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Abstract—Generative adversarial network (GAN) has shown
its powerful capability in generating photorealistic images. Al-
though the generated images can fool human eyes, it is not
clear whether they can evade the detection of forensic detectors,
which aim to identify the originality and authenticity of images.
In this paper, we investigate how forensic detectors perform in
differentiating between GAN generated images and real images.
We consider two kinds of approaches, one is intrusive and the
other is non-intrusive, based on whether the GAN architecture
is needed for performing detection. We have conducted extensive
experiments on a celebrity face image dataset to evaluate the
effectiveness of different approaches. The results and analyses
show that the intrusive approach can detect GAN generated
images but with a relatively high false alarm rate. The non-
intrusive approach with features extracted from a VGG network
is very effective for detecting GAN generated images when the
training data is sufficient, but it still faces challenge when the
training data and testing data are mismatched.

I. INTRODUCTION

In recent years, generative models based on GAN [1] have
attracted more and more attention in many applications, such
as speech synthesis [2], image super-resolution [3], image
translation [4], [5], and image inpainting [6]. The generative
models are trained to generate samples that reproduce the same
distribution of the training data. Ideally, the generative models
are expected to create any plausible samples that are exactly
similar to those coming from real world by improving the
model designs and increasing the training data. Up to now,
it has been reported that the training of GAN is more stable
by employing improved designs of network architecture [7]
or better distance metrics [8]-[11]. Because of such improve-
ments, it is now possible to generate images with high quality
and sufficient variation with GAN [12].

Since GANs can produce photorealistic images, it may
lead to some potential security issues. For example, one can
use the GAN generated images to counterfeit some personal
information in social networks and cheat others, one can also
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employ the generated images as materials to falsify images or
videos and spread fake messages. As the GANs are becoming
more powerful, the generated images will be more similar to
real ones, resulting in more serious problems. Therefore, it is
important to differentiate between GAN generated images and
real images. Although the generated images can fool human
eyes, it is not clear whether they can fool forensic detectors.
The main purpose of this paper is to study if there is any
possible approach to detect GAN generated images.

In this paper, we consider two categories of approaches for
the detection of GAN generated images. The first category is
called intrusive approach. It means that the GAN architecture
is available when constructing a detector. In this case, some
modules of the GAN can be employed as a detector for identi-
fying generated images. In contrast to the intrusive approach,
the other category is called non-intrusive approach. In this
case, we are unable to obtain any modules of GAN and have
to design the detector ourself. Three possible non-intrusive
approaches are investigated in this paper, which are based on
face quality assessment [13], inception scores [14], and latent
features from a trained VGG-16 network [15], respectively.
The experimental results on the CelebA [16] image dataset
show that the intrusive approach can effectively detect the
GAN generated images from the same (or earlier) epoch
as the training data. However, it would misclassify the real
images and the generated images from later epochs. Among
the non-intrusive approaches, the one based on VGG features
is superior. It can accurately detect GAN generated images
when the training data is sufficient. However, its performance
is degraded when the training data and the testing data are
mismatched.

The rest of this paper is organized as follows. Section II
introduces the basic knowledge of GAN. Section III presents
the intrusive detection approach and the corresponding results.
Section IV reports and discusses the non-intrusive detection
approaches. Finally, the concluding remarks are given in
Section V.
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TABLE I
DETECTION ACCURACIES FOR DISCRIMINATORS OF DIFFERENT EPOCHS.

Discriminator D15 Dq7 P19 Doy Doz Dos
Real ACC 0.5500 0.7568 0.5333 0.6001 0.8015 0.6744
Fake ACC 0.9677 0.8115 09799 09551 0.8568 0.9404
Avg. ACC 0.7589 0.7842 0.7566  0.7776  0.8292  0.8074
TABLE 1T

II. GENERATIVE MODEL BASED ON GAN

GAN was first proposed by Goodfellow et al. [1]. There
are a generator network and a discriminator network in a
GAN. The generator tries to create samples that make the
discriminator impossible to distinguish them from real ones,
while the discriminator tries to classify generated samples and
real samples. During the training stage, a game is played
between the generator and the discriminator. When the dis-
criminator is able to differentiate the generated samples and
real samples, the generator adjusts its parameters to produce
samples that are more similar to the real ones. And then, the
discriminator adjusts its parameters to tell apart the two classes
again. Theoretically, the generator eventually reproduces the
distribution of real data, and the discriminator is deteriorated
into random guesses.

In order to mitigate the difficulties of training GANs, many
effective methods have been proposed, such as [7]-[11]. In this
paper, we adopt DCGAN [7] and WGAN [10] as examples for
study. DCGAN replaces the pooling layers with convolutional
layers, employs batch normalization [17], removes the fully
connected layers, and carefully sets the activation functions,
making the GAN more stable to be trained than the vanilla
GAN [1] and thus produce images with better visual quality.
WGAN employs Wasserstein distance in the discriminator
(critic) and improves the loss function, which helps the GAN
to be more stable and avoids the collapse mode.

ITI. INTRUSIVE APPROACH

In this section, we introduce the intrusive approach for the
detection of GAN generated images and show the correspond-
ing experimental results.

An approach is regarded as intrusive if we can access to
the GAN architecture that produces generated images. Since
the GAN is available in this case, an intuitive way is to
examine whether the discriminator of GAN can differentiate
between generated images and real images. Ideally, the dis-
criminator will fail to distinguish the two classes of images
when the GAN is well trained. However, it is known that the
discriminator is usually the dominant side in training process,
meaning that it is still able to differentiate between generated
images and real images even when the training is completed.
Therefore, we evaluate the detection performance by using the
discriminator of GAN as a forensic detector.

We conducted the experiments on the CelebFaces At-
tributes dataset (CelebA) [16]. This dataset consists of 202599
celebrity face images. We used the align&cropped PNG ver-
sion of this dataset, and cropped the facial region from each
image to remove the background and resized the cropped

DETECTION ACCURACIES OF $31 ON IMAGES GENERATED FROM
DIFFERENT EPOCHS.

Testing Set QQDICGAN

ACC

DCGAN DCGAN DCGAN DCGAN
gl 7 gl 9 gZ3 925

0.9850 0.9903 0.9551 0.7781 0.7787

region into 128x128. The resulting image set was treated as
real in our experiments, which is denoted as R for short. With
the real image set R, we trained a DCGAN [7] to create
generated images. We used the same network architecture
as introduced in [7], and adopted Adam optimizer and the
learning rate of 0.0002 for training. The GAN was trained
25 epochs in total. After each epoch, we saved the weights
of the GAN model, and used the model to produce a set of
generated images with same number of images in CelebA. For
simplicity, we denote the discriminator in the i-th epoch as ®;,
and denote the generated image set generated in the i-th epoch
as g?CGAN.

We first tested the performance by using ®; to clas-
sify images in GPC9AN and R. Since the images generated
from early epochs usually contain visually unnatural artifacts,
they can be easily identified by human eyes, thus we only
conducted experiments for those later epochs. Specifically,
i € {15,17,19,21, 23,25} were considered. Table I shows the
detection results for discriminators in different epochs, where
“Real ACC” means the testing accuracy for real images and
“Fake ACC” means the testing accuracy for generated images.
From this table, we can observe that the discriminator is bias
towards the generated images, which are much more easier
to be detected than real images. The accuracies for the 15th,
19th, 21st, 25th epochs are around 95%, while accuracies for
the 17th, 23rd epochs are lower but still larger than 81%. For
the real images, however, the discriminators failed to achieve
satisfactory performance. In most of the cases, the detection
accuracies for real images are around 50%-70%. The highest
accuracy for real images is just over 80%, obtained by Pa3.
Such results indicate that the discriminator was not sufficiently
optimized during the training of GAN, and thus it would
make many false alarms if it is used to detect GAN generated
images.

Although the discriminators can effectively detect generated
images in the corresponding epoch, it is not so practical since
we probably have no idea about which epoch the generated
images come from. Therefore, it is necessary to assess the
performance of discriminators for detecting generated images
from different epochs. To this end, we used the discriminator
®9; to detect the images generated in 17th, 19th, 21st, 23rd,
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Fig. 1. The histograms of RQS for different images sets.

and 25th epochs. The detection accuracies are shown in Table
IL Tt is observed that the accuracies are over 98% for GPSGAN
and GUS9AN while the accuracies drop to about 78% for
GDCOAN and GDCGAN Tt means that a discriminator can achieve
good performance when detecting generated images from
earlier epochs, but tends to misclassify some generated images
when they are from later epochs.

Based on above results, we can conclude that the discrimi-
nator of GAN can effectively detect the generated images from
the same or earlier epochs, but is unable to accurately identify
the real images and the generated images from later epochs,
which would limit the applications of the intrusive approach.
Hence, we need to study on more practical approaches.

IV. NON-INTRUSIVE APPROACH

In this section, we introduce non-intrusive approaches for
detecting GAN generated images. For a non-intrusive ap-
proach, the GAN model is unavailable. Consequently, we need

to seek for other measures or features to perform the detection.
In the following subsections, we will discuss three non-
intrusive approaches, which leverage face quality assessment,
inception scores, and VGG based features, respectively. In ad-
dition to DCGAN, WGAN was also included in the following
experiments regarding non-intrusive approaches. We used the
same network architecture as that of DCGAN, but replaced
the loss function and added weight clipping as described in
[10]. Instead of the Adam optimizer, we used the RMSProp
optimizer as it did in [10]. Similarly, the generated image set
generated in the j-th epoch! of WGAN is denoted as G)YOAN.

A. Detection based on Face Quality Assessment

Although GANSs try to produce high quality images, as
we known, there are still some disparities in image quality

1During the training, the parameter ncritic of WGAN was set as 5.
Therefore, in every epoch the number of iterations of the discriminator is
5 times to that of the generator.
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TABLE III
MEANS OF INCEPTION SCORE FOR REAL IMAGES AND GENERATED IMAGE.

Image set R ngCGAN gg)7CGAN g{)é:GAN gngAN g2D§IGAN gQDCGAN
5 5

Inception score  3.3346  2.3314 2.3700 2.3979 2.4461 2.4270 2.4141

Image set _ gX&{)GAN gZ\;GAN gﬁGAN gz&écAN ngGAN ggl(JJGAN

Inception score - 2.3681 2.2807 2.3939 2.3864 2.3513 2.3902

between the GAN generated images and the real images.
Therefore, it is possible to detect the GAN generated images
by measuring the image quality. Due to face images are consid-
ered in this paper, we adopt the face quality assessment method
proposed in [13] to measure image quality. The method in [13]
is based on learning to rank [18], and it assigns a rank based
quality score (RQS) for a face image. The higher the RQS,
the better quality of the face image.

For the images in R, GP“9AN, and GVOAN (we investigated
i €{15,17,19,21,23,25} and j € {40,42,44,46,48,50} in
experiments), we used the method [13] to compute the RQS for
each image, and then counted the histogram of RQS for each
image set. Fig. 1 shows the obtained histograms. By comparing
the histograms of GAN generated images to the histogram of
real images, it is observed that there are only minor differences
between the histograms, meaning that it is difficult to detect
generated images based on the RQS. It may be due to the
fact that the RQS only considers the image contents, i.e.,
the appearance of face, where the differences between GAN
generated images and real images are not distinct enough.

B. Detection based on Inception Score

To assess the quality and variation of GAN generated
images, many existing works adopted the Inception score [14]
as a measurement. Inception score is computed by feeding
a set of images into the Inception model [19]. For an input
image x, its softmax output of the Inception model is de-
noted as p(y|x); for all the input images, the mean of their
softmax output is denoted as p*(y). The Inception score is
given by exp(ExKL(p(y|x)||p*(y))), where KL(-) is the KL
divergence, and Ex means the calculation of mathematical
expectation for all x. It was reported that the Inception score
is correlated with human evaluation [14]. For a GAN model,
if it can generate images with higher Inception score, then it
will be considered to have the ability to produce images with
better quality and variation.

In order to test the effectiveness of Inception score for
detecting GAN generated images, we fed the image sets
R, GPCOAN (i e {15,17,19,21,23,25}), and GYOAN (j €
{40,42,44, 46, 48,50}) into the Inception model, and calcu-
lated the Inception score for each batch of images. The means
of Inception score for different image sets are listed in Table
III. From Table III, we observe that the Inception score for
real images is significantly larger than those for the generated
images, meaning that the generated images are different from
real ones in Inception score. Besides, it is observed that there
is trend of increase of the Inception score from earlier epochs

to later epochs. For example, the Inception scores for the
images generated by DCGAN monotonically increase from
the 15th epoch to the 21st epoch, and the Inception scores
for the images generated by WGAN at the 44th, 46th, 50th
epochs are larger than those at the 40th, 42nd epochs. Such
a phenomenon implies that the quality of generated images
would be enahnced during the training process.

It is noted that Inception score should be calculated on a
large enough number of samples to ensure its reliability. This
shortcoming would limit the application of Inception score
for detecting a single image, although a set of GAN generated
images and a set of real images exhibit different Inception
scores. Therefore, we need to seek for more effective detection
method.

C. Detection based on VGG features

As the two non-intrusive approaches discussed above lack
the ability to identify whether a specific image is generated
or not, we further try to construct detectors based on dis-
criminative features. At this point, it is critical to design
an effective feature set to capture the disparities between
GAN generated images and real images. In many image
classification applications, it has shown that the convolutional
outputs of CNN can serve as powerful features. In this paper,
we adopt the outputs of the last convolutional layer in VGG-16
[15] as features for the detection of GAN generated images.

To extract features from the images, we fed each image to
the VGG-16 network that was pre-trained on imagenet and
then concatenated the convolutional outputs before the fully
connected layers as a feature vector. As the size of images
is 128 x 128, the obtained feature set is of 8192-D. With the
obtained features, we trained FLD (fisher linear discriminant)
ensemble classifiers [20] to classify the generated images and
real images. In the training stage, we randomly selected dif-
ferent numbers of training sample pairs and obtained different
classifiers. The trained classifiers are denoted as ¢{R,G},
where G is the generated image set used for training. In
the testing stage, we evaluated ¢{R, G} by computing the
average accuracy on testing sets of real images and generated
images corresponding to G;. The testing accuracies are shown
in Fig. 2. It can be observed that the accuracies increase with
the growing of training samples. When the training sample
pairs are over 50000, the detection accuracies become stable,
meaning that the training data is sufficient. For the images
generated by DCGAN, the VGG features can achieve good
performance with accuracy over 90% when the training sample
pairs are larger than 10000, and the average accuracy is over
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Fig. 2. Testing accuracies with the VGG16 based features.

94% when the training sample pairs reach 100000. For the
images generated by WGAN, the detection accuracies are
larger than 94% in all the cases. Especially, when the training
sample pairs reach 100000, the obtained accuracies are very
close to 99%. These experimental results indicate that the
features derived from CNN for image classification are very
effective for detecting GAN generated images when there are
sufficient training samples.

The above experiment was conducted in an ideal situation
that the training and testing images were generated at the same
epoch. In practice, however, the training and testing images
are probably mismatched. To evaluate the performance for
practical situations, we used the classifiers ¢{R, GPCAN} and

H{R, GNOANY to test the images generated by different GAN
architectures and from different epochs. The experimental
results are shown in Table IV. From this table we observe that
the detection performance is degraded when the training and
testing data are mismatched. For the detector ¢p{R, GDCOANY,
the degradation of accuracy is about 10% in the mismatched
cases. For the detector ¢{R, GiwoAN}, the performance degra-
dation for images generated by WGAN but from different
epochs is slight. However, its detection accuracy for images
generated by DCGAN is dropped to just about 60%, which is
quite poor. This experiment implies that it is challenging to
detect generated images when there is a lack of information
about exact sources the testing images.
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Detector
{Rs ngé:GAN}
0.8098

{R: ng7CGAN}
0.8581

Testing data
Avg. ACC

AU
{R g?gGAN
0.8073

{R, GProM}
0.9401

{R, Gp5ON}
0.8300

{R, GREONY
0.8144

Detector
Testing data
Avg. ACC

{R, G}
0.8779

{R, GNGAN}
0.8667

SR, Go1 N}
{R, GIGAN}
0.8711

{R, GI*NY
0.8704

{R, GI*}
0.8777

{R, G3AN}
0.0.8742

Detector
{R, G5}
0.5945

{R, GPFoAN}
0.6133

Testing data
Avg. ACC

¢{R, GIN}
{R, G5}
0.5716

{R, GRTOAN}
0.5915

{R, G559}
0.5817

{R,G559AN}
0.5812

Detector
(R, gX\(’)GAN}
0.9871

{R, GNGAN}
0.9865

Testing data
Avg. ACC

¢{R, GI"N}
{R, gX\:lGAN}
0.9881

{R, GI*Y
0.9891

{R,GI}
0.9865

{R, GIAN}
0.9872

V. CONCLUSIONS

In this paper, we discuss how to detect the GAN generated
images. We consider two kinds of approaches. The first kind
of approach is intrusive, which employs the discriminators
in GAN to detect the generated images. The second kind
of approach is non-intrusive. Three non-intrusive approaches
are evaluated in this paper, which are based on face quality
assessment, Inception score, and VGG features, respectively.
Although the current GAN based models can generate realistic
images, the experimental results show that both the intrusive
and non-intrusive approaches are able to detect GAN generated
images. Among the non-intrusive approaches, the last one
achieves the most satisfactory performance. However, there
are still some challenges for detecting GAN generated images,
especially considering the fact that the false alarm rate of
intrusive approach is not so satisfactory and the performance
degradation of VGG features based non-intrusive approach
when training and testing data are mismatched.

In the future, we will further analyze the disparities between
GAN generated images and real images, and study more
effective and practical approaches to perform the detection. On
the other hand, we will try to improve the GANs to produce
more realistic images.
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