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Abstract—This paper proposes a novel approach to many-to-
many (M2M) voice conversion for non-parallel training data.
In the proposed approach, we first obtain bottleneck features
(BNFs) as speaker representations from a deep neural network
(DNN). Then, a variational autoencoder (VAE) implements the
mapping function (i.e., a reconstruction process) using both the
latent semantic information and the speaker representations.
Furthermore, we propose an adaptive scheme by intervening
the training process of the DNN, which can enrich the target
speaker’s personality feature space in the case of limited training
data. Our approach has three advantages: 1) neither parallel
training data nor explicit frame alignment process is required; 2)
consolidates multiple pair-wise systems into a single M2M model
(many-source speakers to many-target speakers); 3) expands
M2M conversion task from closed set to open set when the
training data of target speaker is very limited. The objective
and subjective evaluations show that our proposed approach
outperforms the baseline system.

The aim of voice conversion (VC) is to modify one’s
voice to sound like that of another while preserving the
language content [1], [2]. Most of the current developed
methods require parallel training data, which require frame
level alignment between speakers to establish voice conversion
function. As speaker characteristics can be different, that may
lead to undesired alignment errors, thus voice conversion
quality. From the viewpoint of practical applications, the
requirement of having large parallel training data is unrealistic,
for example, in cross-language conversion or speaking aid for
vocally handicapped people [2], [3]. Therefore, it is desirable
to have voice conversion system that doesn’t require parallel
training data.

The study of voice conversion for non-parallel training data
can be classified into three main categories in general. The first
category is to create pseudo-parallel data from non-parallel
data [4], [5]. There are two representative techniques. One is to
mark phonemes by means of a speaker-independent automatic
speech recognition system (ASR), the other is to splice small
speech unit to form a parallel data by means of a text-to-
speech conversion system (TTS). This category also includes
frame selection, phoneme clustering [6] and INCA [7]. The

advantage of these methods is that it is simple in principle
and easy to implement, however, such methods rely on the
quality of ASR or TTS systems.

The second category is to apply the model adaptation
technique to update the existing parallel conversion model
using the information of speaker’s background set as the prior
knowledge, which includes speaker adaptation [8], [9], speaker
normalization, eigenvoices [10], [11]. Such methods usually
require the assistance of background speakers with parallel
training data, which not only fail to entirely get rid of parallel
training data constraints but also increase the complexity of
the system.

The third category is to establish the relationship between
the two sets of data without any alignment. One of the
examples is to obtain the linear or non-linear mapping
relationship between source and target speech data, including
KL divergence [12], manifold, local nonlinear principal
component analysis [13] and i-vector PLDA [14]. Another
example is to establish the relationship between semantic
space and phonetic space, and render conversion process as
a controlled version of self-reconstruction, which includes
mixture of factor analyzers [15], non-negative matrix
factorization [3], variational autoencoder [16], [17] and
recurrent neural network [18]. The advantage of such method
is that it can make full use of available speech data, and
reduce the dependence on the amount of training data.

Recently, deep probabilistic generative models such as
variational autoencoder (VAE) has achieved tremendous
success in modeling natural images, speech, handwritten
digits and segmentation [19], [20]. We propose to use
bottleneck features (BNFs) extracted from a deep neural
network (DNN), instead of simple one-hot vector as speaker
representations [16]. The BNFs have been proven to be an
effective speaker features in speaker recognition and speaker
clustering [21].Then we would like to study how to corporate
speaker representation (e.g BNFs) in a variational autoencoder
(VAE) model for many-to-many (M2M) spectral conversion.
We will also study an adaptive BNF strategy by intervening
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the training process of the DNN, which allows us to expand
the M2M problem from closed set to open set.

Our work has three main advantages: 1) we do not require
parallel training data and avoid the possible alignment errors;
2) a trained model can be applied to M2M conversion, which
is different from traditional conversion model that only applies
to a specific speaker pair(as in one-to-one, O2O); 3) it expands
the M2M problem from closed set to open set when the
training data of target speaker is very limited, which is an
important step towards practical applications.

I. VOICE CONVERSION USING VAE

Given spectral frames Xs = {Xs,n}Ns
n=1 from the source

speaker and Xt = {Xt,n′}Nt

n′=1
from the target, the process

of voice conversion using VAE can be decomposed into two
stages. In the first stage, a speaker independent encoder fϕ
infers a latent content zn from xn, which is similar to a
phone recognizer. In the second stage, a speaker dependent
decoder fθ mixes zn with a target speaker representation yn
to reconstruct a speaker dependent frame x̂n (x̂s,n or x̂t,n,
depending on yn), which operates as a synthesizer, thus the
traditional conversion function f can be reformulated as:

x̂n = f̂(xn, yn) = fθ(zn, yn) = fθ(fϕ(xn), yn) (1)

Alignment plays no roles in the formulation, because the
frame feature x, speaker representation y and latent content
z are on a point-wise basis instead of the pair-wise basis of
traditional conversion function. We will drop the frame and
speaker indices whenever readability is unharmed. The final
approximated objective function is to maximize a variational
lower bound of the log-likelihood:

logpθ(x|y) 6 −Jvae(x|y) = −(Jobs(x|y) + Jlat(x)) (2)

Jlat(ϕ;x) = DKL(qϕ(z|x)||pθ(z)) (3)

Jobs(ϕ, θ;x, y) = −Eqϕ(z|x)[logpθ(x|z, y)] (4)

where x ∈ Xs∪Xt, DKL is the Kullback-Leibler divergence,
pθ(z) is the prior distribution model of z, which is chosen to
be a standard normal distribution, pθ(x|z, y) is the decoder
model, and qϕ(z|x) is the encoder model. More details can be
found in [16].

From the above analysis, VAE-based VC can be considered
as a reconstruction process with latent content z and a
replacing speaker representation y, which is suitable for non-
parallel corpora. However, the speaker representation y is as
simple as a one-hot vector, pre-defined for each speaker, which
will lead to two problems in terms of system performance
and practicability. First, in the decoding stage of VAE model,
speaker representation y is not fully utilized, which only
contains speaker identity, but does not contain specific and
sufficient personality characteristics. Therefore, it is expected
to get a better performance by introducing an improved
speaker representation containing rich speaker information.
Second, the baseline method can’t complete the conversion
task under limited training data, which is an inevitable problem
in practical application.
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Fig. 1. Schematic diagram of VC using BNF-VAE with non-parallel training
data.

II. VOICE CONVERSION USING BNF-VAE

A. Improving speech models with BNFs

We are interested in whether an effective and informative
speaker representation feature can improve the performance
and circumvent the problem of limited training data.
Recent works have proven the effectiveness of BNFs as a
speaker representation in speaker recognition and speaker
clustering [21]. BNFs are generated by a kind of the
DNN which has a hidden layer with less neurons than
other layers. Once trained, the network model is truncated
at the bottleneck layer. The BNFs provide good speaker
discriminative information, which are extracted from a
DNN-based speaker recognition system. In this case, the
expectation in (4) of the objective function can be rewritten
as:

Jobs(ϕ, θ;x, b) = −Eqϕ(z|x)[logpθ(x|z, b)] (5)

During the conversion stage, we only have the random
testing utterance of the source speaker. In order to obtain the
BNFs bn of desired target speaker during decoding in the
conversion stage, we need to establish the mapping between
the joint vector (zn, yn) and BNFs bn in our proposed
framework. We train a Back-propagation (BP) network
that takes the joint vector as the input, and outputs the
corresponding BNFs bn [22]. In this way, it is possible to
obtain the BNFs bn of desired target speaker from any testing
data in the conversion stage.

Fig. 1 depicts the graphical models of our proposed BNF-
VAE voice conversion framework which can consolidate many
pair-wise systems into one. For example, when we choose
speech from five speakers as training data, BNF-VAE can
convert any of the 20 permutations. In other words, it can
consolidate 20 systems into one. In this way, the BNF-
VAE model can accommodate M2M task under a closed set
condition.

B. Open set problem with limited training data

From the view of practical application, an M2M system
under an open set condition has two further requirements.
First, it must be capable of converting an arbitrary, even unseen
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Fig. 2. BNF extraction in a speaker recognition system

source to a given target. Second, it must be able to convert a
source to an arbitrary target which only has limited training
speech. To answer the first requirement, the source speaker’s
speech is only used to extract semantic information, so the
effect on system performance is very small when the source
speaker’s training speech is limited or even does not appear
in the training stage. To answer the second requirement, we
further study an adaptive scheme by intervening the training
process of the DNN to learn and supplement a new space from
other speakers’ sufficient feature space.

Considering the speaker representative in a speaker
recognition task, we can divide the DNN model into two
modules, namely the analyzer and classifier. As illustrated
in Fig 2, the bottleneck layer and the previous network can
be considered as an analyzer, and the bottleneck layer and
the beyond can be considered as a classifier. Once trained,
it can be simply interpreted that analyzer acts as a feature
extraction function, which can obtain BNFs from the original
speech spectral feature, and classifier acts as a traditional
classifier based on BNFs. It can be considered that the trained
DNN not only gets the optimal classification boundary, but
also forms a suitable feature space distribution in speaker
recognition system at the bottleneck layer.

The steps in detail are as follows: 1) Prepare the data
for training DNN, including limited data of expected target
speaker and sufficient data of other speakers. The softmax
nodes are equal to the total number of speaker’s participating
in the training; 2) After pre-training the DNN layer-by-layer,
the whole DNN is optimized and trained, and the error rate
of each mini-batch is monitored. When the error rate is less
than a threshold (e. g. 30%), we need to suspend the training
process temporarily and save the current network structure and
parameters; 3) Analysis the DNN-based classification results
to filter out all the wrongly classified frames into the target
speaker, and then assign the target speaker’s label to those
frames; 4) Continue the training of the DNN until gradient
convergence.

The training process of the DNN is intervened in step 2
and 3 for two assumptions. Considering that the classification
boundary has been initially formed when the error rate is less
than 30%, this training process needs to be intervened. The
error rate of 30% is empirical and self-defined, which can

be set according to the change of each mini-batch’s error
rate by fully training the DNN in advance. Second, it can
be considered that the wrongly assigned frames to the target
speaker containing the characteristic information of the target
speaker to some extend. In order to enrich and supply the
feature space of the target speaker, we try to change the
label of wrongly classified frames. As training continues, the
analyzer module is expected to reinforce and retrieve the
information of target speaker from these frames changed the
label.

III. EXPERIMENTS AND DISCUSSIONS

A. The dataset and feature set

The proposed VC system is evaluated on the CMU ARCTIC
dataset [23] including 7 speakers (5 male and 2 female).
The signals are sampled at 16 kHz with mono channel,
windowed with 25ms and shifted every 5ms using Hamming
window. Acoustic features including Mel Frequency Cepstral
Coefficients (MFCC)(19 dimension), F0 (1 dimension) and
maximum voiced frequency (1 dimension) are extracted by
Ahocoder [24]. Delta and delta-delta are appended giving
rise to a 57-dimensional spectral features per frame, and
then two adjacent frames are spliced together to obtain
171-dimensional spectral features. We normalize the spectral
features, and the normalization factor is considered as an
independent feature without any change. Then the normalized
spectral feature is used in the experiments. We use the
traditional Gaussian normalization method to convert the
fundamental frequency parameters F0, and keep maximum
voiced frequency unchanged. After the converted spectral and
fundamental frequency are obtained, the normalization factor
is compensated to the converted spectral, and finally the speech
synthesis is performed by Ahocoder.

B. Configurations and hyper-parameters

Our DNN is a multi-layer stacked and fully connected
artificial neural network, including 7 hidden layers, and the
bottleneck layer in the middle has 57 nodes, while the other
hidden layers have 1,200 nodes respectively. 171-dimensional
spectral features are chosen as input and the output is the
softmax classification of all training speakers. For the VAE
model, the encoder and the decoder are fully connected. The
encoder has two hidden layers with 500 nodes and 64 nodes
respectively. The decoder has one hidden layer with 500 nodes.
The latent layer has 32 nodes. Rectifier linear units (ReLU)
is applied to each layer to provide non-linearity (except for
latent layer and output layer , which are linear). The size of a
mini-batch is the spectral feature of 30 frames. The optimizer
is ADAM. The hidden layer of BP network has 1,200 nodes.
The input layer had 37 nodes (32+5), of which 5 is one-hot
vector for 5 speakers. The output layer has 57 nodes using
softmax activation function.

C. Performance comparison with sufficient training data

To compare the performance of the baseline system VAE
and our proposed BNF-VAE in the case of sufficient training
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Fig. 3. Average MCD of baseline VAE and proposed BNF-VAE for different
conversion cases in two training situations.
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Fig. 4. ABX preference test results of baseline VAE and proposed BNF-VAE
for inter-gender and intra-gender.

data, we choose five speaker’s speech (awb, clb, rms, slt and
bdl) to establish five conversion cases with intra-gender and
inter-gender. The training data consists of two situations, in
the first situation, we choose the same 100 sentences from
each speaker, but we don’t pair them with alignment. In the
second situation, we randomly choose 100 sentences from each
speaker. The testing data has 10 additional sentences in each
conversion case.

Mel-cepstral distortion (MCD) is used to measure how close
the converted is to the target speech [1], [2]. Fig. 3 shows
the performance of VAE and BNF-VAE in two training data
situations. For example, VAE-1 means VAE approach in the
first training situation. As shown, the performance of the two
approaches in the first situation is better than the second
situation, but the average difference between two situations
is not very great. We analyze that maybe the same utterances
will be beneficial for the model learning, which inspire us
that the models might not have been fully exploited. We
will investigate the cause more profoundly in the future. The
performance of BNF-VAE is better than VAE in different
conversion cases consistently, with an average improvement
of 6.75%.

We randomly chose 10 sentences from intra-gender and
inter-gender conversion cases respectively for subjective
listening tests. In the mean opinion scores (MOS) test, 30
listeners are asked to rate the naturalness and clearness of
the converted speech on a 5-point scale. BNF-VAE achieved
3.106 MOS, with 95% confidence interval (2.925-3.287),
while VAE achieved 2.258 MOS, with 95% confidence
interval (2.057-2.459), which indicates that the speech quality
is consistent with MCD performance.

For the ABX preference test, listeners are asked to choose
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Fig. 5. Average MCD of BNF-VAE-S and BNF-VAE-L for different
conversion cases.
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Fig. 6. ABX preference test results of BNF-VAE-S and BNF-VAE-L for inter-
gender and intra-gender.

which of the converted sentences A and B (generated by the
two approaches) sound more like the target speaker’s recording
X or no preference. Each pair of A and B are shuffled to avoid
preferential bias. As shown in Fig. 4, BNF-VAE is obviously
preferred over the baseline approach.

D. Performance comparison with limited training data

We compare the performance of BNF-VAE in the situation
of sufficient and limited training data, denoted as BNF-VAE-S
and BNF-VAE-L respectively. In the sufficient data situation,
the settings are similar to Sec. III-C. In the limited data
situation, we choose two speakers of bdl and slt as the target
speaker with only 5 sentences for training respectively, while
other four speaker’s training data consists of 100 sentences.
Then we conduct eight conversion cases to compare the
performance.

Fig. 5 shows the performance of BNF-VAE-S and BNF-
VAE-L. As shown, the performance of BNF-VAE-L has
directly decreased, but the semantics of synthesized speech
can be discerned to a certain extent.

BNF-VAE-S achieved 3.053 MOS, with 95% confidence
interval (2.878-3.228), while BNF-VAE-L achieved 2.070
MOS, with 95% confidence interval (1.885-2.255), indicating
the quality of converted speech has a certain degree of decline
with limited training data.

From the perspective of speaker similarity, as shown in
Fig. 6, the performance of BNF-VAE-S is dominantly better
than that of BNF-VAE-L. In the case of BNF-VAE-L, although
the adaptation of BNFs improves the reconstruction process
and the desired conversion is made possible by enriching
and supplementing target speaker’s feature space, the mix of
other speakers’ information is inevitable. From the application
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point of view, our work takes an important step forward and
represents a new perspective. In the next step, we will try
to use i-vector [25] and x-vector [26] features as speaker
representations, hoping to improve the performance of the
system.

IV. CONCLUSION

In this paper, we proposed a BNF-VAE framework on M2M
voice conversion for non-parallel training data. Objective
and subjective evaluations verified that the performance
of the proposed method outperforms the baseline system.
Furthermore, the proposed adaptive BNF can extend M2M
problem from closed set to open set, although there are
still problems in speaker similarity. After all, acquiring
enough personality information from limited data is still a
big challenge. We will continue to improve the conversion
performance, especially under limited training data.
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