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Abstract—Modern automatic speech recognition (ASR) system-
s require large amounts of data to train the acoustic model,
especially with the state-of-the-art deep neural network (DNN)
architecture. Unfortunately, most of the languages in the world
have very limited accumulating for data resources, limiting the
application of ASR technologies in these languages.

The state-of-the-art approach to tackle this problem is transfer
learning, by which DNNs trained with data of a rich-resource
language can be reused by low-resource language systems, in the
form of either feature extractor or initial model. This approach,
however, still requires several hours of speech, which is still
not affordable for many languages. In this study, we present
a novel Map and Relabel (MaR) approach that can train ASR
systems for new languages with only a few hundred labelled
utterances. This approach combines transfer learning and semi-
supervised learning in a boosting manner: it firstly trains a simple
monophone DNN based on the limited training data, employing
the popular transfer learning approach (Map phase); this model
is then used to produce pseudo phone labels for a large amount
of untranscribed speech (Relabel phase). These pseudo-labelled
data are then used to train a full-fledged tri-phone system.

Experiments on Uyghur, a major minority language in the
western China, demonstrates that this MaR approach is rather
successful: it can train a pretty good ASR Uyghur system by
only 500 utterances. This encouraging results indicate that it is
possible to quickly construct a reasonable ASR system for any
language, and the only effort we need to pay is just labelling
several hundred utterances.

I. INTRODUCTION

Due to the powerful modeling capability, deep neural net-
works (DNNs) have become the mainstream model in auto-
matic speech recognition (ASR) [1]. A key ingredient is the
availability of large amounts of training data that can be used
to learn the complex discriminative functions implemented
by DNNs. However, among all the languages in the world,
for which the total number is estimated between 5, 000 to
7, 000, only very few can be said rich-resource, e.g., English
and Chinese[2]1. Most of the languages are spoken by a
small population and only very limited resources are available,
particularly transcribed speech data. This situation hinders the
application of ASR technologies in a significant way.

A multitude of research have been conducted to boost
performance of DNN-based ASR systems for low-resource
languages. A key idea is that human languages share some
commonality in both acoustic and phonetic aspects, and so

1https://en.wikipedia.org/wiki/Language

patterns at some levels of abstraction learned by the DNNs
can be shared. Inspired by this insight, a multilingual DNN
can be trained where the hidden layers of the DNN structure
are shared across languages and each language holds its own
output layer [3], [4], [5]. This approach further invokes the
idea of DNN-based transfer learning, i.e., borrowing data from
rich-resource language to enhance modeling for low-resource
languages. For example, in the tandem architecture, speech da-
ta from rich-resource languages are used to train a bottleneck
(BN) feature extractor, which can be used directly to produce
features for low-resource languages [6], [7], [8], [9]. In the
hybrid architecture, the low-level layers of a DNN trained for
a rich-resource language can be excerpted and reused to train
a new DNN model for low-resource languages [10], [11]. All
these methods can be categorized into the transfer learning
paradigm, where the knowledge of the rich-resource language
is materialized in the DNN model and then transferred to the
new model for the low-resource language [12].

Despite the notable success, this transfer learning approach
still requires tens or hundreds of hours of training speech,
which is still unaffordable for most minority languages. In
this study, we propose a Map and Relabel (MaR) approach to
build ASR systems with very limited labelled data, e.g., several
hundred utterances. We shall assume the following almost-zero
resource condition: we can collect a large amount of speech
data, but can only label a few hundred utterances. The limited
amount of labelled data is not sufficient to train a reasonable
ASR system, even if with transfer learning. This almost-zero
condition is typical for many minority languages, especially
those that are in the risk of extinction. Providing speech
technologies for these languages as quick as possible becomes
an urgent task from perspectives of both cultural protection
and social benefit. Recently, Chinese government supported
a multilingual minority-lingual ASR (M2ASR) project [13],
with the goal of developing speech recognition system for five
minority languages (Uyghur, Kazak, Tibetan, Mongolia and
Kirgiz). This research is part of the M2ASR project, aiming to
develop ASR systems for minority languages with very limited
speech data, e.g., only 500 labelled utterances.

The MaR approach we developed involves two phases: Map
and Relabel. In the Map phase, it borrows a fully-trained DNN
for a rich-resource language and uses the limited training
data to learn a mapping from the features generated by the
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rich-resource DNN to the phones of the target low-resource
language. This is essentially transfer learning. In the Relabel
phase, the learned phone mapping are augmented to the rich-
resource DNN to form a (target) phone discrimination DNN.
This DNN is used to build a simple monophone ASR system,
by which the untranscribed speech are pseudo labelled. Finally,
the pseudo-labelled speech will be used to train a regular
tri-phone system. This relabel phase is essentially a semi-
supervised learning.

We verify the MaR approach with a database of Uyghur, a
major minority language in the western China. The results
demonstrated that this approach is rather effective: it can
train an Uyghur ASR system by only 500 labelled utterances,
obtaining a performance comparable to the model trained with
50 hours of labelled speech.

The rest of this paper is organized as follow: Section II
describes the MaR approach, and Section III describes the
experiments. The paper is concluded by Section IV.

II. MAP AND RELABEL (MAR)
The almost-zero resource condition implies that it is not

possible to train a full-fledged context-dependent ASR system.
We therefore consider a bootstrapping procedure: firstly we
build a basic monophone DNN using the limited labelled data,
and then use this monophone DNN to label the untranscribed
speech. The pseudo-labelled data are then used to build a full-
fledged triphone system. The entire procedure can be summa-
rized as ‘Map and Relabel’, where the Map phase constructs
the monophone DNN, and the Relabel phase produces the
pseudo labels. Fig. 1 shows this MaR procedure.

Map

Relabel

Train

a  b  ph  b ...

DATA I
(small, labelled)

DATA II
(large, unlabelled)

GMM / DNN

Fig. 1. Diagram of the Map and Relabel procedure.

A. Map
The first phase of MaR is to construct a DNN model that

can be used to produce pseudo labels for untranscribed speech.

Due to the very limited labelled data, two implementation
details are important: (1) the popular transfer learning method
that borrows a DNN structure trained for a rich-resource
language; (2) a very simple model that involves limited free
parameters, so that the limited training data are sufficient. In
our work, a large-scale DNN trained with 10k hours of Chinese
speech data are borrowed. We reuse the whole structure of the
Chinese DNN and except that the targets of the output layer
are replaced by the monophones of the target language. This
equals to borrowing the feature extractor of the Chinese DNN
and augments an affine mapping that maps the output of the
feature extractor to the phones of the target language. This
mapping structure is shown in Fig. 2.

Borrow

Rich-resource
Language

Low-resource
Language

Fig. 2. The Map phase of the MaR approach. The low-level layers of a
DNN trained using a rich-resource language (here Chinese) are reused and
are augmented with a mapping layer that maps the output of the hidden layers
to the phones of the target almost-zero resource language (red circles).

It should be emphasized that the targets of the new mapping-
augmented DNN model are phones, rather than state IDs or
pdf IDs as usual. This is because the very limited training data
prevent us from building complex models. Since the number
of target phones is quite small, the mapping layer can be easily
trained with the limited data. The resultant DNN is essentially
a phone-discrimination model for the target language.

B. Relabel

The second phase of MaR is to label the untranscribed
speech by the phone-discrimination DNN. However, directly
utilize this DNN to label the speech frame by frame is not
reliable: the output is determined by speech signals in a short
window, hence rather vulnerable to noise and corruption. A
simple approach is to smooth the output using some low-pass
filters, but a more powerful approach is to construct a simple
ASR decoder that employs both statistical constraints imple-
mented by the HMM architecture and linguistic knowledge
implemented by the language model. Since the output of the
phone-discrimination DNN is monophone, the decoder can be
only a one-state monophone HMM-DNN hybrid system, as
shown in Fig. 3. As shown in the next section, this naive
decoder can generate pretty good phone labels, in spite of its
simplicity.

C. Full training

With the monophone HMM-DNN decoder, we can produce
pseudo labels for large volume of speech data. Using the
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Monophone DNN One-state HMMs Word trigrams

Decoder

Fig. 3. A simple one-state monophone HMM-DNN decoder.

pseudo labels (phone sequences) as ground truth, a full-
fledged triphone system can be trained. According to the semi-
supervised learning theory [14], performance can be greatly
improved if the pseudo labels are sufficiently accurate. Note
that the errors in the pseudo labels may impact differently on
different types of systems. We therefore train two systems, one
is an HMM-GMM system and the other is a hybrid HMM-
DNN system, where the DNN is trained with the criterion of
cross entropy (CE).

III. EXPERIMENT

A. Data and Model Setting

We use a Uyghur speech database to evaluate the MaR
approach offered by the M2ASR project. The entire database
involves 50 hours of speech signals from 374 speakers. All
the speech signals are collected in the silent office condition,
using the same type of carbon microphone. The speaking style
is reading. Most of the speakers are college students, and the
accent is mostly Urumchi. The database is split into a training
set and a test set. The training set involves 50 hours of speech
and 348 speakers, and the test set involves 3 hours of speech
and 26 speakers. There is no overlap between the two sets in
terms of both signals and speakers. More information about
the database can be found in the web page of the M2ASR
project2.

To simulate the almost-zero resource condition, 500 utter-
ances of 29 speakers are selected from the training set as
the ‘labelled set’ (LB set, 1.5h in total), which we assume
phone-level alignment is available. The rest of the training
data are used as ‘unlabelled set’ (ULB set), which contain
17940 utterances from 348 speakers. Although the alignment
of LB set should be provided by human in real applications
when confronting a new language, in this work we simply
use the forced-alignment results obtained with a full-fledged
Uyghur ASR system3.

The language model used in this work is based on trigrams
trained by a text corpus involving 400k words and the lexicon
involving 45000 words. The original text is written in Ara-
bic. To simplify the processing, a simple character mapping

2http://m2asr.cslt.org
3This full-fledged system is trained with the entire training data (LB+ULB).

It is actually the Full UY system in Table I.

scheme is employed to convert the Arabic characters to Latin
letters.

The training and test are conducted using the Kaldi toolkit,
following the THUYG20 recipe provided by CSLT4. More
details about the recipe and the properties of Uyghur ASR
systems can be found in [15].

B. Baseline

TABLE I
BASELINE RESULTS

WER%
Model GMM DNN
Full UY 26.65 21.62
500 UY 55.69 72.57
CHS + Full UY - 17.09
CHS + 500 UY - 25.56

We first construct a couple of baseline systems. The first
set of systems (Full UY) are trained using the entire Uyghur
training data, by which we can estimate the performance of
the system when a reasonable amount of Uyghur data are
available. The second set of systems (500 UY) is trained using
only the 500 labelled utterances (LB set), by which we can
estimate how if the very limited data are used to train the ASR
system directly. The third set of systems (CHS + Full UY) is
the same as Full UY, but the DNN model is initialized from
a large-scale Chinese DNN trained with 10k hours of speech;
similarly, the fourth set of systems (CHS + 500 UY) is the
same as 500 UY but starts from the large-scale Chinese DNN.
For each set, we construct a GMM system and a DNN system
trained with the criterion of cross entropy.

For the Full UY systems (with/without CHS), the num-
ber of states and pdfs are 3,376; for the 500 UY systems
(with/without CHS), these numbers are 816. The less states
and pdfs of the 500 UY systems are intentionally tuned to
match the limited training data. The DNN model is a TDNN
structure that involves 7 time-delay layers, each containing
1,200 hidden units. The context of the time delay layers is
(−20, 17), and the activation function is RelU.

The performance in terms of word error rate (WER) are
shown in Table. I. It can be seen that using the whole training
data is important to obtain a reasonable Uyghur system; using
only 500 utterances can not obtain a usable system. For the
Full UY systems, DNN outperforms GMM, while for the 500
UY systems, DNN is worse than GMM. Finally, using the
large Chinese model as the feature extractor can significantly
improve the performance for both full data condition and 500
utterance condition, demonstrating the effectiveness of transfer
learning. All these observations are expected.

C. Accuracy of pseudo labels

In this section, we start to build the Uyghur monophone
DNN, i.e., the Map phase of the MaR approach. A major
concern here is the accuracy of the monophone DNN when
producing pseudo labels for the ULB data. To evaluate the

4https://github.com/wangdong99/kaldi/tree/master/egs/thuyg20
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accuracy, we test the phone error rate (PER) of the pseudo
labels, at both the frame level and the phone level. For the
frame level test, the forced-alignment results produced by the
fully trained DNN system (Full UY - DNN in Table I) is used
as the ground truth. The initial experiment uses the monophone
DNN to produce the frame-level labels frame by frame, and
then merge consecutive frames with the same pseudo labels
to obtain phone-level labels. The PER results are shown in
Table II. It can be found that although frame-level PER is fine
(21.88%), the phone-level PER is rather high (58.78%), and
most of the errors are insertions. These results imply that the
frame-level labels are rather noisy. This is not surprising as
the pseudo label generation is independent from each frame,
hence no mechanism to control spikes caused by noises and
interruptions.

As discussed in Section II, a simple one-state DNN-HMM
decoder can smooth the label generation, by involving both
statistical constraints (HMM) and linguistic constrains (lan-
guage model). This essentially utilizes the continuity of speech
signals in both the acoustic and linguistic domains. The results
are shown in Table II as well, where the LM used is the same
as used during test, i.e., word trigrams. It shows that with the
simple decoder, the phone-level PER is significant reduced
(from 58.78% to 15.54%). This is a key step for the success
of the MaR approach.

TABLE II
ACCURACY OF DIFFERENT LABELLING APPROACH.

PER%
DNN DNN-HMM

Frame-level 21.88 19.09
Phone-level 58.78 15.54

D. MaR results

The pseudo-labelled ULB data are used to train a GMM
system and a DNN system from scratch. The network structure
is the same as in the Full UY baseline system. The results
are shown in Table III. For a clear comparison, the baseline
results have been reproduced in the table as well. It can be
observed that the MaR system, which involves both transfer
learning and semi-supervised learning, obtains rather good
performance, especially with the GMM framework. The WER
is only slightly worse than the Full UY baseline that uses
more than 50 times of labelled speech. The performance
is much better than the 500 UY baseline, confirming that
the semi-supervised learning has a big contribution. Another
observation is that the DNN system is slightly worse than the
GMM system. This might be attributed to the incorrect pseudo
labels of the ULB data. These incorrect labels are supposed
to impact DNN models more seriously compared to GMM
models, due to the discriminative nature DNNs.

The above MaR-DNN system trains DNN model from
scratch. We can also initialize the MaR DNN model using the
large-scale Chinese DNN, as in the CHS + Full UY system.
The performance, denoted by ‘CHS + MaR’ is also shown in
Table III. It can be seen that the performance is significantly

TABLE III
BASELINE AND THE MAR RESULTS

WER%
Model GMM DNN
Full UY 26.65 21.62
500 UY 55.69 72.57
MaR 28.89 29.11
CHS + Full UY - 17.09
CHS + 500 UY - 25.56
CHS + MaR - 22.35

improved compared to the random initialization MaR system
(29.11% vs. 22.35%), conforming the contribution of transfer
learning. Compared to the 500 UY transfer learning system
(CHS + 500 UY), CHS + MaR is also significantly better,
confirming the contribution of semi-supervised learning. Note
that the pseudo labels are generated by the one-state mono-
phone DNN system; from the results in Table III, CHS + 500
UY might be a better system for the label generation, hence
more effectively using the labelled and unlabelled data. We
leave this study as future work.

IV. CONCLUSIONS

We proposed a Map and Relabel approach to build speech
recognition systems for languages with very few labelled
utterances. A major difficulty of this almost-zero resource
ASR problem is that the labelled data is too limited to train
a full-fledged context-dependent system, even with transfer
learning. The MaR approach solves this problem by a boosting
procedure: it firstly builds a very simple one-state monophone
DNN with the limited data, and then use this simple model
to label untranscribed speech and train full-fledged systems
with the pseudo-labelled data. This essentially combines the
strength of transfer learning and semi-supervised learning. Our
experiments conducted on a Uyghur database demonstrated
that the MaR approach is highly effective: with only 500
utterances of speech, the MaR-GMM system can deliver a
performance comparable to a GMM system trained with 50
hours of speech (28.89% vs 26.65% in WER). Unfortunately,
this approach seems not suitable for DNN modeling if the
pseudo-labelled data are used to train the DNN from scratch.
However, when the DNN is initialized by a large-scale Chinese
DNN, a reasonably good performance can be obtained.

The future work involves investigating more details of
the trade-off between the contribution of labelled data (LB)
and unlabelled data (ULB). Particularly, how many labelled
utterances are required for a new language, and how many
unlabelled data are required to obtain the performance bound.
We will also investigate methods that are more suitable for
DNN-based MaR, e.g., data filtering methods.
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