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Abstract—This paper presents prosody-aware subword embed-
ding considering Japanese intonation systems and its application
to DNN (deep neural network)-based multi-dialect speech synthe-
sis. In accordance with recent improvements of speech synthesis
in rich-resourced languages, the research trend is shifting to more
challenging languages such as Japanese dialects that still have
undefined prosodic contexts. Conventional prosody-aware word
embedding can unsupervisedly extract the contexts in a data-
driven manner using words and F0 sequences. However, accurate
contexts for unknown words are difficult to generate. To solve
this problem, we propose prosody-aware subword embedding
considering Japanese intonation systems. The unsupervised sub-
word model, which is trained considering language and acoustic
characteristics, can tokenize an unknown word into known sub-
words suitable for prosody-aware embedding. We also propose a
modulation filtering method considering intra-subword moras to
improve the embedding accuracies. We apply the methods to not
only Japanese but also Japanese multi-dialect speech synthesis.
In the multi-dialect case, we propose subword models shared
among dialects and embedding models conditioned by dialect
information. The experimental evaluation demonstrates that the
proposed multi-dialect methods can improve speech quality in
some Japanese dialects.
Index Terms: deep neural network, DNN-based speech synthesis,
prosody-aware subword embedding, Japanese intonation systems,
multi dialect

I. INTRODUCTION

Statistical parametric speech synthesis is a method of syn-
thesizing speech using statistical models [1]. Deep neural
network (DNN)-based ones [2]–[5] have especially attracted
a lot of attention and remarkably improved synthetic speech
quality in rich-resourced languages such as English and
Japanese. Thanks to this, the research trend is shifting to
more challenging languages such as dialect speech synthesis
that enables diversity in speech communication augmented by
speech synthesis.

We aim to build the multi-dialect speech synthesis shown
in Fig. 1, which can synthesize a single speaker’s voice in
the preferred dialect. This system is similar to multi-lingual
speech synthesis in rich-resourced languages [6], but there
are two significant differences. First, speech characteristics
among dialects within a target country (e.g., Japan) change
more continuously than those among rich-resourced languages
spoken in different countries (e.g., Japan and the U.S.A).
Therefore, we expect that the characteristics of synthesized
speech will be intuitively and continuously controlled, and
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Fig. 1. Concept of multi-dialect speech synthesis. A single speaker’s speech is
synthesized from a text of a preferred dialect. This paper addresses automatic
prosodic context generation for multi-dialect speech synthesis.

quickly adapted to the unseen dialects. Another factor, which
we address in this paper, is that contextual features used for
speech synthesis are not yet defined in most Japanese dialects.
In the case of rich-resourced languages, the dictionary-based
or rule-based approaches (e.g., flite [7] or open-jtalk [8]) are
often adopted to generate the contexts. However, applying such
approaches to many kinds of dialects is unrealistic and time-
consuming. In this paper, we address automatic retrieval of
prosodic contexts, which is one of the main factors of Japanese
dialects.

To tackle the automatic prosodic context generation, Ijima et
al. [9] proposed prosody-aware word embedding for English
speech synthesis. This method inspired by word embedding
[10] that unsupervisedly extracts prosodic contexts by training
embedding models from word and F0 sequence pairs. How-
ever, in the case of languages that have the enormous numbers
of words, such as Japanese and multiple Japanese dialects,
training of the embedding models becomes inaccurate because
the number of model parameters is significantly increased.
Also, accurate contexts for unknown words are difficult to
generate.

In this paper, we propose prosody-aware subword embed-
ding considering Japanese intonation systems. The proposed
subword model, which is unsupervisedly trained considering
language models (i.e., frequency counts of subwords) and
accent phrase boundaries, can tokenize an unknown word into
known subwords suitable for prosody-aware embedding. The
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embedding models are trained using pairs of the tokenized
subword and corresponding F0 sequence, and the subword-
level prosody contexts are gained as bottleneck features of
the embedding models. Also, we propose a modulation filter-
ing method considering intra-subword moras to improve the
embedding accuracies. We apply the proposed methods to not
only Japanese but also Japanese multi-dialect speech synthesis.
In the multi-dialect case, we propose mixing-dialect subword
models shared among dialects and multi-dialect embedding
models conditioned by dialect information. The experimental
evaluation demonstrates that (1) the proposed method outper-
forms conventional prosody-aware word embedding in terms
of the naturalness of speech in Japanese speech synthesis, and
(2) proposed multi-dialect models can improve naturalness of
speech in some Japanese dialects compared with Japanese-
common-language models.

II. DNN-BASED SPEECH SYNTHESIS USING
PROSODY-AWARE WORD EMBEDDING

In DNN-based speech synthesis, many types of contextual
features are extracted from the input text, e.g., pronunciation,
prosody (e.g., accent type or stress), and duration (e.g, frame
position in the current phoneme) contexts. Prosody-aware
word embedding [9] is an unsupervised method of extracting
the prosodic contexts, and the DNN-based embedding models
are trained from a speech corpus including pairs of a word
and a continuous F0 sequence (obtained from a F0 sequence
and spline interpolation [11]). The embedding models predict
a continuous F0 sequence from a corresponding word vector
(given as a one-hot vector). Before using the continuous
F0 sequence in the model training process, the sequence
corresponding to one word is first resampled to be a fixed-
length vector. Then, lower-order components of the discrete
cosine transform (DCT) of the vector are used for predicting.
The prosodic context is gained as bottleneck features of this
neural network. This method suffers from two problems. First,
it is difficult to robustly train the models when the number of
vocabulary increases and to extract the contexts for words not
included in the training data. Second, the use of the fixed-
order DCT components that ignore the word’s complexity
(e.g., the number of syllables) may lead to the modeling
of unnecessary F0 information or disregarding necessary F0

information. For instance, it is unnatural to use the same extent
of F0 information for ’a’ as for ’linguistic.’

III. PROSODY-AWARE SUBWORD EMBEDDING
CONSIDERING JAPANESE INTONATION SYSTEMS

This section proposes prosody-aware subword embedding
considering Japanese intonation systems. Fig. 2 shows the
process. The input text is tokenized into not words but sub-
words. The proposed accent-phrase-informed subword model
is unsupervisedly trained using text corpora on the basis of
frequency counts of subwords and accent phrase boundaries.
After resampling a continuous F0 sequence corresponding to
one subword, the proposed mora-informed modulation filtering
method is applied to the resampled sequence.
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Fig. 2. Architecture of prosody-aware subword embedding.

A. Accent-phrase-informed subword model

Subword segmentation is a method of tokenizing rare words
into subword units [12] and can alleviate an out-of-vocabulary
problem by tokenizing an unknown word (e.g., ’linguistic’)
into a known subword sequence (e.g., ’lin,’ ’gui,’ and ’stic’).
This paper uses a substring-level language model-based unsu-
pervised segmentation method [13] that tokenizes a raw text
into subwords considering frequency counts of subwords in
the training data.

Also, we propose a subword segmentation method con-
sidering not only language models but also accent phrase
boundaries of Japanese. The language model-based segmenta-
tion is not appropriate for prosody-aware embedding because
accent types are basically independent among Japanese accent
phrases (language units consisting of some words) and a one
subword corresponding to parts of multiple accent phrases
degrades the prediction accuracy of F0. Therefore, assuming
that the accent phrase boundaries of raw texts are given in the
training data, we build a language model excluding subwords
corresponding to multiple accent phrases. For example, we
assume that ’aaabbbccc’ is a raw text and the phrase bound-
aries are between ’a’ and ’b,’ and ’b’ and ’c.’ We calculate
frequency counts of subwords ’aa,’ ’bb,’ and ’cc’ but not those
of ’ab’ and ’bc.’ This calculation makes likelihoods of ’ab’
lower, and finally the built subword model splits them into
’aaa,’ ’bbb,’ and ’ccc.’. Table 1 lists an example of a raw text
and its subwords. We can see that considering accent phrase
boundaries (‘Subwords (acc)‘) can avoid making subwords
corresponding to multiple accent phrases.

B. Mora-informed modulation filtering

Japanese is a mora-timed language, which means it has
mora (sub-syllable) isochrony, and has two types (“high”
and “low”) of mora-level accents. Consequently, when us-
ing a F0 sequence for embedding, detailed structures ex-
cept for high and low tones at even temporal intervals
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TABLE I
EXAMPLE OF SUBWORD SEGMENTATION. ’/’ INDICATES AN ACCENT

PHRASE BOUNDARY. CONSIDERING ACCENT PHRASE BOUNDARIES CAN
AVOID MAKING SUBWORDS CORRESPONDING TO MULTIPLE ACCENT

PHRASES.

Raw text 本当な / のかも / しれない
Subword (only lan-
guage models)

本当 なの かもしれない

Subword (w/ accent
phrases)

本当 な の かも しれない

Filtering

Continuous F0

Target

|� � |

|�� � |

DFT

IDFT

he ya

he ya

Fig. 3. The example of modulation filtering (m = 2). DFT indicates discrete
Fourier transform.

do not need to be predicted. This removal process is im-
plemented by modulation filtering (filtering in modulation
spectrum [14] domain) to the resampled continuous F0 se-
quence. The modulation spectrum is defined as the log-
scaled power spectrum of the speech parameters (e.g., con-
tinuous F0 sequence). Here, obtaining the number of moras
m by grapheme-to-phoneme conversion, we suppose a T -
frame resampled continuous F0 sequence corresponding to the
m-mora subword. Let [Y (0) , · · · , Y (f) , · · · , Y (T − 1)]

>

be its modulation spectra. Y (f) is a modulation frequency
component at modulation frequency index f . We construct a
filter C = [C (0) , · · · , C (f) , · · · , C (T − 1)]

> that removes
unnecessary components on the basis of the number of intra-
subword moras. C (f) is given as follows:

C (f) =

{
1 (f ≤ fth or f ≥ T − fth)

0 (otherwise)

fth =

{
0 (m = 1)
m+1
2 (otherwise)

(1)

Given the filtered modulation spectrum Y (f)
′
= Y (f)C (f),

the continuous F0 sequence for embedding is gained as inverse
discrete Fourier transform of Y (f)

′. This filtering preserves at
least m peaks/valleys (i.e., “high” and “low”) of the F0 contour
for the m-mora subword. Fig. 3 shows an example of the
two-mora case. Removing second and the higher modulation
frequency components can remove the detailed changes of
continuous F0 while holding high or low tones at even
temporal intervals.

IV. DNN-BASED MULTI-DIALECT SPEECH SYNTHESIS

This section applies methods proposed in Section III to
multi-dialect speech synthesis and proposes mixing-dialect
subword models and dialect-conditioned embedding models.

A. Mixing dialect subword models

If subword models trained by only common language cor-
pora are applied to a dialect text, phrases frequently used in
the dialect are finely segmented and the embedding accuracy
is decreased. However, amounts of texts of one dialect are
often limited to build the dialect-dependent language models.
Therefore, we propose mixing-dialect subword models shared
among dialects. The models are trained using texts of mul-
tiple dialects. We expect that this model can avoid unnatural
subword segmentation caused by the models of the common
language.

B. Dialect-conditioned subword embedding

Furthermore, we propose an embedding model conditioned
by dialect information for modeling multiple dialect prosodies.
The additional vector qd for the d-th dialect is fed to the first
hidden layer (first Bi-directional long short-term memories
(LSTMs) in Fig. 2) of subword embedding models, and the
model is trained using multi-dialect corpora. We used two
types of dialect information.

Dialect codes (discrete representation): Inspired by DNN-
based speech synthesis using speaker codes [15], qd is given
as a D-dimensional one-hot vector, which means 1 stands at
the d-th vector component. D is the number of dialects in the
training data.

Geography (continuous representation): Inspired by
DNN-based speech synthesis using i-vector or d-vector [16]–
[19], a continuous-valued vector is used for conditioning.
Here, geographic coordinates of the dialect-speaking area are
utilized as dialect information. qd is given as [ad, od]

>, where
ad and od are geographic latitude and longitude of the central
city of the d-th dialect. Because accents and pronunciations
are strongly related to geographic relationships of dialects,
we expect this representation to be suitable for multi-dialect
speech synthesis.

V. EXPERIMENTAL EVALUATION

A. Experimental conditions

We used 15,676 utterances of the JNAS corpus [20] and
5,390 utterances of the JSUT corpus [21] for subword seg-
mentation and embedding in common-language Japanese. The
utterances contained 24,324 and 14,680 different words, re-
spectively. We used sentencepiece [13] for language model-
based subword segmentation, and set the number of sub-
words to 4,000 involving an unknown tag. This number
was experimentally optimized in our preliminary evaluation.
In the conventional method [9], word embedding strongly
degraded speech quality in our evaluation. Therefore, we
used subword embedding for not only the proposed method
but also the conventional method. The WORLD [22] (D4C
edition [23]) analysis-synthesis system was used to extract
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the speech parameters and synthesize the waveform. Speech
signals were sampled at a rate of 16 kHz, and the shift length
was set to 5 ms. To ignore speaker differences in the corpus,
continuous F0 sequences were normalized to have zero-mean
unit-variance. The resampled continuous F0 sequence length
was 64. To obtain alignments between the F0 sequence and the
subword sequence for subword embedding, we independently
calculated alignments between the word sequence and the
phoneme sequence using fast align [24] and between the
phoneme sequence and the continuous F0 sequence using
Julius [25]. The architecture of DNNs for embedding was
Feed-Forward networks that include two bi-directional LSTM
hidden layers and a bottleneck layer connecting two LSTMs.
We used a Rectified Linear Unit (ReLU) [26] as the activate
function of the bottleneck layer. The size of the bottleneck
layer was 64.

We used a single speaker’s 5,390 utterances in the JSUT
corpus for training acoustic models. Contextual features
include 190-dimensional quinphones, 3-dimensional within-
phoneme duration vectors, prosodic contexts of previous,
current and subsequent subwords (total 192 dimensions), and
9-dimensional within-subword duration vectors. The acoustic
models were Feed-Forward networks that include 3×512-
unit ReLU hidden layers. Predicted speech features include
0th-through-39th mel-cepstral coefficients, 5-band aperiodicity
values [27], [28], continuous F0, their delta features, and
voiced/unvoiced flags. In training, the speech features were
normalized to have zero-mean unit-variance.

B. Evaluation of prosody-aware subword embedding in speech
synthesis of a common language in Japanese

First, we evaluate the effectiveness of the prosody-aware
subword embedding (Section III) in speech synthesis of a
common language in Japanese. The test set is 600 Japanese
sentences randomly selected from the JSUT corpus. The set
was not included in the training data.

We evaluated synthetic speech of three systems:
1) Conventional: conventional method [9] with 1st-

through-10th DCT components
2) Proposed: proposed mora-informed modulation filtering
3) Proposed (acc): proposed mora-informed modulation

filtering and accent-phrase-informed subword segmen-
tation

1) Objective evaluation: We calculated the root mean
squared error (RMSE) of normalized continuous log-scaled
F0 sequences of synthetic and natural speech. Fig. 4 shows
the result. We can see that the proposed modulation filtering
improves RMSE compared with the conventional method.
In addition, the proposed accent-phrase-informed subword
segmentation further improves the RMSE.

2) Subjective evaluation: We conducted preference AB
tests to evaluate the naturalness of the synthetic speech. We
presented every pair of generated utterances of the systems in
random order. Fifty listeners participated in each evaluation.
Fig. 5 shows the results. There is no significant difference
between Conventional and Proposed, but we can see that

0.71 0.72 0.73 0.74 0.75 0.76
RMSE

Conventional

Proposed
Proposed

(acc)

Fig. 4. RMSE of continuous log F0.

Conventional
Proposed

Proposed

Proposed
(acc)

0.0 0.2 0.4 0.6 0.8 1.0
Preference score

Conventional

Proposed
(acc)

Fig. 5. Subjective evaluation results (Error bars indicate 95 % confidential
interval).

the proposed accent-phrase-informed subword segmentation
(Proposed (acc)) improves the naturalness of synthetic speech.
These results demonstrate the effectiveness of the proposed
method in a common language in Japanese and also demon-
strate that modifying language units (i.e., subword segmenta-
tion) is more effective for improving perceptual naturalness
rather than modifying F0 (i.e., modulation filtering).

C. Performance evaluation in multi-dialect speech synthesis

Next, we evaluate the proposed multi-dialect speech synthe-
sis (Section IV). The training data of subword segmentation
and embedding is composed of the JNAS, JSUT, and CPJD
corpora [29]. The CPJD corpus consists of text, speech and
area information of 20 Japanese dialects, and 4,114 of its
utterances were used for training. The JNAS and JSUT corpora
were used as standard Japanese (i.e, Tokyo dialect). Twenty
sentences per dialect, which are not included in the training
data were used for evaluation. We evaluated synthetic speech
of the following systems:

1) Common: subword/embedding models trained using
common-language corpora (JNAS and JSUT)

2) Dialect Code: proposed method with dialect codes
3) Geography: proposed method with geographic contexts

Because estimating accent phrase boundaries of dialect texts
is an unsolved problem in Japanese (this is our future work),
we apply only modulation filtering to three systems.

We conducted preference AB tests on the naturalness of
the synthesized dialect speech. We recruited native listeners
who had lived in the dialect-speaking area for more than three
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0.0 0.2 0.4 0.6 0.8 1.0
Preference score

Common
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Dialect
Code

Dialect
Code
Geography

Geography

Fig. 6. Subjective evaluation results of Miyazaki-ben.

TABLE II
SUMMARY OF EVALUATION IN MULTI-DIALECT SPEECH SYNTHESIS. THE

NUMBERS IN THE CENTER CELLS ARE THE COUNTS OF SELECTED
SYSTEMS. IN THE CASE OF ”COMMON” VS. ”DIALECT CODE,” NATIVE

LISTENERS OF FOUR DIALECTS PREFERRED SPEECH SAMPLES OF
”DIALECT CODE” MORE THAN THOSE OF ”COMMON.”

Method A Method B
Common 8 4 Dialect Code
Common 7 5 Geography
Dialect Code 5 6 Geography

years. It was difficult to collect native listeners for all of
the 20 dialects, but we finally found one listener for each of
12 dialects (Hokkaido-ben, Toshuu-ben, Kyo-kotoba, Osaka-
ben, Nara-ben, Okayama-ben, Hiroshima-ben, Tosa-ben, Iyo-
ben, Awa-ben, Fukuoka-ben, and Miyazaki-ben). Each native
listener evaluated 20 randomly presented synthetic speech
samples of his/her dialect. Table II summarizes the results,
and Fig. 6 shows the result for one dialect (Miyazaki-ben). We
can see that proposed methods were preferred in four (Dialect
Code) or five (Geography) dialects more than common-
language models (Common). Also, Geography is slightly
better than Dialect Code. These results suggest the proposed
multi-dialect speech synthesis is effective in some dialects.

VI. CONCLUSION

This paper presented prosody-aware subword embedding
considering Japanese intonation systems and its applica-
tion to multi-dialect speech synthesis. To alleviate the out-
of-vocabulary problem and inaccurate prosody information,
we proposed prosody-aware subword embedding with mora-
informed modulation filtering and accent-phrase-informed
subword segmentation. We further extended the proposed
method to multi-dialect speech synthesis using mixing-direct
subword models and dialect-conditioned subword embedding.
The proposed methods were found to be effective for not only
Japanese but also multi-dialect speech synthesis. For future
work, we will investigate the use of other types of dialect
information and compare proposed methods with a dictionary-
based approach [8] in rich-resourced languages.
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