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Abstract—Electroencephalography(EEG) has been used widely
in biomedical research and consumer products because of its
reasonable size and cost. In order to reduce the electrical
impedance between electrodes and skin of the scalp, we use
conductive gel. However, it takes time to setup EEG. This problem
is solved by dry electrodes, which do not require to use the
conductive gel, however, the signal quality of dry electrodes is
lower than that of wet electrodes.

In this research, we propose a method to improve quality of
the dry EEG signal. In order to design a restoration filter, we
prepare wet and dry EEG signals recorded simultaneously. Then
the filter is trained by both wet and dry EEG signals to restore
wet EEG signal from dry EEG signal input. We used the fully
connected deep neural network (DNN) and convolutional neural
network (CNN). We conducted an experiment using the oddball
paradigm to demonstrate the proposed method and compare with
the classical Wiener filter.

I. INTRODUCTION

Electroencephalography(EEG) has been used widely in
biomedical research and consumer products because of its
reasonable size and cost. EEG signal is small potential on the
scalp caused by action potential of neurons. Therefore, EEG
contains large noise. The noise includes those derived from
living bodies and those from the environment [1]. The body
noise occurs from muscle activity, blinking, and myoelectric-
ity. Independent component analysis (ICA) is used to remove
these kinds of noise [2]. The environmental noise is caused
by power supply, common mode, electromagnetic noise. It is
removed by a band-pass filtering or an active amplifier which
keeps an appropriate impedance.

EEG consists of the spontaneous potential and the event
related potential (ERP). The event related potential (ERP)
is caused by an internal or external stimulation. The visual
evoked potential (VEP) or auditory evoked potential (AEP)
is often used to evoke ERP method. In order to observe a
waveform of ERP, the trial averaging is used. Since the noise
and spontaneous potential are not synchronized to the event,
their power is reduced in inverse proportion to the number
of averaging. The brain computer interfaces (BCIs), which
controls a computer or device by using only brain activity,
are required to input command faster. Thus, it is necessary to
extract ERP by using single or a few number of trials. Many
methods to extract ERP using single or smaller number of
trials have been proposed for BCI [3], [4], [5], [6], [7], [8].

These methods mainly focus on wet electrode EEG. Wet
electrode EEG requires to use conductive gel to reduce the
impedance between the electrodes and skin of a scalp to

obtain higher signal-to-noise ratio (SNR) signal. However,
the conductive gel has problems; has to be rinsed after the
measurement; costs setup time; and dries during long-time
measurement. In order to overcome these problems, a dry
electrode has been developed. Although dry electrodes do not
require to use conductive gel, its SNR is still much lower than
SNR of wet EEG.

In this paper, we propose a method to improve quality of the
dry electrode EEG signal. In order to design a restoration filter,
we prepare wet and dry EEG signals recorded simultaneously.
Then the filter is trained by both wet and dry EEG signals
to restore wet EEG signal from dry EEG signal input. We
used the fully connected deep neural network (DNN) and
the convolutional neural network (CNN). We conducted an
experiment using the oddball paradigm to demonstrate the
proposed method and compared with the classical Wiener
filter.

II. EXPERIMENT

A. Subject and task
The subject was three 21-23-year-old males, and the oddball

task is conducted. In the oddball task, 1kHz and 2kHz tone
bursts were generated in the ratio of 4:1. The subject counted
in mind when 2kHz tone is presented. The stimulus lasts 0.2
seconds, and the stimulation interval was randomly determined
from 0.8 to 1.3 seconds. One session consists of 250 stimulus
presentations, and the subject took a break three minutes
between the session. One session is about seven minutes. Four
sessions were recorded for each subject.

B. EEG Recording
Dry and wet electrodes were attached to the subject. Ac-

cording to the international 10-20 method, the dry electrodes
were placed at Cz, CPz and Pz. The wet electrodes were
placed at C1, CP1 and P1. The sensors position is illustrated
in Fig. 1. g.SAHARA system manufactured by g.Tec was used
for dry electrodes, and g.GAMMA system was used for wet
electrodes. The dry and wet EEG were amplified 2500 and
5000 times respectively. Then a band-pass filter of 0.5-100
Hz was applied and recorded at 16bit 512Hz A/D converted.

C. EEG Analysis
The recorded EEG was visually confirmed not to have large

artifacts, and a band-stop filter of 45-55 Hz and a band-pass
filter of 1-45 Hz were applied. EEG was standardized to have
zero mean and variances one for each channel.
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Fig. 1. Sensor position
Using 10-20 system. Red line: Dry electrodes, Blue line: Wet electrodes,

FPz and FP1: Ground, A1 and A2: Reference

III. SIGNAL RESTORATION METHODS

A. Wiener Filter

The Wiener filter is an optimal linear filter in terms of
minimizing the mean squared error. We minimize the mean
squared error between the desired signal y[n] and the filter
output signal ŷ[n] given by

ŷ[n] =
M−1∑
m=0

h[m]x[n−m], (1)

where h[m], m = 0, . . . ,M − 1 is the filter coefficients and
x[n], n = 0, . . . , N − 1 is the input signal.

Let e[n] = y[n]− ŷ[n] is the error, the mean squared error
is

min
h[·]

ϵ = E{e2[n]}, (2)

where E denotes the expectation. The Wiener filter is h[n]
minimizing ϵ. The filter coefficients h[n] is obtained by

min
h

∥y −Xh∥2, (3)

where

X =


x[M − 1] x[M − 2] · · · x[0]

x[M ] x[M − 1]
...

...
. . .

...
x[N − 1] · · · · · · x[N −M ]

 (4)

y =
[
y[M − 1] y[M ] · · · y[N − 1]

]T
(5)

h =
[
h[0] h[1] · · · h[M − 1]

]T
. (6)

The optimal solution is given by

h = (XTX)−1XTy. (7)

If (XTX) is singular or ill-posed, the l2 regularization is
used.

h = (XTX + λI)−1XTy, (8)
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Fig. 2. Example of fully connected deep neural network
LeakyReLU is used for hidden layer’s activation. Output layer’s activation

was linear.

where λ is a regularization parameter.
We used a temporal Wiener filter designed for each channel,

and spatial-temporal Wiener filter. The temporal filters were
designed for three pairs, (Cz, C1), (CPz, CP1), and (Pz, P1).
The dry EEG is used for the training input X , and wet EEG
is used for the desired signal y. Then h is a restoration filter
of dry EEG. The spatial-temporal Wiener filter is designed as
follows. Let the input matrix and the filter factor be

X =
[
XT

1 XT
2 · · · XT

Sdry

]T
(9)

y =
[
yT
1 yT

2 · · · yT
Swet

]T
(10)

h =
[
hT
1 hT

2 · · · hT
Sdry

]T
, (11)

where Xi is X of channel i, hi is h of channel i, Sdry and
Swet is the number of dry and wet electrodes respectively. A
filter was created for combinations, (C1, Cz, CPz, Pz), (CP1,
Cz, CPz, Pz), and (P1, Cz, CPz, Pz).

B. Deep Neural Network

A fully connected deep neural network (DNN) is used as
a nonlinear regression method. We constructed a filter whose
input is the dry EEG x = [x[0], . . . , x[N − 1]], and teaching
signal is wet EEG. LeakyReLU was used as the activation
function of hidden layers,

σ(x) =

{
0.3x (x < 0)
x (otherwise).

(12)

The cost function is the squared error. The weight parameters
were optimized by Adam algorithm. The hyper-parameters
of the optimizer conformed to the proposed paper [9]. The
number of hidden layers was two, and the number of kernels
was set equal to the input dimension. Fig. 2 is an example
of used DNN model. We trained DNN for combinations (C1,
Cz), (CP1, CPz), and (P1, Pz). The input dimension N was
chosen from 16, 32, 64, 128, 256 and 512. We used Python
3.5.4 and Keras 2.1.3 with TensorFlow 1.5.0 background to
implement the neural network.

C. Convolutional Neural Network

We used a convolutional neural network(CNN) for the
spatial-temporal nonlinear filter. CNN deals with multi-
dimensional structured data, on the other hand, fully connected
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Fig. 3. Example of convolutional neural network
First layer was convolutional layer. Next layer was max pooling layer.

DNN is invariant for the structure and permutation of input
dimension.

Multichannel EEG has a two dimensional structure which
has time and channel. We applied two dimensional convolution
for time and channel index. The filters were designed for
combinations (C1, Cz, CPz, Pz), (CP1, Cz, CPz, Pz) and (P1,
Cz, CPz, Pz). The network structure is illustrated in Fig. 3.
The input dimension N was selected from with the result of
DNN experiment. The number of units in hidden layers was
set to the same as the input dimension. The number of hidden
layer was two. The number of filters in the convolutional layer
is ten. To aim channel cooperation, the kernel (filter) size of
channel index was the number of input dry electrode channels,
and time index was chosen from 4, 8, 16. The pooling method
is the max pooling of the size 1 × 3. For the error function,
the squared error function was used. The activation function
was LeakyReLU, and Adam is used for optimization. All of
these initial values were the same with those of DNN.

IV. RESULTS

A. Deep Neural Network

DNN was designed for each pair of channels. One of
the four sessions was used for training and remaining three
sessions were used for test. We evaluated the performance
by the mean squared difference between filter output and wet
EEG. The error ratio E is calculated by

E =
1

4

4∑
t=1

∥X̂t − Yt∥2F
∥Xt − Yt∥2F

, (13)

where Xt is dry EEG, X̂t is restored EEG, and Yt is wet
EEG of the tth session.

Fig. 4 shows the reconstruction error ratio of the temporal
Wiener filter, the spatio-temporal Wiener filter and DNN.
The error rates are averaged for four sessions, three pairs
of electrodes and each subjects. The best of input size with
the DNN was 32, and the temporal Wiener filter and spatio-
temporal Wiener filter was 128.

B. Convolution Neural Network

From the result of DNN, CNN input dimension was set
to be 32. CNN is evaluated in the same manner as DNN.
Fig. 5 shows error rates of CNN. There was also no difference,
temporal dimension 8 showed the lowest error rate. There is
no significant difference between CNN and DNN in this result.
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Fig. 4. Reconstruction error of temporal Wiener filter, spatio-temporal Wiener
filter, and DNN
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Fig. 5. Reconstruction error of CNN

C. Comparison of ERP waveform

We, next show quantitative comparison the reconstruction of
ERP waveforms. As the ground-truth waveform, we obtained
a grand averaging ERP waveform from wet electrodes. Then
we compare correlation coefficients with the grand averaging
and the reconstructed waveforms by the proposed methods.

One session is used for training and remaining three sessions
are used for evaluation. We used CPz for dry electrode and
CP1 for wet electrode. Fig. 7 shows forty times averaged ERP
waveforms.

Fig. 6 and Tab. I show the relation between the correlation
coefficients and the number of averaging. Fig. 6 shows corre-
lation coefficients between forty times averaged wet electrode
ERP waveforms and each times averaged ERP. Tab. I shows
averaging times to leach correlation coefficient 0.8 in Fig. 6.
Those shows CNN exhibited the best performance.

V. CONCLUSION

We have proposed a method to improve quality of dry
electrode EEG. In order to design the restoration filter, we
used simultaneously recorded dry and wet EEG. We com-
pared four restoration models, temporal Wiener filter, spatio-
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Fig. 6. Correlation coefficient and the number of averaging

TABLE I
CORRELATION COEFFICIENT AND
AVERAGING TIMES TO LEACH 0.8

Methods Averaging times
Wet electrode 9.5

CNN 15.6
Spatial Wiener filter 16.8

Dry electrode 17.0
DNN 18.2

Wiener filter 23.0

temporal Wiener filter, DNN, and CNN. Experimental results
showed that spatial filtering which uses signal from neighbor
electrodes exhibited better performance than single channel
restoration filter, and nonlinear models, deep or convolutional
neural networks, exhibited better performance than linear
methods, Wiener filtering.

The proposed methods improve the quality of dry EEG, and
solve the problems of wet electrodes. The proposed method
is not only for extraction of ERP but also measurement of
spontaneous EEG. Furthermore, the proposed methods will
work with the other ERP enhancement filters such as common
spatial potential (CSP) filter. Future works include investiga-
tion of inter-subject dependence, increase sensors and verify
relationship, selection of hyper-parameter, and application of
the other network structure.
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