal splitting techniques.

B. Hypercomplex Principal Component Pursuit via Convex
Optimization

In this section, we derive a new algorithm based on the
Douglas-Rachford splitting technique [28] to solve the C-D
PCP (16) efficiently. Denote the 2-fold Cartesian product of
the spaces of real matrices by H0 := RmM×mN × RmM×N .
By defining the inner product ⟨X ,Y⟩H0

:= 1
2 tr(X

⊤
1 Y 1) +

1
2 tr(X

⊤
2 Y 2) =: 1

2 ⟨X1,Y 1⟩RmM×mN + 1
2 ⟨X2,Y 2⟩RmM×N ,

where X := [X1,X2] ∈ H0 and Y := [Y 1,Y 2] ∈ H0,
(X1,Y 1 ∈ RmM×mN , X2,Y 2 ∈ RmM×N ) and induced
norm ∥X∥H0

:=
√
⟨X ,X⟩H0

, H0 becomes a real Hilbert
space. First, we reformulate the problem (16) as an uncon-
strained the sum of two functions as follows:

minimize
Z∈H0

f(Z) + g(Z), (17)

where
f(Z) := f1(Z1) + f2(Z2) = ∥Z1∥∗ + ∥Z2∥Am

1 ,

g(Z) := ιD1(Z) =

{
0 (if Z ∈ D1),

+∞ (otherwise),

Z :=[Z1,Z2] ∈ H0,

D1 :=
{
[Z1,Z1] ∈ D2

∣∣∣M = Z̃1 +
q

qZ2

}
⊂ D2,

D2 :=S× RmM×N ⊂ H0,

S :=SAm(M,N) ⊂ RmM×mN .

Note that the subspace D1 represents the constraint that the
observation M is from the sum of low rank and sparse
matrices. This requests that both Z1 belong to S, so we need
the subspace D2.

Apparently this reformulation (17) is equivalent to (16),
so all we need is to identify the concrete calculation of the
proximity operators of f and g. In the same way as [29], the
proximity operator of f is given by

proxγf (X ) =
[
prox2γf (X1),prox2γf (X2)

]
.

The proximity operator of f1, i.e., the nuclear norm with index
2γ is given by

prox2γf1(X1) = shrink(X1, 2γ).

By Theorem 1, the proximity operator of f2, reduces to the
group-wise soft-thresholding (15) of a real matrix:

prox2γf2(X2) = ŜT(X2, 2γλ). (18)

For the function g, the proximity operator of the indicator
function ιD1

is the orthogonal projection PD1
onto the sub-

space D1, i.e.,

proxγg(X ) = PD1
(X ) := argmin

Y∈D1

∥X − Y∥H0
.

Since D1 ⊂ D2 ⊂ H0, we have by [34, 5.14, Reduction
principle]

PD1(X ) = PD1 |D2 ◦ PD2(X ).

Note that ‘|D2’ in PD1 |D2 stands for the restriction of
the domain to the subspace D2. The orthogonal projection
PD2

: H0 → D2 and PD1
|D2 : D2 → D1 respectively can be

calculated as

PD2
(X ) = [PS(X1),X2]

and

PD1
|D2(X ) =

1

2

[
M̃ +X1 − X̃

⋆

2,M̂ − X̂
⋆

1 +X2

]
,

where X⋆
1 := X̃1 ∈ AM×N

m and X⋆
2 := q

qX2 ∈ AM×N
m .

For PS(X1), let Ep,q,ℓ := Ep,qiℓ ∈ AM×N
m (ℓ = 1, . . . ,m),

where Ep,q ∈ RM×N is the matrix only whose (p, q)-th entry
(p = 1, . . . ,M , q = 1, . . . , N ) is 1 and all other entries are 0.
Then, we can easily verify that

⟨Ẽp,q,ℓ, Ẽp′,q′,ℓ′⟩RmM×mN =

{
m (if (p, q, ℓ) = (p′, q′, ℓ′)),

0 (otherwise).

and therefore, { 1√
m
Ẽp,q,ℓ}

M,N,m
p=1,q=1,ℓ=1 is an orthonormal basis

of S and thus PS(X1) can be easily calculated as:

PS(X1) =
1

m

M∑
p=1

N∑
q=1

m∑
ℓ=1

⟨X1, Ẽp,q,ℓ⟩RmM×mN Ẽp,q,ℓ.

Now, we can calculate

proxγg(X ) = PD1
|D2 ◦ PD2

(X )
= PD1

|D2 [PS(X1),X2]

=
1

2

[
M̃ + PS(X1)− X̃

⋆

2,M̂ − X̂
⋆⋆

1 +X2

]
,

where X⋆⋆
1 := ˜PS(X1) ∈ AM×N

m . Since all ingredients
are identified, we can summarize the proposed hypercom-
plex principal component pursuit algorithm in Algorithm 1.
Here, (tk)k≥0 ⊂ [0, 2] satisfied

∑
k≥0 tk(2 − tk) = +∞,

γ ∈ (0,+∞). Note that the shrinkage operator does not keep
the special structure of (̃·), i.e., shrink(Ã, 2γ) ̸∈ S in general,
so we need the projection onto the structure PS. However,
in complex and quaternion domain, it keeps the structure as
shown in Fact 3, so L(k) ∈ S and thus PS(L(k)) = L(k) for
all k ≥ 0. Especially if m = 1 (i.e., Am = R), Algorithm 1 is
identical to the original DRS for the PCP (DR-PCP) proposed
in [29]. Lastly, we state the convergence of the proposed
algorithm.

Theorem 2 (Convergence of Am-DRS-PCP). Let parameters
of Algorithm 1 be chosen so that γ ∈ (0,+∞), (tk)k≥0 ⊂
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Algorithm 1: Am-Douglas-Rachford splitting for hy-
percomplex principal component pursuit (Am-DRS-
PCP)

Input : M , tk, λ
Output: Low R-rank L and sparse S
Initialize k ← 0, L(k) ← 0, S(k) ← 0;
repeat

L⋆⋆ ← ˜PS(L(k)), S⋆⋆ ← q

qS(k);

L⋆ ← (M̃ + PS(L(k))− S̃
⋆⋆
)/2;

S⋆ ← (M̂ − L̂
⋆⋆

+ S(k))/2;
L(k+1) ←
L(k) + tk

(
shrink(2L⋆ −L(k), 2γ)−L⋆

)
;

S(k+1) ← S(k)+ tk

(
ŜT(2S⋆ − S(k), 2γλ)− S⋆

)
;

k ← k + 1;
until convergence;
L⋆⋆ ← ˜PS(L(k)), S⋆⋆ ← q

qS(k);

L⋆ ← (M̃ + PS(L(k))− S̃
⋆⋆
)/2;

S⋆ ← (M̂ − L̂
⋆⋆

+ S(k))/2;
[L,S]← [L̃⋆, q

qS⋆];

[0, 2] satisfying
∑

k≥0 tk(2− tk) = +∞. Then, the output of
Algorithm 1 converges to a minimizer of (16).

Remark 2. In this paper, we employ the DRS for solving (16)
but it can be also solved by other advanced convex optimiza-
tion techniques such as the alternating direction method of
multipliers (ADMM) [35] and the primal-dual splitting (PDS)
[36], [37].

IV. NUMERICAL EXAMPLES

In this section, we perform some numerical experiments
for examining the effectiveness of the proposed method.
Following the settings in [29], [38], we randomly generate an
input pairs (L,S) as follows: L := XLX

H
R ∈ AM×N

m , where
XL ∈ AM×r

m and XR ∈ AN×r
m (r < min(M,N)) with the

all real and imaginary parts of each entry of XL,XR being
i.i.d from N (0, 1). Note that r is not always agree to mrankR

since Fact 2 does not hold for m > 4 in general. We choose
the support set of S uniformly at random from all support set
of size ρMN (ρ ∈ (0, 1)). All real and imaginary parts of the
non-zero entries are independently drawn form U(−256, 256).
We fixed λ = 1/

√
max(M,N) in the experiments. We

perform experiments in the case where Am = O (m = 8).We
compare the proposed method Am-DRS-PCP and three part-
wise DRS-PCP method, H2-DRS-PCP, C4-DRS-PCP and R8-
DRS-PCP. These part-wise methods split O into H2, C4

and R8 estimate all parts separately. TABLE I shows the
performance comparisons of all four algorithms. Fig. 1 and
Fig. 2 show the differences of all real and parts between
the estimated low rank matrices and original matrices for the
right case of TABLE I for Am-DRS-PCP (Fig. 1) and H2-
DRS-PCP (Fig. 2). They show that the proposed method Am-

TABLE I
PERFORMANCE COMPARISON

L,S ∈ O32×32, ρ = 0.2, rankR(L) = 29
Algorithm error # iter.

Am-DRS-PCP 2.0e-6 2,044
H2-DRS-PCP 1.0 3,009
C4-DRS-PCP 8.2e-1 2,265
R8-DRS-PCP 37.5 2,990
L,S ∈ O32×32, ρ = 0.2, rankR(L) = 58

Algorithm error # iter.
Am-DRS-PCP 6.5e-2 2,971
H2-DRS-PCP 11.9 2,553
C4-DRS-PCP 9.6 1,894
R8-DRS-PCP 78.7 1,924

DRS-PCP outperforms all part-wise methods by exploiting all
correlations among real and imaginary parts. H-DRS-PCP and
C-DRS-PCP much better than R-DRS-PCP since it may utilize
these correlations in part. This experiment also shows that C4-
DRS-PCP is a little bit better than H2-DRS-PCP. This may be
because the exploiting correlations with quaternion is not so
important in this example.

V. CONCLUSIONS

In this paper, we have proposed an algorithmic solution to
hypercomplex principal component pursuit based on a proxi-
mal splitting technique. This solution solves the hypercomplex
principal component pursuit, which is a convex relaxation
of hypercomplex robust principal component analysis with a
new sparsity measure of C-D matrices, and utilizes a useful
mathematical tools including C-D SVD and R-rank based
on algebraic translations of C-D number systems. Numerical
experiments show that the proposed algorithm separates the
observed matrices into the sum of low rank and sparse ones
much more faithfully than existing algorithms.

APPENDIX A
DOUGLAS-RACHFORD SPLITTING

The Douglas-Rachford splitting (DRS) [28], [39], [40] is a
well-defined proximal splitting method that solves the mini-
mization of the sum of two functions

f(x) + g(x), (19)

where f and g are assumed to be elements of the class,
denoted by Γ0(H), of proper lower semicontinuous convex
functions from a real Hilbert space H to R ∪ {+∞}. For
given γ ∈ (0,+∞), the DRS approximates a minimizer of (19)
with

(
proxγg(xk)

)
k≥0

by generating the following sequence
(xk)k≥0:

xk+1 ← xk + tk{proxγf [2 proxγg(xk)− xk]− proxγg(xk)},
(20)

where (tk)k≥0 ⊂ [0, 2] satisfies
∑

k≥0 tk(2 − tk) = +∞ and
the proximity operator [41] of index γ of f ∈ Γ0(H) is defined

584

Proceedings, APSIPA Annual Summit and Conference 2018 12-15 November 2018, Hawaii



Fig. 1. Difference between the original matrix Lopt and the estimated low rank matrix L with Am-DRS-PCP

Fig. 2. Difference between the original matrix Lopt and the estimated low rank matrix L with H2-DRS-PCP

as

proxγf : H → H : x 7→ argmin
y∈H

{
f(y) +

1

2γ
∥x− y∥2H

}
with the norm onH denoted by ∥·∥H. Indeed, if dim(H) <∞,(
proxγg(xk)

)
k≥0

converges to a minimizer of (19) (see e.g.,
[42]).
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